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A Sample Session. 
 
The following example shows a complete Logos session, annotated with 

explanations. The definitions used are provided in .l files along with the Logos 
application program. 

 
LOGOS version 0.7 (Preliminary) of January 1996 
<<< We will define a simple, well-known world of actors and actions. 
 Jerry and his nephew are mice: 
<<< mouse(jerry). 
<<< mouse(jerrysnephew). 
 

 Tom is a cat, Spike is a dog, and we introduce a tiger: 
<<< cat(tom). 
<<< dog(spike). 
<<< tiger(timmy). 
 

If we ask “who is a cat?”: 
<<< cat(X)? we receive the expected answer. 
X=tom If instead we ask “who is not a cat?”: 
<<< ~cat(X)? we receive a less direct answer: 
X=X WHERE X/=tom 

meaning “X is anything other than Tom”. This begins to 
illustrate the way Logos works. Logos computes over an open 
universe of terms; it does not assume that the terms presented to it 
so far {timmy, spike, tom, jerry, jerrysnephew} are the only terms 
in the universe, but that other unknown terms are also present. Thus 
Logos can not perform negation by the relatively simple method of 
calculating the set of terms that satisfy a predicate, then subtracting 
them from the set of all terms. 

Instead, Logos computes new rules that define negated 
versions of all the predicates. These new rules may be seen in the 
output of the “show” command: 

<<< show(cat)? 
cat(tom). 
~cat(V1) where V1/=tom. 

 

<<< show(mouse)? 
mouse(jerry). 
mouse(jerrysnephew). 
~mouse(V2) where (V2/=jerry /\ V2/=jerrysnephew). 
 

Logos performs a great deal of preprocessing to reconstruct the 
rules entered by the user into a more suitable form. Along with 
constructing negated versions of all predicates, it also converts all 
predicates into a purely positive form, in which the negation 
operation never appears (after this preprocessing, “~mouse” is a 
new predicate symbol; it is not the “~” operation applied to the 
“mouse” predicate). In addition to this, it also converts rules for a 
single predicate into a disjoint and complete form. This process is 
illustrated by the following sub-example: 
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p(f(k)) :- q(k). 
p(f(X)) :- qq(X). 

 

These two rules are converted into: 
p(f(k)) ← q(k) ∨ qq(k). 
p(f(X)) where X/=k ← qq(X). 
p(A) where A isnt f ← false. 

 

From these three, the definition of ~p is derived: 
~p(f(k)) ← ~q(k) ∧ ~qq(k). 
~p(f(X)) where X/=k ← ~qq(X). 
~p(A) where A isnt f ← true. 

 

Finally the two sets of rules are simplified, to produce the final 
form listed by show(p): 

p(f(k)) <- q(k). 
p(f(k)) <- qq(k). 
p(f(X)) where X/=k <- qq(X). 
~p(f(k)) <- ~q(k) /\ ~qq(k). 
~p(f(X)) where X/=k <- ~qq(X). 
~p(A) where A isnt f. 
 

Now the rules of behaviour are defined: cats eat mice, and tigers eat 
everything but tigers. The symbol “/\” represents the logical and 
operation as opposed to Prolog’s sequential and operation, which is 
also available (using the traditional comma symbol): 

<<< eats(X,Y) :- cat(X) /\ mouse(Y). 
<<< eats(X,Y) :- tiger(X) /\ ~tiger(Y). 
 

Animals chase one-another either for food: 
<<< chases(X,Y) :- eats(X,Y). 
 

or for some other reason: 
<<< chases(X,Y) :- dog(X) /\ cat(Y). 
 

So now we can request some deductions: 
<<< chases(tom,jerry)? Does Tom chase Jerry? 
TRUE 

 

<<< eats(tom,X)?  Who does Tom chase? 
X=jerry 
X=jerrysnephew 

 

<<< chases(X,jerry)? Who chases Jerry? 
X=tom 
X=timmy 

 

<<< chases(X,Y)?  Who chases whom? 
X=spike /\ Y=tom 
X=tom /\ Y=jerry 
X=tom /\ Y=jerrysnephew 
X=timmy /\ Y=Y where Y/=timmy 
 

This final answer means that Timmy, being a tiger, chases everyone 
but himself. Remember that Logos can not explicitly list all of the 
things that Timmy chases, due to the open universe assumption. 
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There is no “list of all things”, so a more expressive logical formula 
must be produced instead. 

We can design a small program to generate all interesting 
forms of activity, and write them out. 

<<< action :- eats(X,Y), write(X,eats,Y,nl)  \/ 
  <           chases(X,Y), write(X,chases,Y,nl). 
 

In this definition, the sequential and operation (comma) must be 
used instead of the logical and, so that the predicates eats and 
chases will be sure to have had an opportunity to instantiate the 
variables X and Y before they are printed. 

<<< action? 
spike chases tom 
timmy eats V3 WHERE V3/=timmy 
tom eats jerrysnephew 
tom eats jerry 
timmy chases V4 WHERE V4/=timmy 
tom chases jerry 
tom chases jerrysnephew 
TRUE 

Now for some more complex rules. 
An animal is edible if there is some other animal that is 

interested in eating it: 
<<< edible(X) :- (exist Y eats(Y,X)). 

 

The parentheses around the whole existential formula are required 
so that the scope of any quantifier is always obvious. Prolog can 
handle existential quantifiers; they are used implicitly whenever a 
new variable is introduced after the “:-”. 

<<< edible(X)? 
X=jerrysnephew 
X=jerry 
X=X where X/=timmy 

 

After discovering that Jerry and Jerrysnephew are both edible, the 
system finds a more general rule that everything other than Timmy 
is edible. It would be possible to implement Logos in such a way 
that only the most general answers are printed, but that would 
require waiting until all answers have been found before printing 
any. In an interactive system, or for a program that produces an 
unending stream of answers, this is not suitable. 

Any animal that eats everything but itself is considered to be 
fierce: 

<<< fierce(X) :- (all Y  X/=Y -> eats(Y,X)). 
 

Universal quantification is beyond the scope of Prolog. Logos 
performs the operation through logical manipulations of the 
defining formulae; due to the “open universe” assumption it is not 
possible to simply test all known terms. 

<<< fierce(X)? 
X=timmy 
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Logos is capable of complex computations involving the 
quantifiers. For instance, All animals are either fierce or edible: 

<<< (all X  fierce(X) \/ edible(X))? 
TRUE 

No animals are both fierce and edible: 
<<< ~(exist X  fierce(X) /\ edible(X))? 
TRUE 
 

 

List processing provides another demonstration. 
The syntax for lists follows Prolog’s exactly: individual elements at the head of a 

list are separated by commas; the one term after the vertical bar represents the whole of 
the rest of the list. This is illustrated by asking Logos to unify an explicit list with one 
containing variables: 

<<< [1,2,3,4,5,6]=[A,B,C|D]? 
A=1 ∧ B=2 ∧ C=3 ∧ D=[4,5,6] 

 
An item is a member of a list if it is the same as the first element of the list, or if it 

is a member of the rest of the list: 
 

<<< member(X, [X|Rest]). 
<<< member(X, [Y|Rest]) :- member(X, Rest). 

 

<<< member(2, [1,2,3])? 
TRUE 

 

<<< member(f(X), [f(a),g(b),f(c)]? 
X=a 
X=c 
 

<<< member(X, [1,2,3])? 
X=1 
X=2 
X=3 

 
append(A,B,C) should be true if the list C results from appending the two lists 

A and B. Naturally, appending an empty list to something has no effect: 
<<< append([ ], L, L). 
 

and if L3 is obtained by appending L1 and L2, then L3-with-E-added can be obtained by 
appending L1-with-E-added and L2: 

<<< append([E|L1], L2, [E|L3]) :- append(L1, L2, L3). 
 

Now some queries illustrate some of the possibilities: 

 

<<< append([1,2], [3,4], [1,2,3,4])? 
TRUE 
 

<<< append([1,2], [3,4], X)? 
X=[1,2,3,4] 
 

<<< append([1,X], [Y,4], [1,2,3,Z])? 
X=2 ∧ Y=3 ∧ Z=4 
<<< append(X, Y, [1,2,3])? 
X=[ ] ∧ Y=[1,2,3] 
X=[1] ∧ Y=[2,3] 
X=[1,2] ∧ Y=[3] 
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X=[1,2,3] ∧ Y=[] 
 

All of the above examples are well within the scope of Prolog. Logos can go further, 
providing some simple theorem proving: 
 

<<< (all X,Y append([X], [Y], [X,Y]))? 
TRUE 
<<< (exist X,Y append([X], [Y], [Y,X]))? 
TRUE 
<<< (exist X,Y append([X], [Y], [Y,X]) ∧ X/=Y)? 
FALSE 

 
Basic Syntax 

 
A name consists of a lower-case letter followed by any combination of letters and 

digits; underlines may be used between other characters. 
A variable consists of a capital letter followed by any combination of letters and 

digits; underlines may be used between other characters. 
Names of predicates and functions (the constants that appear in terms) are 

indistinguishable except by their context. Names may include an explicit “arity” as in the 
example p/2. In any context where the “arity” can not be deduced, it must be stated 
explicitly. 

 
A term consists of a variable, an integer, or a function name optionally followed by 

a list of arguments separated by commas, in parentheses. The arguments are terms. 
Examples:  k, cat, f(k), X, f(X).   A term may also consist of a list of terms in 
square brackets, separated by commas.  Example:  [1,k,f(X),cat]. 

An atomic formula consists of a predicate name optionally followed by a list of 
arguments separated by commas, in parentheses. The arguments are terms. Examples: p, 
p(k), p(X,Y). 

A formula is constructed from atomic formulae by applying operators. The 
common operators are, in order or precedence: 

 ~ Negation 
 ,  and /\ Sequential and parallel conjunction 
 ; and \/ Sequential and parallel disjunction 
 -> and <- Implications 
 <-> Equivalence 

Parentheses may be used in the normal way, to over-ride operator precedences. 
Formulae may also be constructed by applying special operators to terms. The most 

important operators are: 
 = The two operands are unified 
 := The second operand should be an expression; it is 

evaluated 
  and unified with the first operand, normally a variable. 
 /= The two operands are unified, and the result negated. 
 <  =<  >=  > The standard arithmetic comparisons 
 is Second operand should be a function name; result is true if 
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  first operand is that function applied to some arguments. 
 isnt The result of is, but negated. 
A formula may also be constructed from one of the quantifiers, all and exist. 

The syntax for a quantified formula is ( quantifier  variable-list  formula ), Examples; 
(all X p(X)),  (exist X,Y p(X,Y) /\ q(X)). 
 

An expression is a special kind of term, consisting of integers and variables 
combined with the arithmetic operators +, -, *, /, and parentheses. 

 
A rule, contributing to the definition of a predicate, has the syntax: 

head  where guard  :- body. 
the head is in the syntax of an atomic formula, the guard and body are both general 
formulae. If the guard is true, the “where guard” portion may be omitted; if the body is 
true, the “:- body” portion may be omitted. The guard provides a constraint on the 
applicability of a rule, so the rule “p(X) where X/=k:- q(X).” is not the same as 
the rule “p(X):- X/=k /\ q(X).”; the difference becomes important when 
negative rules are constructed. 

A query consists of any formula followed by a question-mark. 
 
 Commands 
 
The commands available are listed below; they may be typed at any time to the <<< 

prompt, and should be terminated by a “.”. 
 

exit. 
Exit from Logos. 

show. 
List all user-defined predicate names. 

show(predicate-name). 
Display the definition of a user-defined predicate. 

help. 
Displays a list of all commands and built-in predicates, with a brief description. 

help(name). 
Provides a more complete description (if available) of a command or built-in 
predicate. 

clear. 
Erases the definitions of all user-defined predicates. 

load(name). 
Load a Logos program file called name.l from the directory (or folder) from which 
the Logos application was launched. 

selection(sequential). 
Sets the rule-selection semantics for subsequently entered definitions to 
“sequential”. A typical predicate’s definition is split into a number of lines, for 
example: 

p(X) :- q(a,X). 
p(X) :- q(b,X), q(c,X). 



 
7 

Such a definition is considered to be a disjunction of the individual parts. As Logos 
works with both sequential (Prolog-like) disjunction and parallel (logical) 
connectives, the selection(sequential) command is used to specify the sequential 
disjunctions are to be assumed for any definitions being entered.  

selection(parallel). 
Sets the rule-selection semantics for subsequently entered definitions to “parallel” 
(see the above description of sequential selection). Example: 

Given this input: selection(sequential). 
 p(a). 
 p(b). 
 p(c). 
 selection(parallel). 
 q(a). 
 q(b). 
 q(c). 

The query: p(X)? 
always produces the solutions X=a, X=b, and X=c in that order, whereas the query: 

 q(X)? 
will produce those same solutions, but in an unpredictable order. 

simplify. 
Extra simplification transformations are applied to all output produced by the next 
query. These transformations could be computationally expensive. 

 echolines. 
All subsequent lines will be echoed exactly as they are read. echolines is cancelled 
when and end-of-file is reached, or when another echolines command is entered. 

 
silent. 

The single immediately following query will be executed silently: the final answer 
is not printed, and non-essential preprocessor information is suppressed. write 
predicates still produce output as normal. 

new. 
All rules defining predicates are marked as “old”. This happens automatically 
whenever a load command starts or finishes. 

When a new rule is entered, for a predicate that has already been defined by 
earlier rules, the effect depends upon the age of the older rules. If they are old, they 
are discarded, and the new rule begins a redefinition of the predicate. If they are 
new, the new rule as simply added to them. This allows a file to be re-read after 
editing, to redefine predicates, but does not interfere with normal experimental rule 
construction. 

positiveonly. 
The one next predicate to be defined, is marked as “positive only”. 

Before execution of a query or command, all rules (and the query itself) are 
subject to a complex preprocessing procedure. During preprocessing, the rules that 
defines a predicate are modified to make them disjoint, for example: 

p(a,Y) :- q(Y). 
p(X,b) :- r(X). 

are converted to the following 
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p(a,Y) where Y/=b :- q(Y). 
p(X,b) where X/=a :- r(X). 
p(a,b) :- r(a) /\ q(b). 

and an extra rule is added to complete the definition 
p(X,Y) where X/=a /\ Y/=b :- false. 

Rules in this form allow the negative version of the predicate to be correctly 
constructed; they also make execution of queries more efficient in some situations. 
As a final step in preprocessing, the rules are somewhat simplified, and those 
ending with “:- false” are discarded. 

For predicates with many defining rules, preprocessing can be very time 
consuming (especially in this experimental implementation). For this reason, those 
predicates that never appear in their negative forms may be marked as positiveonly. 

Example: 
positiveonly. 
parent_child(alf,ben). 
parent_child(alf,cal). 
parent_child(ben,dan). 
parent_child(ben,elf). 
parent_child(cal,fran). 
parent_child(cal,gab). 

parent_child(cal,hen). 
parent_child(dan,ida). 
parent_child(elf,jane). 
parent_child(elf,ken). 
parent_child(fran,log). 
parent_child(gab,mab). 

ancestor_descendant(A,D):-parent_child(A,D). 
ancestor_descendant(A,D):-(exist Mid 

parent_child(A,Mid), 
ancestor_descendant(Mid,D))

. 
ancestor_descendant(X,ken)? 

X=alf 
X=elf 
X=ben 

The preprocessing for the parent_child rules would be prohibitively time-
consuming without the positiveonly declaration. 

 
Built-in Predicates. 
 

The following predicates may be used in any context in a Logos program. They 
behave logically as any predicate should, in that they either succeed or fail, and may 
instantiate any variables in their arguments. They are provided because they perform 
functions that would be difficult or impossible to program otherwise. 

 
read(arguments) 

Logos provides a pure logical form of input. When a read predicate is executed, the 
input prompt (“? “) is displayed, and program execution pauses until some input is 
entered; the input may be any list of terms, separated by commas, and terminated by 
a period. The list of input terms is unified with the list of arguments to produce the 
result. Both the arguments and the typed input may contain variables (either already 
known variables, or new ones), and the input may also be restricted by a constraint 
using a where clause. Examples: 

<<< read(X,Y)? 
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? 1,2. 
X=1 ∧ Y=2 
<<< read(X)? 
? Y. 
X=Y 
<<< read(s(X))? 
? s(s(a)). 
X=s(a) 
<<< read(s(X))? 
? Z. 
X=X ∧ Z=s(X) 
<<< read(k)? 
? k. 
TRUE 
<<< read(k)? 
? X. 
X=k 
<<< read(k)? 
? X where X/=k. 
FALSE 

 
write(arguments) 

The values of the arguments are printed in order. The term nl is interpreted 
specially to cause a new line of output to begin. If any of the argument terms 
contain variables, the output will include any constraints that apply to those 
variables. 
Examples: 

<<< X=6, write(‘X is ‘,X,nl)? 
X is 6 
<<< X=k, Y=f(Z), Z/=k, write(X,nl,Y,nl,Z,nl)? 
k 
f(Z) WHERE Y=f(Z) ∧ Z/=k 
Z WHERE Y=f(Z) ∧ Z/=k 

 
readline(X) 

When executed, the input prompt (“? “) is displayed, and program execution pauses 
until some input is entered (the input is terminated by a period “.” or question-mark 
“?”). The input is split up into individual symbols, which are composed into a list. 
The list is unified with the argument X, which should be an uninstantiated variable. 
Example: 

<<< readline(X)? 
? the cat sat on the mat. 
X=[the,cat,sat,on,the,mat,.] 

 
equalsdotdot(A,B) 

Performs the function of Prolog’s =.. operator, converting between complex terms 
and lists of less complex terms. Example: 

<<< equalsdotdot(X, [f,a,b])? 
X=f(a,b) 
<<< equalsdotdot(f(a,b), Y)? 
Y=[f,a,b] 
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<<< equalsdotdot(f(X,Y), [A,B,k])? 
X=X ∧ Y=k ∧ A=f ∧ B=X 

 
assert(term) 

Similar to Prolog’s assert; the term is translated into a predicate with an identical 
syntactic form, and that predicate is accepted as a new rule. Asserted predicates are 
considered to be dynamic, and predicates entered in the normal way are considered 
to be static. It is inadvisable to have static and dynamic predicates with the same 
names. Example: 

<<< assert(p(k))? 
TRUE 
<<< write(‘who is a cat’), read(X), 
                equalsdotdot(P, [cat,X]), 
                assert(P)? 
who is a cat ? tom. 
X=tom ∧ P=cat(tom) 
<<< cat(C)? 
C=tom 

 
call(term) 

Similar to Prolog’s call; the term is translated into a predicate with an identical 
syntactic form, and that predicate is executed in the normal way. Example: 

<<< mouse(jerry). 
<<< call(mouse(X))? 
X=jerry 

 
defined(name) 

Succeeds if a definition for the named predicate exists. If the name does not specify 
an explicit “arity”, it will detect any definition with the same base name. Example: 

<<< p(a). 
<<< q(a,b). 
<<< defined(p/1)? 
TRUE 
<<< defined(p)? 
TRUE 
<<<defined(X)? 
X=p 
X=q 

 


