

1

A Sample Session.

The following example shows a complete Logos session, annotated with

explanations. The definitions used are provided in .l files along with the Logos
application program.

LOGOS version 0.7 (Preliminary) of January 1996
<<< We will define a simple, well-known world of actors and actions.
 Jerry and his nephew are mice:
<<< mouse(jerry).
<<< mouse(jerrysnephew).

 Tom is a cat, Spike is a dog, and we introduce a tiger:
<<< cat(tom).
<<< dog(spike).
<<< tiger(timmy).

If we ask “who is a cat?”:
<<< cat(X)? we receive the expected answer.
X=tom If instead we ask “who is not a cat?”:
<<< ~cat(X)? we receive a less direct answer:
X=X WHERE X/=tom

meaning “X is anything other than Tom”. This begins to
illustrate the way Logos works. Logos computes over an open
universe of terms; it does not assume that the terms presented to it
so far {timmy, spike, tom, jerry, jerrysnephew} are the only terms
in the universe, but that other unknown terms are also present. Thus
Logos can not perform negation by the relatively simple method of
calculating the set of terms that satisfy a predicate, then subtracting
them from the set of all terms.

Instead, Logos computes new rules that define negated
versions of all the predicates. These new rules may be seen in the
output of the “show” command:

<<< show(cat)?
cat(tom).
~cat(V1) where V1/=tom.

<<< show(mouse)?
mouse(jerry).
mouse(jerrysnephew).
~mouse(V2) where (V2/=jerry /\ V2/=jerrysnephew).

Logos performs a great deal of preprocessing to reconstruct the
rules entered by the user into a more suitable form. Along with
constructing negated versions of all predicates, it also converts all
predicates into a purely positive form, in which the negation
operation never appears (after this preprocessing, “~mouse” is a
new predicate symbol; it is not the “~” operation applied to the
“mouse” predicate). In addition to this, it also converts rules for a
single predicate into a disjoint and complete form. This process is
illustrated by the following sub-example:

2

p(f(k)) :- q(k).
p(f(X)) :- qq(X).

These two rules are converted into:
p(f(k)) ← q(k) ∨ qq(k).
p(f(X)) where X/=k ← qq(X).
p(A) where A isnt f ← false.

From these three, the definition of ~p is derived:
~p(f(k)) ← ~q(k) ∧ ~qq(k).
~p(f(X)) where X/=k ← ~qq(X).
~p(A) where A isnt f ← true.

Finally the two sets of rules are simplified, to produce the final
form listed by show(p):

p(f(k)) <- q(k).
p(f(k)) <- qq(k).
p(f(X)) where X/=k <- qq(X).
~p(f(k)) <- ~q(k) /\ ~qq(k).
~p(f(X)) where X/=k <- ~qq(X).
~p(A) where A isnt f.

Now the rules of behaviour are defined: cats eat mice, and tigers eat
everything but tigers. The symbol “/\” represents the logical and
operation as opposed to Prolog’s sequential and operation, which is
also available (using the traditional comma symbol):

<<< eats(X,Y) :- cat(X) /\ mouse(Y).
<<< eats(X,Y) :- tiger(X) /\ ~tiger(Y).

Animals chase one-another either for food:
<<< chases(X,Y) :- eats(X,Y).

or for some other reason:
<<< chases(X,Y) :- dog(X) /\ cat(Y).

So now we can request some deductions:
<<< chases(tom,jerry)? Does Tom chase Jerry?
TRUE

<<< eats(tom,X)? Who does Tom chase?
X=jerry
X=jerrysnephew

<<< chases(X,jerry)? Who chases Jerry?
X=tom
X=timmy

<<< chases(X,Y)? Who chases whom?
X=spike /\ Y=tom
X=tom /\ Y=jerry
X=tom /\ Y=jerrysnephew
X=timmy /\ Y=Y where Y/=timmy

This final answer means that Timmy, being a tiger, chases everyone
but himself. Remember that Logos can not explicitly list all of the
things that Timmy chases, due to the open universe assumption.

3

There is no “list of all things”, so a more expressive logical formula
must be produced instead.

We can design a small program to generate all interesting
forms of activity, and write them out.

<<< action :- eats(X,Y), write(X,eats,Y,nl) \/
 < chases(X,Y), write(X,chases,Y,nl).

In this definition, the sequential and operation (comma) must be
used instead of the logical and, so that the predicates eats and
chases will be sure to have had an opportunity to instantiate the
variables X and Y before they are printed.

<<< action?
spike chases tom
timmy eats V3 WHERE V3/=timmy
tom eats jerrysnephew
tom eats jerry
timmy chases V4 WHERE V4/=timmy
tom chases jerry
tom chases jerrysnephew
TRUE

Now for some more complex rules.
An animal is edible if there is some other animal that is

interested in eating it:
<<< edible(X) :- (exist Y eats(Y,X)).

The parentheses around the whole existential formula are required
so that the scope of any quantifier is always obvious. Prolog can
handle existential quantifiers; they are used implicitly whenever a
new variable is introduced after the “:-”.

<<< edible(X)?
X=jerrysnephew
X=jerry
X=X where X/=timmy

After discovering that Jerry and Jerrysnephew are both edible, the
system finds a more general rule that everything other than Timmy
is edible. It would be possible to implement Logos in such a way
that only the most general answers are printed, but that would
require waiting until all answers have been found before printing
any. In an interactive system, or for a program that produces an
unending stream of answers, this is not suitable.

Any animal that eats everything but itself is considered to be
fierce:

<<< fierce(X) :- (all Y X/=Y -> eats(Y,X)).

Universal quantification is beyond the scope of Prolog. Logos
performs the operation through logical manipulations of the
defining formulae; due to the “open universe” assumption it is not
possible to simply test all known terms.

<<< fierce(X)?
X=timmy

4

Logos is capable of complex computations involving the
quantifiers. For instance, All animals are either fierce or edible:

<<< (all X fierce(X) \/ edible(X))?
TRUE

No animals are both fierce and edible:
<<< ~(exist X fierce(X) /\ edible(X))?
TRUE

List processing provides another demonstration.
The syntax for lists follows Prolog’s exactly: individual elements at the head of a

list are separated by commas; the one term after the vertical bar represents the whole of
the rest of the list. This is illustrated by asking Logos to unify an explicit list with one
containing variables:

<<< [1,2,3,4,5,6]=[A,B,C|D]?
A=1 ∧ B=2 ∧ C=3 ∧ D=[4,5,6]

An item is a member of a list if it is the same as the first element of the list, or if it

is a member of the rest of the list:

<<< member(X, [X|Rest]).
<<< member(X, [Y|Rest]) :- member(X, Rest).

<<< member(2, [1,2,3])?
TRUE

<<< member(f(X), [f(a),g(b),f(c)]?
X=a
X=c

<<< member(X, [1,2,3])?
X=1
X=2
X=3

append(A,B,C) should be true if the list C results from appending the two lists

A and B. Naturally, appending an empty list to something has no effect:
<<< append([], L, L).

and if L3 is obtained by appending L1 and L2, then L3-with-E-added can be obtained by
appending L1-with-E-added and L2:

<<< append([E|L1], L2, [E|L3]) :- append(L1, L2, L3).

Now some queries illustrate some of the possibilities:

<<< append([1,2], [3,4], [1,2,3,4])?
TRUE

<<< append([1,2], [3,4], X)?
X=[1,2,3,4]

<<< append([1,X], [Y,4], [1,2,3,Z])?
X=2 ∧ Y=3 ∧ Z=4
<<< append(X, Y, [1,2,3])?
X=[] ∧ Y=[1,2,3]
X=[1] ∧ Y=[2,3]
X=[1,2] ∧ Y=[3]

5

X=[1,2,3] ∧ Y=[]

All of the above examples are well within the scope of Prolog. Logos can go further,
providing some simple theorem proving:

<<< (all X,Y append([X], [Y], [X,Y]))?
TRUE
<<< (exist X,Y append([X], [Y], [Y,X]))?
TRUE
<<< (exist X,Y append([X], [Y], [Y,X]) ∧ X/=Y)?
FALSE

Basic Syntax

A name consists of a lower-case letter followed by any combination of letters and

digits; underlines may be used between other characters.
A variable consists of a capital letter followed by any combination of letters and

digits; underlines may be used between other characters.
Names of predicates and functions (the constants that appear in terms) are

indistinguishable except by their context. Names may include an explicit “arity” as in the
example p/2. In any context where the “arity” can not be deduced, it must be stated
explicitly.

A term consists of a variable, an integer, or a function name optionally followed by

a list of arguments separated by commas, in parentheses. The arguments are terms.
Examples: k, cat, f(k), X, f(X). A term may also consist of a list of terms in
square brackets, separated by commas. Example: [1,k,f(X),cat].

An atomic formula consists of a predicate name optionally followed by a list of
arguments separated by commas, in parentheses. The arguments are terms. Examples: p,
p(k), p(X,Y).

A formula is constructed from atomic formulae by applying operators. The
common operators are, in order or precedence:

 ~ Negation
 , and /\ Sequential and parallel conjunction
 ; and \/ Sequential and parallel disjunction
 -> and <- Implications
 <-> Equivalence

Parentheses may be used in the normal way, to over-ride operator precedences.
Formulae may also be constructed by applying special operators to terms. The most

important operators are:
 = The two operands are unified
 := The second operand should be an expression; it is

evaluated
 and unified with the first operand, normally a variable.
 /= The two operands are unified, and the result negated.
 < =< >= > The standard arithmetic comparisons
 is Second operand should be a function name; result is true if

6

 first operand is that function applied to some arguments.
 isnt The result of is, but negated.
A formula may also be constructed from one of the quantifiers, all and exist.

The syntax for a quantified formula is (quantifier variable-list formula), Examples;
(all X p(X)), (exist X,Y p(X,Y) /\ q(X)).

An expression is a special kind of term, consisting of integers and variables
combined with the arithmetic operators +, -, *, /, and parentheses.

A rule, contributing to the definition of a predicate, has the syntax:

head where guard :- body.
the head is in the syntax of an atomic formula, the guard and body are both general
formulae. If the guard is true, the “where guard” portion may be omitted; if the body is
true, the “:- body” portion may be omitted. The guard provides a constraint on the
applicability of a rule, so the rule “p(X) where X/=k:- q(X).” is not the same as
the rule “p(X):- X/=k /\ q(X).”; the difference becomes important when
negative rules are constructed.

A query consists of any formula followed by a question-mark.

 Commands

The commands available are listed below; they may be typed at any time to the <<<

prompt, and should be terminated by a “.”.

exit.
Exit from Logos.

show.
List all user-defined predicate names.

show(predicate-name).
Display the definition of a user-defined predicate.

help.
Displays a list of all commands and built-in predicates, with a brief description.

help(name).
Provides a more complete description (if available) of a command or built-in
predicate.

clear.
Erases the definitions of all user-defined predicates.

load(name).
Load a Logos program file called name.l from the directory (or folder) from which
the Logos application was launched.

selection(sequential).
Sets the rule-selection semantics for subsequently entered definitions to
“sequential”. A typical predicate’s definition is split into a number of lines, for
example:

p(X) :- q(a,X).
p(X) :- q(b,X), q(c,X).

7

Such a definition is considered to be a disjunction of the individual parts. As Logos
works with both sequential (Prolog-like) disjunction and parallel (logical)
connectives, the selection(sequential) command is used to specify the sequential
disjunctions are to be assumed for any definitions being entered.

selection(parallel).
Sets the rule-selection semantics for subsequently entered definitions to “parallel”
(see the above description of sequential selection). Example:

Given this input: selection(sequential).
 p(a).
 p(b).
 p(c).
 selection(parallel).
 q(a).
 q(b).
 q(c).

The query: p(X)?
always produces the solutions X=a, X=b, and X=c in that order, whereas the query:

 q(X)?
will produce those same solutions, but in an unpredictable order.

simplify.
Extra simplification transformations are applied to all output produced by the next
query. These transformations could be computationally expensive.

 echolines.
All subsequent lines will be echoed exactly as they are read. echolines is cancelled
when and end-of-file is reached, or when another echolines command is entered.

silent.

The single immediately following query will be executed silently: the final answer
is not printed, and non-essential preprocessor information is suppressed. write
predicates still produce output as normal.

new.
All rules defining predicates are marked as “old”. This happens automatically
whenever a load command starts or finishes.

When a new rule is entered, for a predicate that has already been defined by
earlier rules, the effect depends upon the age of the older rules. If they are old, they
are discarded, and the new rule begins a redefinition of the predicate. If they are
new, the new rule as simply added to them. This allows a file to be re-read after
editing, to redefine predicates, but does not interfere with normal experimental rule
construction.

positiveonly.
The one next predicate to be defined, is marked as “positive only”.

Before execution of a query or command, all rules (and the query itself) are
subject to a complex preprocessing procedure. During preprocessing, the rules that
defines a predicate are modified to make them disjoint, for example:

p(a,Y) :- q(Y).
p(X,b) :- r(X).

are converted to the following

8

p(a,Y) where Y/=b :- q(Y).
p(X,b) where X/=a :- r(X).
p(a,b) :- r(a) /\ q(b).

and an extra rule is added to complete the definition
p(X,Y) where X/=a /\ Y/=b :- false.

Rules in this form allow the negative version of the predicate to be correctly
constructed; they also make execution of queries more efficient in some situations.
As a final step in preprocessing, the rules are somewhat simplified, and those
ending with “:- false” are discarded.

For predicates with many defining rules, preprocessing can be very time
consuming (especially in this experimental implementation). For this reason, those
predicates that never appear in their negative forms may be marked as positiveonly.

Example:
positiveonly.
parent_child(alf,ben).
parent_child(alf,cal).
parent_child(ben,dan).
parent_child(ben,elf).
parent_child(cal,fran).
parent_child(cal,gab).

parent_child(cal,hen).
parent_child(dan,ida).
parent_child(elf,jane).
parent_child(elf,ken).
parent_child(fran,log).
parent_child(gab,mab).

ancestor_descendant(A,D):-parent_child(A,D).
ancestor_descendant(A,D):-(exist Mid

parent_child(A,Mid),
ancestor_descendant(Mid,D))

.
ancestor_descendant(X,ken)?

X=alf
X=elf
X=ben

The preprocessing for the parent_child rules would be prohibitively time-
consuming without the positiveonly declaration.

Built-in Predicates.

The following predicates may be used in any context in a Logos program. They
behave logically as any predicate should, in that they either succeed or fail, and may
instantiate any variables in their arguments. They are provided because they perform
functions that would be difficult or impossible to program otherwise.

read(arguments)

Logos provides a pure logical form of input. When a read predicate is executed, the
input prompt (“? “) is displayed, and program execution pauses until some input is
entered; the input may be any list of terms, separated by commas, and terminated by
a period. The list of input terms is unified with the list of arguments to produce the
result. Both the arguments and the typed input may contain variables (either already
known variables, or new ones), and the input may also be restricted by a constraint
using a where clause. Examples:

<<< read(X,Y)?

9

? 1,2.
X=1 ∧ Y=2
<<< read(X)?
? Y.
X=Y
<<< read(s(X))?
? s(s(a)).
X=s(a)
<<< read(s(X))?
? Z.
X=X ∧ Z=s(X)
<<< read(k)?
? k.
TRUE
<<< read(k)?
? X.
X=k
<<< read(k)?
? X where X/=k.
FALSE

write(arguments)

The values of the arguments are printed in order. The term nl is interpreted
specially to cause a new line of output to begin. If any of the argument terms
contain variables, the output will include any constraints that apply to those
variables.
Examples:

<<< X=6, write(‘X is ‘,X,nl)?
X is 6
<<< X=k, Y=f(Z), Z/=k, write(X,nl,Y,nl,Z,nl)?
k
f(Z) WHERE Y=f(Z) ∧ Z/=k
Z WHERE Y=f(Z) ∧ Z/=k

readline(X)

When executed, the input prompt (“? “) is displayed, and program execution pauses
until some input is entered (the input is terminated by a period “.” or question-mark
“?”). The input is split up into individual symbols, which are composed into a list.
The list is unified with the argument X, which should be an uninstantiated variable.
Example:

<<< readline(X)?
? the cat sat on the mat.
X=[the,cat,sat,on,the,mat,.]

equalsdotdot(A,B)

Performs the function of Prolog’s =.. operator, converting between complex terms
and lists of less complex terms. Example:

<<< equalsdotdot(X, [f,a,b])?
X=f(a,b)
<<< equalsdotdot(f(a,b), Y)?
Y=[f,a,b]

10

<<< equalsdotdot(f(X,Y), [A,B,k])?
X=X ∧ Y=k ∧ A=f ∧ B=X

assert(term)

Similar to Prolog’s assert; the term is translated into a predicate with an identical
syntactic form, and that predicate is accepted as a new rule. Asserted predicates are
considered to be dynamic, and predicates entered in the normal way are considered
to be static. It is inadvisable to have static and dynamic predicates with the same
names. Example:

<<< assert(p(k))?
TRUE
<<< write(‘who is a cat’), read(X),
 equalsdotdot(P, [cat,X]),
 assert(P)?
who is a cat ? tom.
X=tom ∧ P=cat(tom)
<<< cat(C)?
C=tom

call(term)

Similar to Prolog’s call; the term is translated into a predicate with an identical
syntactic form, and that predicate is executed in the normal way. Example:

<<< mouse(jerry).
<<< call(mouse(X))?
X=jerry

defined(name)

Succeeds if a definition for the named predicate exists. If the name does not specify
an explicit “arity”, it will detect any definition with the same base name. Example:

<<< p(a).
<<< q(a,b).
<<< defined(p/1)?
TRUE
<<< defined(p)?
TRUE
<<<defined(X)?
X=p
X=q

