, D represent any expression, and will be evaluated first

A, B, C
A B C ... indicates any number of arguments, even just one.

Functions that work only on numeric arguments

(zerop A) T if A=0, NIL otherwise

(plusp A) T if A>0, NIL otherwise

(minusp A) T if A<O, NIL otherwise

(evenp A) T if A is even, NIL otherwise

(oddp A) T if A is odd, NIL otherwise

(= A B) T if A=B, NIL otherwise

(=ABCD...) Tifallof AB CD ... are equal, NIL otherwise
(/= A B) T if A#B, NIL otherwise

(/=ABCD...) T if all of A B C D ... are different, NIL otherwise
(< A B) T if A<B, NIL otherwise

(¢ ABCD...) T if A<B and B<C and C<D ..., NIL otherwise
<=, >, >= behave the same way as <

(max AB C ...) the biggest of them all

(min ABC ...) the smallest of them all

(+ABCD...) A+B+C+D...

(-ABCD...) A-B-C-D...

(* ABCD ...) A*B*C*D...

(/ABCD ...) A/B/C/D...

(rem A B) (rem 9 4)=1, (rem -9 4)=-1, (rem 9 -4)=1, (rem -9 -4)=-1
(mod A B) (mod 9 4)=1, (mod -9 4)=3, (mod 9 -4)=-3, (mod -9 -4)=-1
(gcd A B C ) greatest common divisor of them all

(Icm ABC ...) least common multiple of them all

(random A) random number, same type as A, >0 and <A
(expt A B) A to the power of B

(sgrt A) square root of A

other obvious operations, used just like sqrt:
abs exp 1log sin cos tan asin acos atan
floor ceiling truncate round numerator denominator

Functions that work only on character arguments

(alpha-char-p A) Tif Ain ‘A’..’Z’ or ‘@’..’z’, NIL otherwise

(upper-case-p A) Tif Ain ‘A’.."Z’, NIL otherwise

(lower-case-p A) Tif Ain ‘@’..’z’, NIL otherwise

(digit-char-p A) Tif Ain ‘0’..9°, NIL otherwise

(graphic-char-p A) Tif A is a normal non-invisible character, NIL otherwise
(alphanumericp A) Tif Ain ‘A’..’Z’ or ‘@’..’z’ or ‘0’..’9’, NIL otherwise

(char= A B ...) used the same ways as (= A B) is for numbers

also char/= char< char<= char> char>=
(char-upcase A) if A is in @’..’z’, convert it to capital. Otherwise = A
(char-downcase A) if Aisin ‘A’..’Z’, convert it to lower case. Otherwise = A
(char-code A) converts from character to ASCII code (char-code #\a) = 97

(ocde-char A) the opposite, (code-char 97) = #\a



Special things

(setq SYM A)

(quote X)
’X
(set A B)

T
nil

Cons-cell functions

(cons A B)
(car A)
(cdr A)
(caar A)
(cadr A)
(cdaadr A)

(nth A B)
(first A)
(second A)
(tenth A)

String functions

(char A B)

(string= A B ...

)

(string-upcase A)
(string-downcase A) String same as A, but with every character in lower case

(coerce A ’cons)

SYM is a symbol, it is not evaluated

A is any expression, it is evaluated first
the symbol’s value is set to A

X, unevaluated. It can be any expression
equivalent to (quote X)

A and B may be any expressions, they are both evaluated first
The value of A must be something that can behave like a variable.

(setqg A B) is equivalent to (set (quote A) B)
constant used to represent the boolean value TRUE
like NULL and null in C++ and Java, also used for FALSE

cons cell whose CAR is A and whose CDR is B

(car (cons A B)) = A

(cdr (cons A B)) = A

equivalent to (car (car A))

equivalent to (car (cdr A))

equivalent to (cdr (car (car (cdr A))))

all combinations of up to four As and Ds are provided

A must an int, B must be a list. Ath item of B, count from O.
so (nth @ °(a b c)) = aand (nth 2 ’(a b c)) =c
equivalent to (nth @ A)

equivalent to (nth 1 A), very tricky second is not nth 2.
(nth 9 A), all in between are provided too.

A must evaluate to a string, and B to an int

returns Bth character of A, counting from O

used the same ways as (= A B) is for numbers

also string/= string< string<= string> string>=
String same as A, but with every character in upper case

if A is a string, this produces a list of characters

(coerce A ’string) if Ais a list of characters, this produces a string

Input and Output

(print A)
(prinl A)
(princ A)

What you’d expect, but with a newline printed first
What you’d expect print to do - no automatic newline
Same as prinl except characters and strings printed plain

(princ-to-string A) returns a string, nothing is actually printed

(terpri)
(read)
(read-1line)

also prinl-to-string and print-to-string

print a newline

one whole Lisp value typed by user, not evaluated
string containing one whole line typed by user



Types

The important types are:

number symbol

(coerce A B)

(typep A B)

(null A)
(consp A)
(symbolp A)
(functionp A)
(atom A)
(listp A)
(numberp A)
(stringp A)
(characterp A)
(integerp A)
(rationalp A)
(floatp A)
(complexp A)
(type-of A)

Logic

(eq A B)

(eql A B)
(equal A B)

(not A)
(and AB C ...

(or ABC ...)

cons string null character integer float rational

Convert A to type B if reasonably possible
e.g. (coerce 7/5 ’float) = 1.4

is A’s type equal to B? T or nil

e.g. (typep 7/5 ’rational) =T

is A = nil? T or nil

is A a cons cell? T or nil

is A a symbol? T or nil

is A a function? T or nil

is A not a cons cell? T or nil - note that ’ () is an atom.
is A either nil or a cons cell? T or nil

is A numeric? T or nil

is A a string? T or nil

is A a character? T or nil

is A an integer ? T or nil

is A a rational? T or nil

is A a float? T or nil

is A a complex number? T or nil

usually returns the type of A

T if A and B are the same thing, nil otherwise
Does not compare the contents of cons cells, but returns
T if A and B are the same cons cell.
for big numbers this will seem not to work
Tif (eq A B) would be T,
also extended to work for characters and same-typed numbers
Deep equality test, even for lists and trees.
Tif Ais nil, nil otherwise
evaluate A, B, C in turn until one is nil
as soon as a nil is found, stop, the result is nil
if no nil is found, the result is the value of the last argument
evaluate A, B, C in turn until one is not nil
as soon as a non-nil value is found, stop, that is the result
if all values are nil, the result is nil



