Summarised Python

Topics are in alphabetical order except for the first, new page for each:

Essentials

Bytes and Bytearray
Dictionaries
Exceptions or Errors
Files

Formatting
Functions

Lists

Mathematical
Random

Sets

Statements

Strings

Tuples

Value and Operators

Essentials

print (2 * 3)
print ("answers", 2 * 3, "and", 3 * 4)
print ("answer", 2 * 3, end = ": ")
print ("answers: ", 2 * 3, ", and ", 3 * 4, sep = "")
type (123) (produces <class, 'int'>)
type (123) == int (produces True)
12345 -7 3 int values
2.57 -3.le+12 float values
"hello™ "x" nn string values
'hello' 'x' ' same
True False
None like the probably familiar NULL or nil but more general
a /b always a float
// b always an int
** b to the power of

import library

from library import thingl, thing2,

from importlib import reload
x = 3

if conditionA:

what to do if A true
elif conditionB:

what to do if B true
else:

what to do if all false

while condition:
what to do while true

for variable in iterable:
what to do for each value

def functionname (param, param,
what to do

break
continue

immutable

a = b"Wake Up!"

a # prints b'Wake Up!'
al0] = 87 # 87 is ASCII code for W
s[0:3] = b'Wak'
bytes ([87, 97, 108]) = b'Wak'
bytes (5) = b'"\x00\x00\x00\x00\x00" +# i.e. S zero bytes
bytes ("YE.Q", "utfg8") = b'\xe2\x88\x91\xc3\x86.\xce\xa9' # unicode
"SE.Q".encode ("utf8") = b'\xe2\x88\x91\xc3\x86.\xce\xa9' # same
b'\xe2\x88\x91\xc3\x86.\xce\xa9'.decode ("utf8")
- 'YE.Q'
b"Hello" .decode () = 'hello' # ASCIIis the default
Bytearray
mutable
a = bytearray (b"Wake Up!")
a = bytearray (b'Wake Up!'")
a = bytearray () = an empty one
a = bytearray (12) = length 21, values all zero
a = bytearray([6 98, 991) # ASCII codes equiv to bytearray (b"Abc")
a = bytearray('ZE Q", encoding = "utf8")

= bytearray (b'\xe2\x88\x91\xc3\x86.\xce\xa9"')

a = bytearray (b"Wake Up!")

afd4] = "*" # an error

al4] = 42 # ais now bytearray(b'Wake*Up!")
a = bytearray (b"abcd")

a.append (65) # ais now bytearray(b'abcdA')
a.append (ord ("A")) # ais now bytearray(b'abcdAA')
a.extend([66, 67, 69]) # ais now bytearray (b'abcdAABCE'")
a.pop () = 69 # ais now bytearray (b'abcdAABC')
a.extend (another bytearray)

a.insert (2, ord("-")) # ais now bytearray (b'ab-cdAABC')
del a[3:6] # ais now bytearray (b'ab-AABC')

a.replace (bytearray (b"A"), bytearray("Rats"))
ais now bytearray (b'CBRatsRats-ba')

a.remove (ord("a")) # ais now bytearray (b'CBRtsRats-ba')
b = bytearray(b"go ") + bytearray (b"away")
c = bytearray (b"123") * 4 # cis bytearray (b"123123123123")

+= and *= also work

D.keys ()
list[D.keys ()]
list[D.values ()]
list[D.items ()]

for 1 in D.keys ()

for i in D.values()

for k in D:

in D.items ()

del D[k;]

D.pop (ki)

D.pop (ki, x)
D.popitem()
D.update (otherD)
sorted (D)
sorted (D,
sorted (D, key = fn)

Dictionaries

= an empty dictionary
= all k; must be hashable

) if all k; look like variables
= v; error if key k; is not present in D
= add new pairing or change existing one
update operators all allowed
= True
and others: a special object but:
= a list of all the k;
= a list of all the v; in the same order
= a list of all the (k; , v;) tuples, same order
= number of pairings it contains
etc., all good
etc., all good
same as in D.keys ()
comprehensions, this makes a reverse dict
= True or False, is v one of the k;?
= number of k;: v; pairs
remove the k;: v; pairing, error if not there
same as del D[k;] but returns v;
same but returns x if k; not present, no error
removes and returns one k;: v; pair as a tuple
otherD is a dictionary, all its entries added to D
= a list of all the k; only, in ascending order
same as sorted but in descending order
the keys k; are sorted according to fn(k;)
= new dict as if made by D;.update (D)

Exceptions or Errors

Exceptions must be objects that inherit BaseException.

try:
statements
except exceptiontype:
statements
except (exceptiontype:, exceptiontypez, exceptiontypes, ...) :
statements
except exceptiontype as name:
statements in which name is the exception object

except (exceptiontype:, exceptiontype:, exceptiontype:, ...) as name:
statements in which name is the exception object
except:

statements executed for any exception not explicitly mentioned
else:

statements executed only if no exceptions were caught
finally:
statements executed at the end no matter what

raise exceptionobject
raise with no object inside except: re-reraises the caught exception

ex = BaseException (any number of arguments)

€X.args = tuple of all parameters the exception's constructor got
ex. traceback info on first function call that eventually led to the error
after etb = ex. traceback :
etb.tb frame.f code.co filename
etb.tb frame.f code.co name function name or "<module>"
etb.tb lineno = the line number for the error
etb = etb.tb next = None or same info on next call closer to the error

name of Python file

BaseException is inherited by
AssertionError assert statement failed
AttributeError accessing nonexistent x.y
EOFError attempt to read after end of file

ImportError import statement failed

IndexError accessing nonexistent x [y]
MemoryError run out of memory

OSError failure in system call

RecursionError Python foolishly limits recursion depth
RuntimeError really just a general "miscellaneous”
StopIteration next () failed

SyntaxError error in Python code being read
TypeError wrong types for operation

ValueError a value is the right type but out of range

ZeroDivisionError

what it says

0 n » »n rHhHh

open("filename",

open ("filename",

f.read()
readlines ()

f.
= f.readline ()
f.

read (n)

Files

oy
"r", encoding = "utf8")

returns the entire file as a string with \n characters (1)

returns the entire file as list of strings each with \n (1)

returns next line also with \n at end (1,2)

returns next n characters as string (2)

(1) last line of file has no \n if that's what's in the file
(2) no error at end of file, just shorter or empty string

for s in f:

loop in which s is each line of file in turn

f.close()

f = open("filename", "w")

f = open("filename", "w", encoding = "utf8")

f = open("filename", "a", ...) # every write goes to end of file
print(a, b, ¢, file = f)

f.write(string)

you must include \n if it is wanted

next read or write happens at beginning of file

£. 0,

f.seek (1234, 0) # next read or write happens 1234 chars from beginning
f.seek (0, 1) # return current position, measured in characters
f.tell() # the same as f.seek (0, 1)

f.seek (0, 2) # next write (or read) happens at end of file
f.open("filename", "r+", ...) # read and write, file must exist
f.open("filename", "w+", ...) # read and write, new file always created

f = open("filename", "rb", "wb", "ab", "rb+", or "wb+") # binary file, then
f.write (b) # b must be a bytes object
f.read() # read entire file, return as bytes object
f.read (n) # read next n bytes, return as bytes object

No other ways to read or write binary files.

The seek, tell, and close remain, positions measured in bytes not chars
f = open("name.csv", "r", newline = "")
csvr = csv.reader (f)

for row in csvr:

rows provided as lists of data items, one per line of the file
f.close()

f = open("name.csv", "w", newline = "")

csvw = csv.writer (f)

csv.writerow (L) # L's are lists of data items (all same length)
csv.writerows ([Lo, Li, Lz, ...]) # each creating one line in the file

sys.stdout and sys.stdin # keyboard and display as files

Formatting (1) the % operator

always string
or string

tuple
single value, both deliver a string result

o° o

"The square root of %d is %f" % (2, math.sqrt(2))
returns 'The square root of 2 is 1.414214'

@

(*1) any object at all, formatted as for print ()
single character.
parameter must be int or length=1 string
(*2) an int, printed in decimal
(*3) a float to be printed in “scientific” notation: 3.521E+03
(*3) same as $E but 3.521e+03
(*3) a float, never E notation, always just digits and a decimal point
(*3) exactly the same as %F, a float, just digits and decimal point
(*3) chooses between $E and %F for best appearance based on size
(*3) chooses between %e and $f for best appearance based on size
same as %d, an int to be printed in decimal
(*2) an int to be printed in octal
(*1) any object, made printable with the repr function
(*1) any object, made printable with the str function
(*2) an int to be printed in hexadecimal, letters ABCDEF
(*2) an int to be printed in hexadecimal, letters abcdef
just print %, no parameter is consumed

o° o

Q

@ O Q.

X X n B O H- O

0 A o0 o A A O A A O A A° o° o°

o\

(*1) %a, %r, %s
take any object at all, not just strings, and e.g.
%8s minimum width 8 characters, spaces added at end if needed
%$.24s maximum width 24 characters, end cut off if needed
%$8.24s minimum width 8, maximum width 24 if needed
$- - immediately after %, spaces added to beginning instead
(*2) %d, %0, %X, $x
$8d minimum width 8 characters, spaces added at left if needed
$08d minimum width 8 characters, zeros added at left if needed
$-8d minimum width 8 characters, spaces added at right if needed
$+8d sign always shown even when positive
$ 8d (space) positive numbers are preceded by a space
S#.. for %0, %X, %x only, display 0o or 0x before the number
(*3) SE, %e, %F, $f, %G, %q:
$12f minimum width 12 characters, spaces added at left if needed
$.8f 8 digits after the decimal point
$12.8f min width 12 and 8 digits after the decimal point
$12.0f don't even print the decimal point
-+ 0 -, +, space, and O are the same as for (*2)

... with all the above, decimal point always appears

Functions

def name (param, param, param, ...):
body

In def's parameter lists:
name = default
* # all subsequent params must be given with name = ...

* name # name set to tuple of all unused parameters
and all subsequent params require name = ...

* * name # name set to dictionary of all remaining parameters
which must be given as name = ...

def £(* a, * * b): # afunction that takes anything it is given,
nameless ones in a, named ones in b

return
return value

Calls:

name ()

name (value, value, ...)

name (name = value, name = value, ...)

name (value, value, ..., name = value, name = value, ...)
name (
name (

Create a function object without giving it a name:

(lambda x: x + 1) (6) =7
(lambda x, y: x + y) (6, 8) = 14
Closures:
def f(y):
return lambda x: x + vy
g = £(6)
g(8) = 14

..., * dictionary, ...) # entire contents become name = ... parameters
..., * iterable, ...) # entire contents become separate parameters

Lists

a=[9, 3, "cat", 22, 3, 4, 1]

b =[]

type(a) == list = True

len(a) =7

al0] =9

al-2] = 4

al[3:6] = [22, 3, 4] # [3] is included, [6] is not
al3:] = [22, 3, 4, 1]

all:-3] = [3, "cat", 22]

a.index (22) = 3

a.count (3) = 2

[5, 31 + [7, 1, 6] =[5, 3, 7, 1, 6]

(2, 71 * 3 = [2, 7, 2, 7, 2, 7]

"cat" in a = True

3 not in a = False

tuple (a) = (9, 3, "cat", 22, 3, 4, 1)

set (a) = {9, 3, "cat", 22, 3, 4, 1} # order varies
a[3] *= 2 # actually makes the change, unlike with tuples
al[2:5] = [99, 88]

a = [9, 3, 99, 88, 4, 1]

del a[-3:-1]

a = [9, 3, 99, 1]

del all]

a = [9, 99, 1]

a.append (5)

a = [9, 99, 1, 5]

a.append([2, 3, 41)

a = [9, 99, 1, 5, [2, 3, 4]]

a.extend([9, 8, 7])

a = [9, 99, 1, 5, [2, 3, 41, 9, 8, 7]
a.pop () =7

a = [9, 99, 1, 5, [2, 3, 41, 9, 8]
a.remove (99) # error if not present
a = [9, 1, 5, [2, 3, 4], 9, 8]
a.reverse ()

a = [8, 9, [2, 3, 4], 5, 1, 9]

a.index (5) =2 # error if not present
a.count (9) = 2

a.clear()

a = []

b= 1[7, 3, 4, 2, 6]

c = [7, 3, 4, 2, 6]

def f(x): return 4 * x - x * x

[x * 3 for x in b] = [21, 9, 12, 6, 18]
[x / 2 for x in a if x > 3] = [3.5, 2.0, 3.0]
[f(x) for x in b] = [-21, 3, 0, 4, -12]
sorted (b) = [2, 3, 4, 6, 7]
sorted (b, reverse = True) = [7, 6, 4, 3, 2]
sorted (b, key = f) = [7, o6, 4, 3, 2]
b.sort () # same options as sorted, but modifies b and returns nothing

continued ...

min (b)
max (b)
b += [1, 9]
b = [7,
b += (0, 5)
b = [71
j = [6, 3, 9]
k=17, 2, 3]
1 =17, 2, 1]
J < k
k <1 =
x = [[1, 71, [5, 311
y = [[1, 71, [5, 3]
z = X
W = COpY.COpY (X)
X =Y
X == z
X == W
X is y
X is z
X is w
x[0] is w[O]
v = copy.deepcopy (x)
x[0] is vI[0]
a=1[[0] *6] * 6
all] is al2]
all][3] = 6
al2]
a = [[0]
all] is al[2]
all]l[3] = o6
al2]

True
True
True
False
True
False
True

False

* 6 for i in range (0,

6)

]

... lists continued

5]
same for >, >=, <=
6x6 list of lists of zeros
True
(6, 0, 0, 6, 0, 0]

6x6 list of lists of zeros
False

import math as m

m.pi

abs (x)
m. fabs (x)

.Ccos (x)
.acos (x)
.atan2 (x, vy)
.cosh (x)
.acosh (x)

233 38

m.e

not m.abs

Mathematical

m.inf m.nan

same as abs but always a float

m.sin (x)
m.asin (x)

m.tan (x)
m.atan (x)

direction to (x, y) clockwise from North

m.sinh (x)
m.asinh (x)

m.tanh (x)
m.atanh (x)

m.degrees (r) # convert radians to degrees

m.radians (d) # convert degrees to radians

m.ceil(3.1) = 4 m.ceil(-3.1) = -3
m.floor(3.1) = 3 m.floor (-3.1) = -4
m.trunc(3.1) = 3 m.trunc(-3.1) = -3
m.isclose(x, y, e) #= m.fabs(x - y) <= e

m.dist ((x1, yl), (x2, y2)) # pythagorean distance, any num of dims
m.hypot (x, vy, z) = V(x2+y2+z2) # any number of parameters
m.exp(x) = e¥ m.exp2(x) = 2%

m.log (x) # natural base e m.logl0 (x) m.log2 (x)
m.sqgrt (x) m.cbrt (x) m.pow (x, V)

m.isqgrt (x) # biggest int <= square root

m.gcd(a, b, c, ...)

m.lcm(a, b, c, ...)

m.factorial (x)

m.comb (n, r) # combinations

m.perm(n, r) # permutations

m.modf (73.185) = (0.185, 73) m.modf (-73.185) = (-0.185, -73)
m.remainder (x, V) # x % y, works for floats
m.copysign (23, -75) = =23 m.copysign (23, 75) = 23
m.isfinite (x) m.isinf (x) m.isnan (x)

random. random ()

random.uniform (min,
random.randint (min,
random.gauss (mean,

max)
max)
stddev)

random.getrandbits (N)
random.randbytes (N)
random.shuffle (list)
random. choice (list)
random.choices (list, wts)

random.choices (list, wts,

k =N)

random. sample (list, N)

Random

float >= 0 and < 1

float in range

int in inclusive range

according to normal distribution

= random.randint (0, 2 ** N - 1)
N element bytes object

no return, list is reordered randomly
pick one, all equally likely

likeliness of wts|i] proportional to wtsi]
list of N selected as above

any N items but each list[i] at most once

The following are good enough for cryptographic purposes:

secrets.
secrets
secrets.
secrets
secrets.

randbelow (N)

.randbits (N)

choice (list or tuple ...)

.token bytes (N)

token hex (N)

int >= 0 and < N

= secrets.randbelow (2 ** N)

pick one, all equally likely

length N bytes object all O to 255
length 2 * N string of random hex digits

Sets

No duplicates. Adding something that is already there has no effect, not error.
May only contain hashable (usually = immutable) items.

s = set ()

s = { 3, "cat",
type (s)

type(s) == set
s.add (item)
s.update (tuple/list/set)
s.update (dictionary)
s.discard (item)
s.remove (item)
s.pop ()

s.clear ()

sorted (s)

sorted (s, reverse
(s,

sorted key = fn)
operators:
Sr = 51 & S»
Sy = s1 | s2
Sr = S1 — S2
Sy = 51 "~ S
b = e in s
b = e not in s
b = 51 == 359
b = S1 = So
b = 51 <= 359
b =51 < 359
b = s, > s
b =51 > s

empty { } makes a dictionary

= <class, 'set'>
True

all members added individually

adds keys only

removes, OK if not present

removes, error if not present

removes and returns one item

remove everything

a list of all contents in ascending order
sorted but in descending order

the members e; are sorted according to fn(e;)

intersection, set s, = all that are in both s; and s,
union, set s, = all that are in s; or s, or both

set s, = all that are in s; but not in s,

set s, = all that are in s; or s, but not both

True or False, does s contain e?

True or False, opposite of in

True or False, do s; and s; have exactly the content?
True or False, opposite of s; == s,

subset, True or False, is everything in s; also in s,?
all in s; also in s, but something in s; is not in s;
same as s, <= s;

same as s, <= s;

variable = value

variable += value

assert expression that must be true
break

continue

del unwanted thing, unwanted thing, ...

for variable in iterable:
what to do for each value

global variable, variable, ...

if some condition:
what to do if it's true
elif another condition:

what to do if that one's true
else:

what to do if none of them are true

if condition: action
if condition: action, action, ...

import module, module, ...

import module as abbreviation
from module import item, item, ...
from module import *

pass
print (value, value, ...)
return value

while condition:

what to do while it's true
else:

done after loop in not break

Statements

(and the other operators)

(only in loops)

(only in loops)

(optional and repeatable)

(only for simple actions, not a good idea)
(for all other structured statements too)

(no name . needed for access)

... file=X,sep=X,end =X

(only in functions)

(optional)

Strings

"XXX..." any character except " and newline

' XXX..." any character except ' and newline

D o o ALY any characters except the sequence """
Trxxx. ! any characters except the sequence "
"abc" "def" "ghi" same as "acbdefghi"

parentheses needed to span multiple lines

if type(s) == str:

str(12.56) = "12.56"

str([9, False, ()1]) = "[9, False, ()]1"

"\uO42f" = "q" unicode characters in hexadecimal

len ("abcdefghijklm") 13

"abcdefghijklm" [4] "e"

"abcdefghijklm" [-3] "k

"abcdefghijkIlm" [4 7] "efg"

"abcdefghijklm"[4 : -3] "efghij"

"abcdefghijklm" [4 :] "efghijklm"

"abc" + "def" = "abcdef"

"abc" * 3 = "abcabcabc"

"fgh" in "abcdefghijklm" = True

"fh" in "abcdefghijklm" = False

ord ("A") = 65 chr (65) = "A" by ASCII codes (actually unicode)
"abcdefghijklm" .beginswith ("abc") = True

"abcdefghijklm" .endswith ("jklm") = True
"abcdefghijklm".removeprefix ("abc™) = "defghijklm" (no change if
"abcdefghijklm".removesuffix ("jklm") = "abcdefghi" not pre/suffix)
"CATxyzCAToooCATi".count ("CAT") =3

"abcdXYZefghXYZij".find ("XYZ") = 4 (-1 if not present)
"abcdXYZefghXyzij".£find ("XYZ", 6) = 11 (start search at position 6)
"abcdXYZefghXYZij".find ("XYZ", 6, 9) = -1 (end search at position 9)
"abcdXYZefghXYZij".rfind ("XYZ") = 11 (last occurrence, from start)
"abcdXYZefghXYZij".replace ("XYZ", "##") = "abcd##efgh##i]j’

"abcdXYZefghX¥YZij".partition ("XYZ")
"abcdXYZefghXYZij" .rpartition ("XYZ")

("abcd", "Yygzw , "efghXYZij ")
("abcdXYZefgh", "XYz", "ij")

"abcdXYZefghXYZij".partition ("TT") = ("abcdXYZefghXyzij"™, "", "™)
"abc de fgh i ".split() = ["abc", "de", "fgh", "i"]

"abc de fgh i ".split("™ ") = ["abc"™, "", "", "de", "fgh", "i", ""]
"CATxyzCATOOOCATi".split ("CAT") = ["", "xyz", "ooo", "i"]

" one two three ".strip() = "one two three"

" one two three ".lstrip() = "one two three "

" one two three ".rstrip() =" one two three"
"horse".center (11) =" horse "

"horse".ljust (11) = "horse "

"horse".rjust (11) =" horse"

"horse" .center (2) "horse"

continued ...

... Strings continued
"horse".zfill (11) = "000000horse"
"horse".center (11, ".") = "...horse..."
"The cow said MOO!".upper () "THE COW SAID MOO!"
(

"The cow said MOO!".lower () = "the cow said moo!"
"Once upon a Time".isalpha() = False
"OnceuponaTime".isalpha () = True
"".isalpha () = False
"O".isalpha () = True
Also:
.isalnum() '‘a'to'z' or 'A'to 'Z' or '0' to '9'
.isascii () all codes between 0 and 127 inclusive
.isdecimal () '‘0' to '9'
.isalnum{() '‘a'to'z' or'A'to 'Z' or '0' to '9'
.isalnum/() '‘a'to'z' or 'A' to 'Z' or '0' to '9'
.isidentifier () satisfies python rules for variable names
.islower () 'a' to 'z' only
.1supper () 'A' to 'Z'only
.1sspace () all white space: spaces, tabs. newlines, etc.
.isprintable () anything visible, space included, tab and newline not
s.expandtabs (N) replace all tabs with spaces so the result looks identical to s

if tab stops are set every N character positions

Immutable

Tuple of size O:

()
Tuple of size 1: (a,)
Tuple of size 2: (a, b)
Tuple of size 6: (a, b, c, d,
a= (9, 3, "cat", 22, 3, 4,
type (a) == tuple True
len(a) =7
al0] =9
al-2] =4
a[3:6] = (221
al3:] = (22,
all:-3] = (3, "
a.index (22) = 3
a.count (3) = 2
(5, 3y + (7, 1, 6) = (5, 3
(2, 7) * 3 = (2, 7
"cat" in a = True
3 not in a = False
list (a) = [9, 3
set (a) = {9, 3
b= (7, 3, 4, 2, 6)
c = (7, 3, 4, 2, 06)
def f(x): return 4 * x - X

(x * 3 for x in b)
tuple((x * 3 for x in b))
tuple((x / 2 for x in a if

(

(
sorted (b)
sorted (b, reverse = True)
tuple((f(x) for x in b))
sorted (b, key = f)
min (b) = 2
max (b) =7
b += (1, 9)
b = (71 3/ 4/ 2/
J (6, 3, 9)
k= (7, 2, 3)
1= (7, 2, 1)
J < k = True
k <1 = False

e, f)

, "Cat",
, "Cat",

*ox

x > 3))

22,
22,

Tuples

[3] is included, [6] is not

3,
3,

4,
4,

1]

1} # order varies

= <generator object

9, 12, 18)

2.0,

6,
3.0)

immutable, did b

same for >, >=, <=

Decimal:

Hexadecimal:

Binary:
Octal:
Logical:

null:

type-casts:

operators:

if expression:

constants, e.g.:

simple functions:

library, e.g.:

float ("12.345")
12.345

float ("
int ("-543")
int (100",
int ("5A7F",
hex (23167)

123

0

+45
-9876

Oxlab45
0x1AB45

0b1001011
00741

True
False

None

float (123)
int (3.9)

<< >>
and or not

X if Y else
math.pi
round (X)

round (X, N)
abs (X)

min(X, Y, Z,
max (X, Y, Z,

math.sin (X)

")

Values and Operators

(truncates)

= = < > <= >=
(result always an int)
(result always a float)

(to the power of)
(bitwise, only for ints)
(shifts, only for ints)
(only for logical)

Z

(to nearest int)
(to N digits after point)

12.345
12.345

= -543

64

(8 is base, anything from 2 to 36)

23167
"Oxba7f"

