
First move

X's turn

can lead to any one of

X X X
 X X X
 X X X
a1 a2 a3 a4 a5 a6 a7 a8 a9

O's
turn

Just looking at a5:

Second move

 X

O's turn

can lead to any one of

O O O
 X X X O X X O X X X
 O O O
b1 b2 b3 b4 b5 b6 b7 b8

X's turn

Just looking at b3:

Third move

 O
 X

X's turn

can lead to any one of

X O X O O O O O O
 X X X X X X X X X
 X X X
c1 c2 c3 c4 c5 c6 c7

O's turn

Just looking at c6:

Fourth move

 O
 X
 X

O's turn

can lead to any one of

O O O O O O O O
 X X O X X O X X
 X X X X O X X O
d1 d2 d3 d4 d5 d6

X's turn

Just looking at d3:

Fifth move

 O
O X
 X

X's turn

can lead to any one of

X O X O O O O
O X O X O X X O X O X
 X X X X X X X
e1 e2 e3 e4 e5

But as this is X's turn, X would obviously pick 2 and the game would be over.
X and O can both look ahead in the same way.
Seeing this outcome, O would not have picked d3 for the fourth move.
O would have picked a di that leads to O winning (if there was one)

But knowing that, X would not have picked c6 for the third move.
How would anyone ever pick any move?

Minimax search

new_board(N) is [[' '] * N for i in range(0, N)]

possible_moves(board) is list of int pairs (row, col) of all empty spaces

move(board, whose_turn, (row, col))
 whose_turn is 'X' or 'O'
 just creates new board same as old with that one extra move made

ended(board) = bool, no more moves possible: either someone has won or no blank squares left

utility(board, player) = int, score for that board from player's point of view, assuming the game is over
 +1 for win, 0 for tie, -1 for loss.

def minimax_strategy(board, persective, whose_turn, other_player):
 if ended(board):
 score = utility(board, whose_turn)
 elif perspective == whose_turn:
 best = -2
 for rowcol in possible_moves(board):
 new_board = move(board, whose_turn, rowcol)
 score = minimax_stratgey(new_board, perspective, other_player, whose_turn)
 if score > best:
 best = score
 the_move = rowcol
 else:
 worst = +2
 for rowcol in possible_moves(board):
 new_board = move(board, whose_turn, rowcol)
 score = minimax_stratgey(new_board, perspective, other_player, whose_turn)
 if score < worst:
 worst = score
 the_move = rowcol
 return score # Naturally we would want to return the_move too, this is just keeping it simple.

