

1

Python.

Part One: The Python Language
1. Getting started .. 2
2. Modules and packages ... 14
3. Variables, simple values, and operators 18
4. The mathematical library ... 25
5. Strings .. 28
6. Basic iterables: lists and tuples ... 40
7. Operations only applicable to lists ... 46
8. Sets ... 48
9. Statements .. 50
10. Documentation and help ... 55
11. Assignments with patterns and pattern matching 56
12. Formatting for strings and output .. 58
13. Dictionaries ... 65
14. enum types .. 68
15. Functions .. 70
16. Operators as functions .. 78
17. Special operations on functions ... 80
18. Bytes and bytearray ... 81
19. Reading and writing files .. 86
20. Classes .. 98
21. Operators and printing for objects ... 104
22. Special methods for classes ... 107
23. Decorators ... 113
24. Inheritance .. 117
25. Iterables and iterators .. 122
26. Generators .. 132
27. Saving and restoring live data .. 136
28. Exceptions: detecting and handling errors 143
29. Dates and times ... 151
30. Minor data structures .. 153
31. Access to operating system features ... 158
32. Multiple streams of execution - Threads 164
33. Multiple streams of execution - Processes 176
34. WWW services ... 182
35. Network clients and servers ... 195
36. Polling - asynchronous communication 201
37. asyncio - more asynchronous communication 217
Part Two: Graphics and User Interfaces
38. Turtle .. 238
39. Tkinter - the Canvas .. 247
40. Universal widget methods .. 265
41. Label ... 266
42. Multiple items in a window .. 270
43. Button ... 274
44. Entry - simple text input .. 277
45. Binding to mouse and keyboard events 280

2

46. Text ... 282
47. Scrolling .. 293
48. Checkbutton .. 298
49. Radiobutton .. 300
50. Scale ... 301
51. Listbox .. 303
52. Spinbox ... 306
53. Frames - windows within windows ... 309
54. LabelFrame ... 311
55. PanedWindows .. 312
56. The Tk window .. 314
57. Toplevel: an independent window ... 317
58. Ttk widgets .. 317
59. ttk.Progressbar .. 322
60. ttk.Combobox .. 324
61. ttk.Notebook .. 326
62. ttk.Treeview ... 328
63. Menus ... 336
64. Menubutton and Optionmenu .. 342
65. Dialogues .. 344
66. Pillow - better image processing ... 351

Part One: The Python Language

1. Getting started

Python is quick and easy to install on just about anything. The method varies a lot
depending on your hardware and operating system. The best way for your set-up
can be found by a google search for “install python 3”, I found that just clicking on
“downloads” is not enough, I have to keep it pressed for a while, but others report
different experiences.

The documentation is at https://docs.python.org/3/, but the documentation
has many deficiencies, and the web may provide a hundred incompatible answers
for any question you might have. That is the reason for these notes.

There are two ways to work with python. I find the best to be using the “IDLE” app
which is completely interactive, you can type python code and get an immediate
response as with a calculator but with more abilities, and you can still directly run
larger programs stored in files.

The other way is to use your favourite text editor to write python code, save the file
then double-click on its icon. That is a bit cleaner as no state/information
survives from one run to the next, but it does not support interactive development
which can be very helpful.

3

i. Windows setup

Windows: C:\Program Files\Python311\Lib\idlelib\idle.pyw is where it
was installed on my computer, but the start menu's search should be able to find
it for you. The first time I installed Python, this file was a short-cut, and that was
a useful thing. By default, Python will store and find all your programs in the
same directory as all of its executables and other essentials, and that is not a good
idea. To change it just right-click on the Idle shortcut's icon and select properties.
Type the folder you want to use, such as C:\python, as the entry for “Start in”,
and it's done. More recently it was installed differently, and it took some work to
set things up. There may be a better way, but this does work. First I made a copy
of idle.pyw and changed its name so that it has a meaningless extension, I chose
idle.pys. Then I made a short-cut to the new idle.pys and in its "properties"
window made two changes. First in the general tab I set "opens with" to
"pythonw.exe" (which the windows search thing was able to find), then in the
shortcut tab I set "start in" to be the directory that I want my Python files to live
in. That shortcut icon can be moved to a convenient place on the desktop, but for
some reason windows won't allow it on the start bar.

When you're using Idle, Alt+P and Alt+N let you run up and down through
previous commands that you have typed, perhaps modify them, then press Enter
to re-execute them.

Idle gives you automatic indentation, which would be nice, but in the current
version it is uncontrollable. Idle's options menu allows you to set the tab size, but
every time you restart Idle it forgets. This didn't happen in the previous version, so
I'm hoping it's just a temporary mistake that will be corrected soon.

ii. Macintosh and Unix

On a Mac, I've got no idea what you do to change where it stores and looks for
programs. Google searches produce many hits, but they are all wrong. To run up
and down through previous commands you use Control+P and Control+N as Mac's
have no Alt button.

We also have python on our server, rabbit.eng.maimi.edu. The command to run it
is just python (not idle). You use the keyboard up and down arrow keys instead of
Alt+P and Alt+N to re-visit previous commands, and it doesn't give you automatic
indentation. Type control-D or exit() to exit.

iii. Starting to use Python

Python, through Idle, is interactive. If you type an expression it will be evaluated
and printed. You can also define functions and classes and build up whole
programs, but that isn’t recommended for anything but smallish experiments:
what you enter into Idle can not be saved usefully. “save as” just saves the entire
transcript of everything you have done.

Here is a sample session that defines and uses two variables and a function

4

1 1 >>> x = 12 * 6

y = x - 4
def f(a, b):
 print(a, b)
 print("Done")
 return a + b

x
72
y
68
f(x, y)
72 68
Done
140

 2 >>>
 3 >>>
 4 ...
 5 ...
 6 ...
 7 ...
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14
 15

The >>> and ... business at the left is just Idle’s prompt. Anything that appears
on the line after either of those is something that I typed. Any line without a
prompt was produced by python itself. After a function definition, you have to type
an empty line as shown above. I will not bother to include that blank line in future
examples.

print(...) takes any number of parameters and does its best to print them in an
understandable way. The default behaviour is to print a single space between each
item, and to end with a newline character. The defaults can be over-ridden:

2 1 >>> print(1, 2, 3, 4)
1 2 3 4
print(1, 2, 3, 4, sep = "..."):
1...2...3...4
print(1, 2, 3, 4, sep = "")
1234
print(1, 2, 3, 4, sep = ", ", end = "")
1, 2, 3, 4

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

This last example would not have started a new line after printing the 4, but Idle
always tidies up the last line of output by adding a new line if there wasn’t already
one there.

Note that correct and consistent indentation is absolutely required. While you are
using Idle, it usually provides the necessary indentation for you.

However, a sequence of a few simple statements may be put all on one line with
semi-colons to separate them. This is permitted, but generally not a good idea.
Anyone reading Python will be familiar with the normal layout, a departure could
easily cause a misreading.

3 1 >>> print(1, 2, 3, 4, sep = ", "); print(999)
1, 2, 3, 4
999
print(1, 2, 3, 4, sep = ", ", end = ""); print(999)
1, 2, 3, 4999

 2
 3
 4 >>>
 5

5

iv. Loading and saving programs

When you are developing a program, there is nothing wrong with using your
normal favourite editor, but if it doesn't support automatic indentation, you might
get a bit annoyed. Idle provides its own editor that does do automatic indentation.
From Idle’s menu select file: open or file: new file. The name of the file should end
in .py or .py3. After saving your work, go back to idle and type “import” followed
by your file’s name, without the .py. Idle’s default indentation is too wide for my
liking. If you want to change it, just use the options menu, then Configure Idle,
and go to the windows tab. You can change a lot of other settings there too.

So, if I had saved the three definitions (sample 1) above as “program.py”, I could
do this.

4 1 >>> import program
program.y
68
program.f(10, program.y):
10 68
Done
78

 2 >>>
 3
 4 >>>
 5
 6
 7

If you have not managed to make Idle use a sensible directory for your .py files,
you can enter these two lines:

5 1 >>> import os
os.chdir("C:\\python\\programs")

 2 >>>

This will have no effect on anything you do from the file menu, but it will set
where Idle looks for imports and other files that your program opens. It is
annoying to have to type them every time you start a new session, there really
should be some way to make things happen automatically.

If you use Idle’s own editor, it has a run menu which contains a run module
command. That will reset your Idle session, automatically import your file and run
it. That sounds convenient, but it has problems. When you are developing or
debugging a program, you will want to build up some reusable tests without
having to build them into your program.

If you change your program, you can not use import again to load the new
version. Once something has been successfully imported, Python ignores
subsequent imports of the same file in order to save memory. This is what you
need:

5 1 >>> from importlib import reload
reload(program)
<module 'program' from 'C:\\......\\program.py'>

 2 >>>
 3

In this form, from only imports specific things from a file, but it imports them into
the standard “namespace”. That means you don’t have to type
“importlib.reload”.

6

When you import (or reload) a .py file, it is almost exactly the same as it would be
if you typed the contents of the file directly into idle. The only big difference is that
if an expression appears alone on a line, it is still executed, but the printing of the
result is suppressed. So if you have a line that just says 12*9, you will not see the
108 as you normally would, but things like prints still happen.

Another way to execute a .py file is to just double-click on it. So long as the
extension .py (or .py3) is properly associated with the python.exe app (not
pythonw.exe), a window will appear and your program’s results will be displayed
in it. But as soon as the program finishes, the window disappears and you don’t
have time to see what it said. The way to fix that is to make sure that your file’s
last line just says

 input()

The input function waits until the user enters a line. That could just mean
pressing ENTER. The input function returns whatever the user typed as its
result. If you give it a parameter, that will be used as the prompt.

 1 >>> def thing():
 x = input("Type something: ")
 print("You said", x)

thing()
Type something: one two three
You said one two three

 2 ...
 3 ...
 4 ...
 5 >>>
 6
 7

Comments begin with a # sign, but also strings appearing alone are ignored so
they can be used as comments.

 1 >>> # this is a comment, nothing will happen
"This will also be ignored." 2 >>>

As python programs are not compiled, may errors inside function definitions are
not detected until the function is called and the defective code is executed. This
can be quite annoying.

v. At last, actually doing something with Python

This section just presents the basics needed to do anything useful. Everything is
expanded in detail in later sections. The best way to start with Python is to just try
it out. Start Idle and type things. This section only covers the most basic things
necessary for doing anything useful. There is much more, all covered in later
sections.

Numbers

Python supports a few different kinds of number, here we will only look at two:
ints (whole numbers) and floats (with decimal points). People will tell you that
python is a typeless language, but that is not strictly true. It has types, but does
everything related to types automatically. You do not have to declare variables (in

7

fact you can't in any meaningful way), just type a name follow it by an = and then
a value. Python can tell the type of any value it sees and does obvious conversions
as needed. One variable can hold values of different types at different times. This
is something of a convenience, but quite dangerous and a source of many errors
that would otherwise be easily preventable.

The operators are generally the ones you are used to if you have previously
programmed in C, C++, of Java:

+ * - / % == != < > <= >=

Their priorities are as expected and (parentheses) do their normal job. There is
also a to-the-power-of operator **.

 1 >>> 2 * 3 + 4 * 5
26
2.1 * 3.2 + 4.007 * 5.13
27.275909999999996
2 * 6.31
12.62
2 < 3
True
2 ** 8
256

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

As you see, the logical values are True and False, first letter capital is
compulsory. The logical operators are spelled out as words.

 1 >>> 2 < 3 and 4 < 5
True
2 < 3 and 4 > 5
False
True and True or False and False
True
True and (True or False) and False
False
not 3 < 4
False
(not 3) < 4
True

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

The last example illustrates one of the many dangers of being lackadaisical with
types. The expression (not 3) < 4 has no sensible meaning but Python just
doesn't care. not 3? The logical negation of a number? not 3 turns out to be
False. Then False < 4 is also meaningless but still comes out to be True.

Division is a little bit different in Python. For the other arithmetical operations two
ints always give an int result, and two floats or a mixed int and float always
produce a float result.

/ always produces a float result regardless of its operands and its counterpart
// always produces an int result regardless of its operands.

Strings

A string can be any sequence of characters (with a few exceptions) surrounded by
quotes. The quotes may be "double" or 'single', it makes no difference, except

8

that a string begun with one kind of quote must be ended with the same kind of
quote. Inside double quotes a single quote is nothing special and vice versa, inside
single quotes a double quote is nothing special. There is no concept of a character
type, a single character is just a string of length 1. Strings may be added together
or multiplied by a number:

 1 >>> "One two three"
'One two three'
'One two three'
'One two three'
"cat" + 'tle'
'cattle'
"I said 'hello'"
"I said 'hello'"
"It's raining"
"It's raining"
"*" * 20
'********************'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

A lot of things can be done with strings, here are just a few of the obvious ones:

 1 >>> len("horse")
5
"abcdefghijklmnopqrstuvwxyz"[10]
'k'
"abcdefghijklmnopqrstuvwxyz"[10 : 14]
'klmn'
"abcdefghijklmnopqrstuvwxyz"[10:]
'klmnopqrstuvwxyz'
"horse" in "abcdefghijklmnopqrstuvwxyz"
False
"fghij" in "abcdefghijklmnopqrstuvwxyz"
True
"abcdefghijklmnopqrstuvwxyz"[:10]
'abcdefghij'
"horse" < "cat"
False
"Horse" < "cat"
True
"ab∂∑zЯ"
'ab∂∑zЯ'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18
 19 >>>
 20

Strings use Unicode rather than ASCII for their internal representation so they
can contain all sorts of symbols if you can find a way to type them, but for
"normal" characters it is as though ASCII were used.

Programmers can demand type conversions when the desired conversion is not
automatic:

 1 >>> float(23)
23.0
int(3.95)
3
str(3.95)
'3.95'
float("12.34")
12.34
int("987")
987

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

9

 11 >>> type(12.3)
<class 'float'> 12

Collections

A comma-separated list of values my be surrounded by square brackets to
produce a list, or round brackets to produce a "tuple". The two are pretty much
the same except that lists are "mutable" and tuples are not. If something is
mutable, the values in it can be changed.

 1 >>> a = [1, 2, "hello", True, 6 * 7, 3 > 12 / 6, "xxx"]
a[2]
'hello'
a[-1]
'xxx'
a[3]
True
a[-2]
True
a[-3]
42
len(a)
7
a + [100, 200]
[1, 2, 'hello', True, 42, True, 'xxx', 100, 200]
a
[1, 2, 'hello', True, 42, True, 'xxx']
a[2 : -2]
['hello', True, 42]
[1, 2, 3] * 4
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
a[5] = "hippopotamus"
a
[1, 2, 'hello', True, 42, 'hippopotamus', 'xxx']
b = [99, 88, 77, [666, 555, 444], 33, 22]
b[3]
[666, 555, 444]
b[3][1]
555
c = (1, 2, "pony")
c[1]
2
c + b
Traceback (most recent call last):
 File "<pyshell#137>", line 1, in <module>
 c + b
TypeError: can only concatenate tuple (not "list") to tuple
c + tuple(b)
(1, 2, 'pony', 99, 88, 77, [666, 555, 444], 33, 22)
c[1] = "different"
Traceback (most recent call last):
 File "<pyshell#139>", line 1, in <module>
 c[1] = "different"
TypeError: 'tuple' object does not support item assignment

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15
 16 >>>
 17
 18 >>>
 19
 20 >>>
 21
 22 >>>
 23 >>>
 24
 25 >>>
 26 >>>
 27
 28 >>>
 29
 30 >>>
 31 >>>
 32
 33 >>>
 34
 35
 36
 37
 38 >>>
 39
 40 >>>
 41
 42
 43
 44

If something is immutable and you want to make a change, you have to make a
copy of it with the changes built in from the beginning. In the following, the
strange notation (123456789,) is used to create a tuple of length 1. Parentheses

10

alone would be interpreted in the normal mathematical way, and as there are no
operators involved they would have no effect. The comma makes it explicit that
this is to be taken as a tuple.

 1 >>> c = (1, 2, "pony", 3.14, 6, 99, 0)
d = c[0 : 2] + (123456789,) + c[3:]
d
(1, 2, 123456789, 3.14, 6, 99, 0)

 2 >>>
 3 >>>
 4

Statements

The assignment statement has already been seen in its most basic form, and there
are extensions (some expected, some not) too. The new value of a variable may be
based on the current:
a = 3 * a
the usual update assignments are available:
a += 1
c *= 4
multiple assignments may be strung together, so this sets all of a, b, and c to 999.
a = b = c = 999
multiple assignments are also possible by assigning a tuple (or list) of values to a
tuple of variables, "unpacking" a structure:

 1 >>> x = (11, (22, 33))
(a, (b, c)) = x
a
11
b
22
c
33

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

In this form of assignment, the individual assignments act as though they happen
simultaneously rather than sequentially, so (a, b) = (b, a) is a valid swap(a, b)
which incidentally could not be written in Python, as there is nothing like
reference variables or pointers in the C and C++ style.

 1 >>> a
11
b
22
c
33
(a, b, c) = (b, c, a)
a
22
b
33
c
11

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

If statements behave in the familiar way, but in a generally unfamiliar syntax. The
if and its condition appear on one line, ending with a colon, the statements to be
executed if the condition is True appear on separate lines after that, and they
must be indented to a consistent level deeper than that of the if. Then there is an
optional else: that must have the same indentation as the if that it matches,
and is followed by the statements to be executed if the condition is False,

11

indented in the same way as for the True case. Before the else (if there is one)
there may be any number of eilfs (for else if) followed by their own condition
and colon:

 1 >>> if x < 0:
 print("it is negative")
 x = - x
elif x == 0:
 print("it is zero")
 zero_seen = True
 count += 1
else:
 print("it is positive")
 count += 1

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...

inside a structures statement of this kind, idle gives a ... prompt as an indication
that it expects more. At the end, you must type a blank line or it will keep on
expecting more. Nested ifs (or other structured statements) require uniformly
increased indentation as would be expected.

The simplest kind of loop if the familiar while. It is given a condition (followed by
a colon) an any number of statements to be re-executed for as long as the
expression remains True. break and continue statements are allowed in loops
and have the usual effect. In addition to all of this, a while loop may have an
else: clause just like an if. The else statements are executed after the loop
terminates, but only if it terminated naturally (the condition became False), not if
a break statement caused the end.

 1 >>> k = 1
while k < 100:
 if k % 10 == 7:
 print("Emergency! ", k, "'s last digit is seven!", sep = "")
 break
 k *= 2
else:
 print("k never ended in 7 throughout the whole loop")

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

Ranges

A range is an example of an unusual kind of construct that Python has many
more of.

If a and b are ints, range(a, b) produces a list of all ints starting with a, but
ending just before it reaches b. range(a) is the same as range(0, a). range(a,
b, c) is the same as range(a, b) except that the numbers increase in steps of c
instead of steps of 1. But there is a twist here. One of the purposes of a range is in
controlling a loop, and loops can have very large ranges. So a range is never
evaluated more than it has to be at any given moment. If I type range(3, 7) the
response is the same, range(3, 7), because it was never used so there was no
reason to evaluate it. To see the whole list it must be forcibly converted into a list
(or tuple). Indexing a range (with square brackets) only produces the element(s)
needed.

12

 1 >>> range(3, 10)
range(3, 10)
list(range(3, 10))
[3, 4, 5, 6, 7, 8, 9]
tuple(range(3, 10))
(3, 4, 5, 6, 7, 8, 9)
range(3, 10)[2]
5
range(3, 10)[2 : 3]
range(5, 6)
list(range(3, 10)[2 : 5])
[5, 6, 7]

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

Ranges, lists, tuples, and other range-like things yet to be seen may control for
loops, which have a very restricted syntax: no initialisation, no condition, no
update, just an ordered collection of values to iterate over:

 1 >>> count = 0
for i in [4, 7, 12, "hello", 9]:
 count += 1
 print("item", i)
else:
 print(count, "uninterrupted items")
item 4
item 7
item 12
item hello
item 9
5 uninterrupted items
for i in range(3, 10):
 print(i, end = " ")
3 4 5 6 7 8 9
for i in "Hippopotamusses":
 print(i, end = " - ")
H - i - p - p - o - p - o - t - a - m - u - s - s - e - s -

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8
 9
 10
 11
 12
 13 >>>
 14 ...
 15
 16 >>>
 17 ...
 18

Comprehensions

Comprehensions allow a list (or list-like thing) to be made by applying a given
operation to every member of another list-like thing. The syntax can probably be
best understood just by seeing it. The first example takes a list of numbers [3, 7,
4, 2, 6] and multiplies each by ten and adds one to make another list of numbers:

 1 >>> [10 * i + 1 for i in [3, 7, 4, 2, 6]]
[31, 71, 41, 21, 61]
[10 * i + 1 for i in (3, 7, 4, 2, 6)]
[31, 71, 41, 21, 61]
(10 * i + 1 for i in [3, 7, 4, 2, 6])
<generator object <genexpr> at 0x0000023641DAF2A0>
tuple((10 * i + 1 for i in [3, 7, 4, 2, 6]))
(31, 71, 41, 21, 61)

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

Naturally, comprehensions may be nested:

 1 >>> [j / 10 for j in (10 * i + 1 for i in [3, 7, 4, 2, 6])]
[3.1, 7.1, 4.1, 2.1, 6.1]
names = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
[(b, "is", a) for (a, b) in names]
[('one', 'is', 1), ('two', 'is', 2), ('three', 'is', 3), ('four', 'is', 4)]

 2
 3 >>>
 4 >>>
 5

13

 6 >>> [list() for n in range(1, 7)]
[[], [], [], [], [], []]
[list(range(n, 7 * n, n)) for n in range(1, 7)]
[[1, 2, 3, 4, 5, 6],
 [2, 4, 6, 8, 10, 12],
 [3, 6, 9, 12, 15, 18],
 [4, 8, 12, 16, 20, 24],
 [5, 10, 15, 20, 25, 30],
 [6, 12, 18, 24, 30, 36]]

 7
 8 >>>
 9
 10
 11
 12
 13
 14

I reformatted the last output to make it more clearly what it is, a multiplication
table.

Comprehensions may also be filtered. This last example starts with all the
multiples of 3 that are less than 50, discards any that are not divisible by 2, and
multiplies the rest by 10 to produce a new list:

 1 >>> [i * 10 for i in range(0, 50, 3) if i % 2 == 0]
[0, 60, 120, 180, 240, 300, 360, 420, 480] 2

Functions

A function definition can be very simple: just the word def to introduce it, then its
name, then a comma-separated list of parameter names in parentheses, and the
usual colon, all followed by the statements that make up the function with the
expected extra indentation. return statements with optional values may also
appear. But be aware that there are a lot of more sophisticated and complicated
things still to come. Recursion is supported as usual:

 1 >>> def factorial(n):
 f = 1
 i = 2
 while i <= n:
 f *= i
 i += 1
 return f

factorial(7)
5040

def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n - 1)
factorial(7)
5040

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 >>>
 10
 11 >>>
 12 >>>
 13 ...
 14 ...
 15 ...
 16 >>>
 17

It must be kept in mind that Python does not have declarations in the
conventional sense. A function definition is really an assignment of a value (an
executable object made from the statements) to a variable (the name of the
function), and a function is not defined until its def statement is executed. If a
second def or an assignment to the function's name is executed, the function will
change. One effect of this is that function definitions may be conditional:

 1 >>> if a < 10:
 def f(x):
 return 99 * x
else:

 2 ...
 3 ...
 4 ...

14

 5 ... def f(x, y):
 return 100 * x + y

f(10)
990
a = 12
f(10)
990
g = f
g(100)
9900

 6 ...
 7 ...
 8 >>>
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14 >>>
 15

Lines 10 to 12 just illustrate that there is no magic involved.

Functions do not need names. A lambda expression turns an expression and
parameter list into a function that can be used in the normal way. The first
example does just incidentally give the function a name by saving it in a variable,
but that is just to make the introduction gentler than it would otherwise be. In the
second example, add_up_results is an ordinary named function, it is the lambda
that it is called with that is of interest (the sum of the squares of the numbers 1 to
5 is indeed 55). The third example makes a function that is aware of its
environment at birth.

 1 >>> f = lambda x, y: x * 100 + y
f(5, 7)
507

def add_up_results(f, a):
 total = 0
 for i in range(len(a)):
 total += f(a[i])
 return total
add_up_results(lambda x: x * x, [1, 2, 3, 4, 5])
55

def multiplier(x):
 return lambda y: y * x
m = multiplier(6)
m(7)
42
m(9)
54

 2 >>>
 3
 4
 5 >>>
 6 ...
 7 ...
 8 ...
 9 ...
 10 >>>
 11
 12
 13 >>>
 14 ...
 15 >>>
 16 >>>
 17
 18 >>>
 19

2. Modules and packages

It may be a bit early to be talking about modules and packages, but without some
information there are things that won't make much sense.

i. Modules

“Module” usually just means a .py file. A lot like what we would normally think of
as a program, but they aren't really programs in the normal sense. They are

15

completely unstructured, just a collection of variable definitions, function
definitions, class definitions and even executable statements.

When you say import name, Python will search for a file called name.py or
possibly name.py3. First it searches its internal memory, called the cache: maybe
you've already imported this module and it can save some time. Then it searches
all of the directories listed in your path. Usually your path will begin with an
empty string which represents whatever is considered to be the current working
directory. Next it has the directory that you chose if you followed the steps in
section 1 and set Idle's “start in”. Then there will be a list of directories that the
official Python libraries were stored in at installation. Python is quite flexible,
sometimes you will even see .zip files as well as directories in your path. To see
your path and maybe add another directory to it, do this:

 1 >>> import sys
sys.path
['', 'D:\\python', 'C:\\Programs\\Python\\Python311 ...]
ys.path = sys.path[0:2] + ["D:\\abc"] + sys.path[2:]

 2 >>>
 3
 4 >>>

That last step would insert the directory D:\abc as the third entry. Don't worry
about the [0:2] and [2:], they will become clear very soon in the section on lists
and tuples.

When you import a module, you refer to the things it contains by putting the
module name and a dot in front of the thing's name, as we saw before.

 1 >>> import math
math.factorial(7)
5040
math.sqrt(math.pi)
1.7724538509055159

 2 >>>
 3
 4 >>>
 5

If a module has a long name, this can become annoying. There is an alternative
that allows you to provide an abbreviation.

 1 >>> import math as m
m.factorial(7)
5040
m.sqrt(m.pi)
1.7724538509055159

 2 >>>
 3
 4 >>>
 5

And remember that if you edit a module that has already been imported without
errors, you can not import it again, you must use the reload function from
importlib. If you imported something with an abbreviated name, you must use
that abbreviation when reloading, so if you were brave or foolish enough to edit
the math library, then in the case of the last example you would enter reload(m),
but in the one before that, reload(math).

If there are just a few functions in a library that you want to use a lot, there is
another form that allows you to leave out the module name and dot altogether.

 1 >>> from math import sqrt, pi, factorial

16

 2 >>> factorial(7)
5040
sqrt(pi)
1.7724538509055159

 3
 4 >>>
 5

You can even import everything from a library in that way with from math
import *, but that is not recommended. Some libraries define a very large
number of things, some with names you would never guess at. They can cause
confusing conflicts with names in your own program.

Sometimes you want a file to behave differently when it is being imported that
when it is being run directly (perhaps through being double-clicked on). This test
will let you tell the difference (the long lines __ are double underlines):

 1 >>> if __name__ == "__main__":
 print("Being run directly")
else:
 print("Being imported")

 2 ...
 3 ...
 4 ...

ii. Packages

A package is nothing more than a collection of modules. It will usually be a
directory (folder) containing some .py files, and maybe some subdirectories also
containing .py files and sub-sub-directories and so on. To make a directory into a
package, it must contain and empty file called __init__.py. The structure we'll
be using for this example is:

 In my normal Python working directory, D:\python, there is
 a directory called mcpackage which contains
 an empty file called __init__.py
 a file called one.py
 a file called two.py
 a directory called junior which contains
 an empty file called __init__.py
 a file called three.py
 a file called four.py

The contents of the four non-empty files are:

 D:\python\mcpackage\one.py:
 def square(x):
 return x * x

 oneval = 111

 D:\python\mcpackage\two.py:
 def cube(x):
 return x * x * x

 twoval = 222

17

 D:\python\mcpackage\junior\three.py:
 def halve(x):
 return x / 2

 threeval = 333

 D:\python\mcpackage\junior\four.py:
 def printtwice(x):
 print x
 print x

 fourval = 444

This shows how to access everything

 1 >>> import mcpackage.one
import mcpackage.junior.four
mcpackage.one.oneval
111
mcpackage.junior.four.printtwice(mcpackage.one.oneval)
111
111

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7

Which is all very clumsy. So now we will edit the two __init__.py files. To allow
users to say "from ... import *" to a package, that package's __init__.py must
define a variable called __all__ to be a list of the names of the things * will
select. Anything not in the list is ignored. So ...

 D:\python\mcpackage__init__.py:
 __all__ = ["one", "two", "junior"]

 D:\python\mcpackage\junior__init__.py:
 __all__ = ["three", "four"]

Now things are a bit less annoying:

 1 >>> from mcpackage import *
from mcpackage.junior import *
three.threeval
333
one.square(four.fourval)
197136

 2 >>>
 3 >>>
 4
 5 >>>
 6

Mysteriously, from three import * doesn’t produce any errors, but it doesn’t do
anything either.

If there is any general initialisation that you want to be performed when a package
is loaded, just put it in that package's __init__.py.

iii. Installing extra modules

18

Some useful functionality is provided by modules that do not automatically come
with Python. If you want one, you're going to have to install it yourself. I have never
needed to do this under Unix, but there are some very popular extra modules such
as numpy for numeric and especially matrix work. On the other hand, quite a few
normal Python things don’t work under Windows, so extra modules were needed
there.

Be very careful. The main purpose of third party software seems to be to make it
easier for virusses to spread. Check that a lot of people have been successfully
using something before installing it.

We’ll use the example of installing pynput. It gives special control over the
keyboard and mouse. To start, you need a Python utility named pip, and getting
and installing that is quite a nuisance, so check first to make sure you haven’t
already got it, the instructions below give hints at what to do and where to look.
First you have to open a terminal (dos shell or whatever) and navigate with cd
commands to the folder that contains your Python executables. Finding that folder
is very easy: from within Python/Idle import the sys module and look at its
executable attribute:

 1 >>> import sys
sys.executable # under Windows
'C:\\Users\\ ... Python\\Python311\\pythonw.exe'
sys.executable # under Unix
'/usr/local/bin/python'

 2 >>>
 3
 4 >>>

5

Then you need to download this link https://bootstrap.pypa.io/get-pip.py
into that folder. The command for that is

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
Once you have done that, give the command

.\python get-pip.py

Pay attention to what it says. It told me that pip.exe had been installed into the
\Scripts subdirectory, which is not on the path, so instead of using the command
pip, I have to use the command Scripts\pip. I imagine that something similar
will happen for you. Use this command

Scripts\pip --version
to verify installation. Finally, this command installs the pynput module.

Scripts\pip install pynput
After that, you shouldn't have to do anything else. Go to your Idle session and
make sure import pynput works. If not, you may have to restart Idle. I didn't, but
it could happen.

3. Variables, simple values, and operators

Python directly supports two kinds of numbers: whole numbers (ints) and
numbers with decimal points (floats). If you import complex, complex numbers

19

are also available. The programmer almost never has to do anything about types,
they are all handled automatically.

You create a variable just by assigning a value to it. No declarations. The rules for
legal variable names are the same as in most programming languages. You can
store any value at all in any variable you want. You don’t even have to be
consistent, you can take a variable that previously held an int, and store a string
in it instead.

i. Numbers and types

To type an int value, optionally type a + or - sign, and follow it with any number of
digits, except that leading zeros are forbidden. Between digits, you may insert
underline characters to make big numbers more readable. Underlines are like
commas in the normal human writing of large numbers. 1_234_567 is one million
two hundred and thirty-four thousand five hundred and sixty-seven. Beware:
python lets you put underlines anywhere in a number. If you type 1_2345 by
mistake, it will be accepted as 12345 without warning. An int can have any
number of digits, they just grow as needed. Sometimes you need to take care of
that, a very big int can occupy a lot of memory.

Int values may be preceded by 0x for hexadecimal, 0b for binary, or 0o for octal.

 1 >>> 0b1001
9
0xFF
255

 2
 3 >>>
 4

To type a float value, do the same as you would with an int, but then you must
either put a decimal point somewhere (123.45, .123, 345.), or use the e notation
(for times-ten-to-the-power-of), or both. Unlike ints, floats do not have unlimited
precision, they are limited to the implementation given by your CPU. That usually
means about 15 or 16 decimal digits of accuracy.

You can convert between types with a typecast. Typecasts look like functions.

 1 >>> float(123)
123.0
int(3.14)
3
int(3.99999)
3

 2
 3 >>>
 4
 5 >>>
 6

Python always displays a decimal point when it prints a float unless you explicitly
tell it not to, see the section on formatting.

To create a variable or store a value in a variable, just use an assignment: variable
name then = then the new value. If the variable doesn't already exist, it is created
right there. No declarations, no need for a type.

20

Assignments may be strung together as in a = b = c = 9, which sets all three
variables to 9.

You can find the type of anything by looking at the result of the type function.
When the type function displays its result, it has a complicated format, but when
you want to check a type it is much simpler:

 1 >>> x = 99
y = 23.
type(x)
<class, 'int'>
type(3.14159)
<class, 'float'>
type(y) == float
True
type(3 * 7) == float
False

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

From that, you see an example of another type. The values in the bool type are
True and False. There is also another special value None. It is a bit like NULL or
null or nil in familiar languages, it is used to say “no data here”. The type of
None does not behave as we might expect:

 1 >>> type(None)
<class 'NoneType'>
type(None) == NoneType
Traceback name 'NoneType' is not defined

 2
 3 >>>
 4

but None is the only value in NoneType, so if you want to know whether something
is a NoneType or not, just == compare it with None.

ii. Very basic functions

We have not covered function definitions yet, but even so, the small ones that are
about to appear should still be understandable. The keyword def begins a
function definition, and the rest is quite straightforward.

If a variable is created outside of any function definition (i.e. with no
indentation), it naturally becomes a global variable. If you use a variable inside a
function, it is assumed to be a local variable (usually. There are exceptions, but it
is not a good idea to take advantage of them). If a function needs to use a global
variable, it should first explicitly state that the variable is global, as shown in
these two examples:

 1 >>> g = 123
def f(x):
 # I say nothing so g is local
 g = x * x
 print("g =", g)

f(7)
g = 49

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 >>>
 8
 9 >>>

10

 g
123

 1 >>> g = 123
def f(x):
 global g
 g = x * x
 print("g =", g)

f(7)

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 >>>

21

 8 g = 49
g 9 >>>

 10 49

iii. Numeric operations

Python provides all the usual operators. + * - / % == != < > <= >=.
The / operator always produces a float result.
The // also does a division but produces whole numbers as its result. Unlike with
other languages, it always rounds down, not towards zero.
The % operator’s behaviour is compatible with that of //, so -99 % 10 is 1, not -9.
** does to-the-power-of.

Comparisons may be strung together without the need of ands, e.g. 3 < x < 7.

There are also update assignments, += -= *= /= //= **= %= &= |= ^= >>=
<<=. They all work the same way. So for one example, x *= 3 is exactly the same
as x = x * 3, but you don't have to worry about parentheses: x *= a + b is the
same as x = x * (a + b).

Due to the indentation rules, you can not spread a long expression over multiple
lines unless there is something to make it clear that the expression hasn’t ended
yet, and a dangling operator isn’t enough. If a line ends with “a * b +” and the
next line continues with “c * d”, that will be an error. If a line ends with “(a * b
+” and the next line continues with “c * d)” everything is OK.

In an expression like -2, you are not typing the number “minus 2”, you are typing
the number 2 and applying the unary - operator to it. Due to operator precedence
rules, this can have unexpected results, as seen in the last two examples below.
If you mix floats and ints (except for / and //) everything will be treated as floats.

 1 >>> 1234567890 * 9876543210
12193263111263526900
12 * 120.0
1440.0
8 / 5
1.6
8 // 5
1
-8 // 5
-2
3.6 // 2
1.0
-3.6 // 2
-2.0
2 ** 5
32
2.1 ** 5.36
53.34520885174045
-2 ** 0.5
-1.4142135623730951
(-2) ** 0.5

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18
 19 >>>
 20
 21 >>>

22

 22 (8.659560562354934e-17+1.4142135623730951j)

The last example illustrates that python understands complex numbers too. It
uses the letter j instead of the mathematically usual i. You can type them just as
real + imaginaryj. Python always surrounds complex numbers with parentheses,
and leave no spaces around the + or -. You don't need to do that, but you must
type the j right up against the imaginary part.

 1 >>> y = 2 + 0.5j
y
(2+0.5j)
y = 2 + 0.5 j # this causes an error
3j ** 2
(-9+0j)

 2 >>>
 3
 4 >>>
 5 >>>
 6

In the first one, that is not just a single direct assignment from a complex number
to a variable. First we get the ordinary int 2, then we get the complex number
without a real part, 0.5j, then they are added to produce (2+0.5j) which is
finally assigned to y.

If an expression gets very long, it should of course be spread over more than one
line. Because Python uses line-breaks and indentation to determine the structure
of a program, you can’t just start a new line anywhere. There are two possibilities:

If any type of bracket (square, round, or curly) is still open at the end of a
line, the next line will be taken as a continuation, so just put your long expression
in parentheses.

If the last visible character on a line is \ the next line will be taken as a
continuation. Naturally, the \ does not become part of the expression.

In the special case of a long string there is a third way. Use triple quotes to
begin and end the string: """abc""" or '''abc'''. Anything can go inside. The
only way to end a triple-quoted string is with another """ or ''' identical to the
one that started it, or with the end of the file which would be an error.

iv. Logical and bit-wise operators

Every int has two useful methods. A method is like a function but different. To
apply a method to something, you first type the something, then a dot, then the
name of the method, and finally a pair of round brackets containing any extra
parameters. When applying a method to an integer constant, there must be a
space before the dot, otherwise it will be taken as a decimal point. bit_length
tells you how many binary digits are needed to represent a number, and
bit_count tells you how many of those binary digits are 1.

 1 >>> 84 .bit_length()
7 # 84 in binary is 1010100, seven digits.
84 .bit_count()
3 # 84 in binary is 1010100, three ones.

 2
 3 >>>
 4

<< and >> are binary shifts. Both “arithmetic”, not “logical”, only for ints.

23

 1 >>> 1 << 8
256
256 >> 8
1
-7 >> 1
-4

 2
 3 >>>
 4
 5 >>>
 6

The logical operators are spelled out: and or not. Anything empty is considered
to be false, anything non-empty is considered to be true. 0 and None are
considered empty, as are empty data structures such as lists. and uses “short-
circuit” evaluation: if the left operand is false, it is returned immediately; if the left
operand is true, the right operand is returned. or also uses short-circuit
evaluation: if the left operand is false, the right operand is returned; if the left
operand is true, it is returned immediately.

 1 >>> True and False
False
7 and True
7
0 and 1
0

 2
 3 >>>
 4
 5 >>>
 6

The bitwise operators & | ^ ~ also exist, and do what they normally do. Except
that ~ has surprising results. 8 in binary is 1000, so one might expect ~8 to be
0111, which is 7, but python delivers -9 as the result. This is because Python
doesn't assume any particular bit size for ints, it acts as though the sign bit is
repeated infinitely. So with ... representing a long stream of identical digits, 8 is
...0000001000, so ~8 is ...11111110111, and that is the two's complement
representation of -9.

The normal assignment operator, =, may not appear in expressions, but the
operator :=, which does the same thing, may. Similarly := may not be used as a
statement.

 1 >>> a = 66
if (a := 9) > 7:
 print("yes")
yes
a
9
a := 4 # this causes an error

 2 >>>
 3 ...
 4
 5 >>>
 6
 7 >>>

v. Priorities

Operator priorities:
 highest (...) parentheses
 x[...], x(...), x.abc index, slice, call, attribute selection
 await x coming later
 **
 +x, -x, ~x unary operators
 *, @, /, //, % @ is recognised but has no set meaning

24

 +, -
 <<, >>
 &
 ^
 |
 in, not in, is, is not, <, <=, >, >=, ==, !=
 not x
 and
 or
 x if y else z see below
 lambda later, in the section on functions
 lowest :=

vi. Other features

The form x if y else z allows conditional evaluation within a statement. When
it is met, y is evaluated; if the value is considered true, then x is evaluated to
produce the value of the whole expression, and z is never touched. If y comes out
to be false, then z is evaluated to produce the value of the whole expression, and x
is never touched.

 1 >>> math.sqrt(0 if x < 0 else x) # makes square root safe
y = (a if a < b else b) + (c if c > d else d)
 # adds the smallest of a and b to the largest of c and d
print("Failed" if not ok else "Test was successful")
 # which is equivalent to, but much less bulky than
if not ok:
 print("Failed")
else:
 print("Test was successful")

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7 ...
 8 ...

9 ...

round(x)
 rounds x to the nearest integer
round(x, n)
 rounds x to n digits after the decimal point
abs(x)
 is for absolute value
min(a, b, c, d, e, ...)
 returns the minimum of all of its parameters
max(...)
 is as expected given min.

any(x) and all(x) take anything at all list- or tuple-like value for x, they
examine all of the contents of x, seeing which are considered false (False, zeros,
empty things) and which are considered true (all the rest). If even a single one is
true, any returns True. If every one is true, all returns True. any says True
about an empty x.

25

4. The mathematical library

import math provides five constants ...

math.pi
math.e
math.inf the hardware representation of so called infinity
math.tau which is 2 * math.pi
math.nan which is the representation of something that should be a

number but isn't. Hardware produces nan as the result of
something like the square root of a negative, but Python catches
those sorts of errors and throws exceptions (coming later)
instead. It is very difficult to find any Python operation that
produces a nan.

... and the common functions: acos, acosh, asin, asinh, atan, atan2, atanh,
ceil, cos, cosh, exp, factorial, floor, gcd, isfinite, isinf, isnan, lcm, log,
log10, log2, pow, sin, sinh, sqrt, tan, tanh, trunc, ...

 1 >>> import math
math.pi
3.141592653589793
math.cos(math.pi / 4)
0.7071067811865476

 2 >>>
 3
 4 >>>
 5

... and some less common ones:

math.cbrt(x) is for cube roots.
math.comb(n, r) is the normal combinatoric function.
math.copysign(x, y) returns x, but changed to have the same sign as y.
math.degrees(r) converts from radians to degrees,
math.dist((x1, y1), (x2, y2)) is the Pythagorean distance, not limited to

two dimensions.
math.erf and math.erfc are the Gaussian error functions.
math.exp and math.exp2 are e-to-the-power-of and 2-to-the-power-of.
math.expm1(x) is (e to-the-power-of x) - 1, calculated very accurately.
math.fabs(x) is the same as abs(x) except that the result is always a float.
math.fmod is the % operator for floats. math.fmod(3.712, 0.5) = 0.212

because 3.712 is some whole number (7) * 0.5 + 0.212
math.frexp produces mantissa and exponent. frexp(8.625) = (0.5390625,

4) because 8.625 is 0.5390652 * 2 to-the-power-of 4. Mantissas
are always less than 1.

math.fsum adds together parameters always producing a float.
math.gamma is factorial, extended to work for floats. Actually, N! = (N + 1).
math.hypot(x, y) is sqrt(x*x + y*y) but not limited to two dimensions.
math.isclose(x, y, 0.0001) = are x and y within 0.0001 of each other?
math.isqrt(x) biggest int that is less than or equal to sqrt(x).
math.ldexp(x, y) = x * (2 to-the-power-of y). The opposite of math.frexp.
math.lgamma(x) = logarithm of abs of gamma

26

math.log is the natural (base e) logarithm
mth.log1p(x) = math.log(1 + x), but much more accurate in special cases.
math.modf: fractional and integer parts. math.modf(73.185) = (0.185,

73.0)
math.nextafter(x, y) = the closest different float value to x, in the direction

of y.
math.perm(n, r) = number of permutations of r things taken from n. The one

parameter form perm(n) is the same as perm(n, n), which is
pointlessly the same as factorial.

math.prod, like math.fsum but multiplying.
math.radians(d) converts from degrees to radians.
math.remainder(x, y), a bit like x % y, but it works for floats.
math.trunc(x) - remove everything after the decimal point, round towards

zero.
math.ulp(x) is the difference between x and math.nextafter(x).

ii. Randomness

This is not part of the math library, but it seems to be the right place to cover it.
The Python documentation warns that these methods are not good enough for
cryptography. There is a separate module called secrets for that. import random
and you get the following:

random.random()
delivers an evenly distributed random float somewhere between 0
and 1. 0 is possible, 1 is not.

random.uniform(min, max)
delivers an evenly distributed random float somewhere between
min and max, which can of course be floats.

random.gauss(mu, sigma)
delivers a random number from a Gaussian or normal or bell curve
distribution with mean = mu, default 0, and standard deviation =
sigma, default 1.

random.randint(min, max)
delivers an evenly distributed random int somewhere between min
and max. min and max are both possible results.

random.randrange(stop) and
random.randrange(start, stop) and
random.randrange(start, stop, step)

delivers a randomly selected int from the numbers that would be
produced if range(start, stop, step) were called.

random.getrandbits(nb)
delivers an evenly distributed random positive nb-bit int. For
example, randbits(4) is equivalent to randint(0, 15).

random.randbytes(nb)
delivers nb evenly distributed random 8-bit values. The result is
delivered as a bytes object, rather like a string (but no unicode),
rather like a list of ints. Covered in a later section.

27

random.shuffle(list)
randomises the order of the items in the list. Nothing is returned,
the list itself is modified.

random.choice(list)
delivers a randomly selected item from the list. list may in fact be
anything that allows indexing with square brackets.

random.choices(list, weights, k = 1)
delivers a randomly selected list of k items from the list. k is only
accepted as a keyword parameter. All items are eligible for
selection regardless of whether they have been selected before or
not. If the weights parameter is provided, it should be a list with
the same length as the first parameter. It specifies the relative
likelihoods of each of the list's items being selected. They may be
probabilities but any numbers will do. e.g. [1, 3, 3] means that
list[1] and list[2] are equally likely, and both are three times
more likely than list[0].

random.sample(list, k, counts)
delivers a randomly selected list of k items from the list, but
without replacement. Once an item has been selected, it won't be
selected again. counts is only accepted as a keyword parameter, if
provided, it should be the same length as list. It specifies the
number of times each item in list is duplicated to make the list
that items are chosen from. e.g. list = [1, 2, 3] and counts =
[5, 3, 1] is the same as just list = [1, 1, 1, 1, 1, 2, 2,
2, 3]. A particular case: random.sample(list, len(list)) will
produce a random permutation.

Random numbers may be selected from many more distributions than are listed
here. If you really care about probability, check the official Python documentation.

Unlike most computer random number generation systems, Python does
randomise the sequence automatically. In contrast, other systems start their
random number generators in exactly the same state every time a program runs,
so if the same program is run more than once, it will get the same sequence of
random numbers. This is good for debugging, but bad for security and statistics if
you forget about it. Python is the opposite. If you want reproducible behaviour,
use seed, getstate and/or setstate.

random.seed(n)
uses the number n to start or restart the random number
generator. If you use the same seed again, you will get exactly the
same sequence of random numbers. n can be an int, float, str,
bytes or bytearray. If you don't provide a parameter, the current
time is used instead, except that if your operating system provides
a cryptographically good source of randomness, that will be used
instead. To find out if that is provided, import os.
os.urandom(16) will raise an exception if it isn't.

random.getstate() and
random.setstate(obj)

28

is another way to get reproducible results. getstate returns an
object which when given to setstate will return the random
number generation system to exactly the same position as it is in
now.

The documentation states that the random module is not good enough for
cryptographic needs. For such purposes, use the secrets module instead. secrets
has much less variety in its functions, but the essentials are there.

secrets.randbelow(n)
Returns a random int between 0 and n-1 inclusive.

secrets.randbits(n)
Generates exactly n random bits and returns the positive int that
they represent.

secrets.choice(things)
things can be anything reasonably list-like, iterators and
generators are not included. Returns a randomly selected one of
the things. All have equal probability.

secrets.token_hex(n)
Generates n random bytes and returns them as a hexadecimal
string.

secrets.token_bytes(n)
Generates n random bytes and returns them as a bytes object.

5. Strings

Strings consist of (almost) any sequence of characters, even none at all, enclosed
in quotes. Single quotes and double quotes are both allowed and mean exactly the
same thing. Whatever type of quote you use to start a string, you must use the
same type to end it. That makes it easy to print quotes. You can still use the
normal \ escape characters.

 1 >>> "Hello"
'Hello'
print("Hello")
Hello
print('I said "Hello"')
I said "Hello"
print("One\n\"Two\"")
One
"Two"
"One\n\"Two\""
'One\n"Two"'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9
 10 >>>
 11

Notice that when a string is a result, python prints it with quotes. No matter what
sort of quote you used, python will always use single ones, unless the string itself
contains single quotes. But the print function is supposed to be more readable, so
it doesn’t show the quotes. Also, when a string is a result you see any newlines or
other odd characters in it as \n or whatever, but when explicitly printed, the \ns
are replaced by the characters they represent.

29

Strings are always referred to as strings, but their type is really just str:
 if type(s) == str: ...

Newlines are not normally allowed inside quotes, but if you use triple quotes,
newlines are allowed. That is also how you make long comments.

 1 >>> def f(a, b):
 """
 This function adds two numbers together,
 I wrote it on a Monday evening.
 It is very good.
 """
 return a + b

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...

Strings may also be spread over multiple lines just by surrounding a bunch of
them in parentheses. No commas to separate them, that would make a tuple
instead. The parentheses are only needed if the strings are spread over more than
one line. The bunch of strings are all concatenated to make one big string. You
don't even need to get the indentation right:

 1 >>> ("abc"
 "def" "ghi"
"jkl"
 "mno")
'abcdefghijklmno'

 2 ...
 3 ...
 4 ...
 5

Python has no type for single characters. A character is just a string of length 1.

The str function will turn just about anything into a string.

 1 >>> str(3.14159)
'3.14159'
str([45, "cat", [9, 8], False])
"[45, 'cat', [9, 8], False]"

 2
 3 >>>
 4

And int and float will turn a string into the number that it looks like. int has an
optional second parameter to specify the base. Spaces at the beginning or end of
the string are ignored. If the string is not in the correct format, it will produce an
error.

 1 >>> float("356.71")
356.71
float("2.76549e+4")
27654.9
float("-12")
-12.0
int("100")
100
int("100", 8)
64
int("123", 5)
38

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

30

 13 >>> int("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16)
886151997189943915269204706853563050 14

The repr and ascii functions do almost the same thing as str. str is what
print uses and it is intended to produce nice human readable output. repr is
what is used to display the value of an expression entered interactively, it is
supposed to give more information for debugging and make it perfectly clear what
type the object is. ascii produces a string in which all non-ASCII unicode
characters are represented by their hexadecimal escape sequences. Unicode is the
system used to represent special symbols and foreign letters that the ASCII code
can’t handle. All Python strings use unicode. More on that later in this section.

 1 >>> x = fraction(3, 7)
print(str(x))
3/7
print(repr(x))
fraction(3, 7)
print(ascii(x))
fraction(3, 7)
print(str("ab∂∑zЯ"))
ab∂∑zЯ
print(repr("ab∂∑zЯ"))
'ab∂∑zЯ'
print(ascii("ab∂∑zЯ"))
'ab\u2202\u2211z\u042f'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

int("123") and float("3.14159") convert strings into the numbers that they
look like. spaces at the beginning or end are ignored.

Strings use unicode, not ASCII, to represent characters, so each character could
occupy anything from 1 to 4 bytes, but the programmer doesn’t need to worry
about that. It is all abstracted away. Strings are sequences of characters, not
sequences of bytes. Unicode means you can use strange symbols: "∂₤∑←ЯÆΩ". If
you know the unicode index for a character in hexadecimal, you can include it in
a string like this:

 1 >>> "4\u00B2=16"
'4²=16' 2

B2 is the unicode position for a superscripted 2, as in 4 squared.

ii. Immutability

Strings are Immutable. That means that once you have created a string, there is
nothing you can do to change it. You can make new strings based on parts of an
existing string to get the effect of a change, but nothing will change the original
string.

 1 >>> s = "abc"
t = s
t is s

 2 >>>
 3 >>>

31

 4 True
t += "def"
t
'abcdef'
s
'abc'
s[1] = 'x' # anything like this will cause an error

 5 >>>
 6 >>>
 7
 8 >>>
 9
 10 >>>

The is operator is very different from the == operator. It does not look at an object
at all, it just checks that they are in fact the same object. This is like comparing
two pointers in many other languages.

The types bytes and bytearray both provide a kind of mutable string. They are
covered in their own section later on.

iii. Basic operations

Indexing a string gives you the character at that position (counting from zero), but
remember it is really just a length-one string. "abcdefghij"[4] is 'e'.
Substrings, or slices, can also be taken. s[i:j] is the substring starting at
position i and ending just before position j. s[i:] means go all the way from i to
the end. Negative indexes count backwards from the end. len tells you the length
of a string, it is an ordinary function, not a method.

 1 >>> s = "abcdefghijklmnopqrstuvwxyz"
len(s)
26
s[0]
'a'
s[-3]
'x'
s[9 : 12]
'jkl'
s[3 : -3]
'defghijklmnopqrstuvw'
s[20:]
'uvwxyz'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

str + str creates a new string consisting of the original two joined together. str
* int creates a string that consists of a number of repetitions of the original.

 1 >>> s + "0123456789"
"abcdefghijklmnopqrstuvwxyz0123456789"
"---" * 4
'------------'

 2
 3 >>>
 4

With strings, the in and not in operators check for substrings.

 1 >>> 'o' in "Hippopotamus"

True
"pot" in "Hippopotamus"
True

 2
 3 >>>
 4

32

 5 >>> "pppp" not in "Hippopotamus"
True
"Hippopotamus" in "Hippopotamus"
True
"Hippopotamus" in "Hippo"
False

 6
 7 >>>
 8
 9 >>>
 10

iv. Useful methods

s.count(sub) tells you the number of times a substring appears

 1 >>> "The Cat Sat On The Mat 1234.".count("at")
3
"The Cat Sat On The Mat 1234.".count("elephant")
0

 2
 3 >>>
 4

The methods .startswith and .endswith do what their names suggest.
.removeprefix and .removesuffix are similar: if .startswith or .endswith
respectively is true, then a new string with that part removed is returned.

 1 >>> s.startswith("abcd") # at this point s is still the alphabet string
True
s.startswith("horses")
False
s.endswith('z')
True
"item: cat".removeprefix("item: ")
'cat'
"item: cat".removeprefix("other: ")
'item: cat'
"project/program.py".removesuffix(".py")
'project/program'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

If you’ve got a collection (list, etc) of strings, the .join method will join them all
together.

 1 >>> ", ".join(["abcd", "xy", "hello", "cat"])
"abcd, xy, hello, cat" 2

s.find tells you where a substring first appears in a larger string (-1 if it doesn’t).
s.find has two optional parameters, one telling it where to start the search, the
other telling it where to stop. s.rfind does the same, but searches backwards
from the end.

 1 >>> s = "abcd979efghijkl979mnopq979rst"
s.find("979")
4
s.find("979", 5)
15
s.find("979", 5, 8)
-1
s.rfind("979")
23

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9

33

 10 >>> s[23]
'9'
s.find("cat")
-1

 11
 12 >>>
 13

s.replace(sub, new) replaces every occurrence of sub with new. It has an
optional parameter to say the maximum number of replacements to be done. The
method does not change s, it creates a totally new string.

 1 >>> s = "abcd979efghijkl979mnopq979rst"
s.replace("979", "!@#$%")
'abcd!@#$%efghijkl!@#$%mnopq!@#$%rst'
s.replace("979", "!@#$%", 2)
'abcd!@#$%efghijkl!@#$%mnopq979rst'

 2 >>>
 3
 4 >>>
 5

s.partition(sub) looks for a substring, and returns three strings: everything
before the first occurrence of sub, the sub itself, then everything after the first
occurrence. s.rpartition(sub) looks for sub backwards from the end. Partition
behaves well in most cases when things are not as expected, see lines 6 to 10
below.

 1 >>> s = "abcd979efghijkl979mnopq979rst"
s.partition("979")
('abcd', '979', 'efghijkl979mnopq979rst')
s.rpartition("979")
('abcd979efghijkl979mnopq', '979', 'rst')
"12345".partition("x")
('12345', '', '')
"".partition("x")
('', '', '')
"abcd".partition("") # this causes an error

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>

s.split(sep) splits s up into a list of strings, each of which appeared in s but
were separated by sep. s.split() uses a single space as the separator, but
ignores multiple spaces or spaces at the end. s.splitlines() is the same as
s.split('\n') except that it does not give a final empty string if s ends with a
newline.

 1 >>> s = "abcd979efghijkl979mnopq979rst"
s.split("979")
['abcd', 'efghijkl', 'mnopq', 'rst']
t = "the cat sat on the mat "
t.split(' ')
['the', 'cat', '', '', 'sat', 'on', 'the', '', 'mat', '']
t.split()
['the', 'cat', 'sat', 'on', 'the', 'mat']

 2 >>>
 3
 4 >>>
 5 >>>
 6
 7 >>>
 8

s.strip() removes initial and trailing white space from s. It does not change s, it
creates a totally new string instead. s.lstrip() removes spaces only from the
left, and s.rstrip() only from the right.

 1 >>> s = " one two three "
s.strip() 2 >>>

34

 3 'one two three'
s.lstrip()
'one two three '
s.rstrip()
' one two three'

 4 >>>
 5
 6 >>>
 7

s.center(width) extends s out to the width given by adding spaces evenly to the
left and right. s.ljust(width) only adds spaces to the end, s.rjust(width)
only adds spaces at the beginning. There is an optional parameter to specify that
the string should be padded with something other than spaces. zfill is the same
as rjust with that extra parameters set to '0'.

 1 >>> s = "elephant"
s.center(16)
' elephant '
s.center(3)
'elephant'
s.ljust(16)
'elephant '
s.rjust(16)
' elephant'
s.zfill(16)
'00000000elephant'
s.center(16, '.')
'....elephant....'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

s.index(sub) returns the position (number of characters to the left) of the first
occurrence of the substring sub. s.rindex(sub) looks for the last occurrence.
Annoyingly, when sub is not present, instead of giving a sensible impossible value
like -1 Python treats it as an error. Both methods my be given one or two extra
parameters, they are positions that limit the portion of s that will be searched.

 1 >>> "The Cat Sat On The Mat 1234.".index("at")
5
"The Cat Sat On The Mat 1234.".rindex("at")
20
"The Cat Sat On The Mat 1234.".index("at", 7)
9

 2
 3 >>>
 4
 5 >>>
 6

v. Conversions

s.lower() and s.upper() convert a string to lower or upper case.
s.capitalize() returns the given string but if the first character was lower case
it is changed to upper case. s.lower() is rather pointless, it converts lower case
to upper case and upper case to lower case.

 1 >>> "The Cat Sat On The Mat 1234.".upper()
'THE CAT SAT ON THE MAT 1234.'
"The Cat Sat On The Mat 1234.".lower()
'the cat sat on the mat 1234.'
"the cat sat on the mat 1234.".capitalize()
'The cat sat on the mat 1234.'

 2
 3 >>>
 4
 5 >>>
 6

35

 7 >>> "The Cat Sat On The Mat 1234.".swapcase()
'tHE cAT sAT oN tHE mAT 1234.' 8

The is... methods are true if the string is not empty and every character in it is of
a certain kind:

s.isalnum(), between ‘A’ and ‘Z’ or ‘a’ and ‘z’ or ‘0’ and ‘9’.
s.isalpha(), between ‘A’ and ‘Z’ or ‘a’ and ‘z’.
s.isascii(), is the numeric value between 0 and 127.
s.isdecimal(), between ‘0’ and ‘9’
s.isdigit(), counts as a digit even in strange Unicode places
s.isidentifier(), follows the Python rules for a variable name
s.islower(), between ‘a’ and ‘z’
s.isnumeric(), pretty much the same as s.isdigit()
s.isprintable(), visible, not whitespace
s.isupper(), between ‘A’ and ‘Z’
s.isspace(), whitespace: spaces, tabs, newlines, etc.

 1 >>> "Elephant".isalpha()

True
"Big Elephant".isalnum()
False # because of the space

 2
 3 >>>
 4

s.expandtabs(n) replaces all the tab '\t' characters with the right number of
spaces so that printing it would have the same effect. n is optional, default 8, and
says how many spaces a tab is worth.

 1 >>> s = "Horse\tOrdinary\tThree\tx\that"
s
'Horse\tOrdinary\tThree\tx\that'
s.expandtabs()
'Horse Ordinary Three x hat'
 # the words start at positions 0, 8, 16, 20, and 28.

 2 >>>
 3
 4 >>>
 5
 6

ord(singlecharacter) tells you the unicode position for a character. For
example, ord('A') is 65, the first 128 unicode positions are the same as ASCII.
The opposite function is chr: chr(65) is 'A'.

s.translate(tab) provides an efficient way for uniformly changing one set of
characters into another, leaving others untouched. The table could be an ordinary
dictionary (covered later, but you can see all that's needed from the example)
specifying the mappings from one numeric character code to another, or you can
use the maketrans method to create a special object that will do the same thing.
maketrans is a static method of str, meaning that it does not need a particular
string to work on, but it is still part of str, so before the dot, the name of the
class, str, appears instead of some particular string.

 1 >>> tab = { 98: 100, 114: 115 }
 # 98, 100, 114, 115 are the ASCII codes for b, d, r, s respectively
"abracadabra".translate(tab)
'adsacadadsa'

 2 >>>
 3 >>>
 4
 5 >>>

36

 6 >>> tab = str.maketrans("ab∂∑zЯ", "+-XΩÆ7")
"cdbaЯ ∑eea∂".translate(tab)
'cd-+7 Ωee+X'

7

See also the subsection on file-like objects in the section on files.

vi. Character lists

As a very small convenience, the string module provides some strings that
contain all possible characters of a given class. This is all of them.

 1 >>> import string
string.ascii_letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'
string.ascii_uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
string.digits
'0123456789'
string.hexdigits
'0123456789abcdefABCDEF'
string.octdigits
'01234567'
string.printable
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST
 UVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'
string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
string.whitespace
' \t\n\r\x0b\x0c'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15
 16
 17 >>>
 18
 19 >>>
 20

vii. Regular expressions

Regular expressions represent strings that are not exactly known, but
should follow some known pattern, such as the pattern for a Python file
name: at least one letter or digit, then a .py, then an optional 2 or 3. That
pattern is represented by the regular expression “[a-zA-Z0-
9]+\\.py[23]?”. re.match in its most basic usage will tell us whether or
not a particular string matches such a pattern.

 1 >>> progpat = "[a-zA-Z0-9]+\\.py[23]?"

m = re.match(progpat, "one.py")
m
<re.Match object; span=(0, 6), match='one.py'>
m = re.match(progpat, "one!py")
m
m == None
True

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7 >>>
 8

If you already know about regular expressions in Unix, then you almost know the
syntax for regular expressions in Python. Here are most of the rules:

37

. matches absolutely any character at all, but only a single one.
x (where x has no other special meaning in regular expressions) will

match the character x exactly. Hence the “py” in the example
pattern.

[rnx] matches any one of the characters r, n, or x.
[^rnx] matches any single character except r, n, or x.
[D-K] matches any one of the characters D, E, F, G, H, I, J, or K.
 and they may be run together, [A-Z0-9w] will match any single

capital letter, or any digit, or a lower case w. Hence the “[a-zA-Z0-
9]” in the example pattern.

\\ If you want to match a character that does have a special meaning,
just precede it with a \, but remember what \ characters do inside
strings, you need to double it to make it represent itself. Hence the
“\\.” in the example pattern.

^ matches the beginning of a string or line.
$ matches the end of a string or line.
? means that the previous thing is optional. b? will match the letter b

if one appears there. If there is no b at this position, it doesn't
match anything, but it also doesn't cause a failure to match. Hence
the “[23]?” in the example pattern.

+ means that the previous thing may be matched as many times as it
appears, but it must appear at least once. a+ would match a or aa
or aaa or aaaa and so on.

* means that the previous thing may be matched as many times as it
appears, including none at all. * is equivalent to +?.

{n} where n is a number in decimal, will match exactly n occurrences of
the previous thing. [fj]{5} could match fjjfj.

{m,n} where m < n will match any number between m and n inclusive
occurrences.. [fj]{2,4} could match ff, fj, jfj, jjjj, fjjf, but
not j or fjjjf.

 Putting two (or more) regular expressions together matches a string
that starts matching the first, and ends matching the last, and has
no intervening characters. The py in the example will only match
the exact sequence py. The whole example consists of five regular
expressions, all of which must be matched in their proper
sequence. The five are “[a-zA-Z0-9]+”, “\\.”, “p”, “y”, and
“[23]?”.

 Putting a vertical line between two or more regular expressions will
match anything that matches any one of them. cat|dog|horse
will match the exact string cat or dog or horse, but nothing else.

(?:) Just like parentheses in mathematics. The ... can be any
complicated combination of regular expressions, this notation
makes them into a single one. (?:a|b|cd){2:3} would match aa,
ab, cdcd, acd, cdacd, cdcdcd, aaa, bab, etc.

() Exactly the same, plus whatever part of the searched string
matched the contents of the parentheses is recorded, so it can be

38

obtained from match's return value, or referred to again later in this
regular expression. If m contains the return value from match, then
m.groups() will deliver a tuple of all the substrings that matched
something in parentheses. It doesn't work very well when the
parenthesised thing is repeated with * or + or .

\\n where n is a decimal number starting from 1, matches any exact
repetition of the substring that matched the nth recorded
parenthesised sequence. ([a-zA-Z])\\1\\1 would match any
sequence of three identical letters: ccc, HHH, ppp, but not cat or
dog.

\\s matches any whitespace character.
\\w matches any digit or an underline or anything that Unicode

considers to be a letter.

And there are a lot of other minor options. The main methods are:

re.search(pattern, string)

searches for anywhere in the string that a match occurs, anything before or
after the match is ignored.

re.match(pattern, string)
only succeeds if the match is at the very beginning of the string, anything
after the match is ignored.

re.fullmatch(pattern, string)
only succeeds if the entire string is a match for the pattern.

Those three methods all return None if the search failed, or an re.Match object if
it was successful. If m is an re.Match object, then

m.span()

is a tuple containing the character positions of where the successful match
started and one plus where it ended.

m.groups()
is a tuple containing all the successful parenthesised matches.

 1 >>> m = re.search("([a-z]+)([A-Z]+)", "9876abcdHJMoiuwyio")

m
<re.Match object; span=(4, 11), match='abcdHJM'>
m.span()
(4, 11)
m.groups()
('abcd', 'HJM')
m = re.fullmatch("[a-zA-Z0-9]*\\.py[23]?", "program.py")
m
<re.Match object; span=(0, 10), match='program.py'>
m.span()
(0, 10)
m.groups()
()

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14

Regular expressions have a quite clever behaviour that it is worth being aware of.
+ and * are naturally greedy, they swallow up as many characters as they can.

39

The first example below shows this, the pattern <.*> could have stopped after just
matching <abcd>, but it didn't, it went right to the end of the string. But regular
expression matches try to succeed. If it turns out that * or + went too far and
prevented a successful overall match, they can backtrack to previous possible
ending points and try again. The second example shows that. We know that <.*>
naturally swallows the whole string, but after that, the x part of the pattern would
cause a failure because there is nothing left to match the x. But still the match
succeeds.

 1 >>> whole = "<abcd> x wxyz>"
m = re.fullmatch("(<.*>)", whole)
list(m.groups())
['<abcd> x wxyz>']

m = re.fullmatch("(<.*>) x (.*)", whole)
list(m.groups())
['<abcd>', 'wxyz>']

 2 >>>
 3 >>>
 4
 5
 6 >>>
 7 >>>
 8

If the pattern came from an external source, and you want to use it to find an
exact match, it is quite possible that it will characters that mean something in
regular expressions, and that would spoil the search. re.escape(s) solves the
problem by putting an \ character before all of the troublesome ones.

 1 >>> re.escape("3.14159 * f(x)")
'3\\.14159\\ *\\ f\\(x\\)' 2

re.findall(pattern, string)

returns a list of all the substrings that matched, regardless of whatever non-
matching characters were between them. It will not notice overlapping
matches.

re.split(pattern, string)
is the opposite, it returns a list of strings that contain the non-matching
characters that separated or came before or after, the matches.

re.finditer(pattern, string)
returns an iterator for all the strings that findall would have found.

 1 >>> pypat = "[a-zA-Z0-9]*\\.py[23]?"

re.findall(pypat, "program.py, a.py, and qw.py3")
['program.py', 'a.py', 'qw.py3']
re.split(pypat, "program.py, a.py, and qw.py3")
['', ', ', ', and ', '']
re.findall("[a-z]+[0-9]+[a-z]+", "abc654nhj8765ubv897ss")
['abc654nhj', 'ubv897ss']

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7

Notice that in that last example, the substring “nhj8765ubv” also matched the
pattern, but it was involved in an overlap, so it wasn't found.

Processing regular expressions is quite complex, and if a big pattern is used over
and over again, there is a way to speed things up considerably. A regular
expression can be “compiled” to produce an object that is hard-wired to do
searches very efficiently. This shows everything:

40

 1 >>> pypat = "[a-zA-Z0-9]*\\.py[23]?"
sobj = re.compile(pypat)
sobj.search("$$$$$abc.py>>>>")
<re.Match object; span=(5, 11), match='abc.py'>

 2 >>>
 3 >>>
 4

6. Basic iterables: lists and tuples

The term iterable comes up a lot in Python, and it is a very simple concept. It just
means some kind of data container (or creator) that lets you run through its
contents one at a time. Strings are iterables, so are lists and tuples, our current
subject, and so are a lot of other things. Some of those other things have a strange
form. For example, a range. range(10, 20) behaves like a list of the numbers 10
to 19, but if you look at it, you find it isn't.

 1 >>> range(10, 20)[4]
14
range(10, 20)
range(10, 20)
list(range(10, 20))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

 2
 3 >>>
 4
 5 >>>
 6

range(10, 20) just reports itself to be range(10, 20). That is because it isn't
really a list. It is a special kind of object created to be able to produce those
numbers when called upon, but not to produce them until then. That sort of thing
saves a lot of memory, and a lot of iterables work that way. You will nearly always
be able to force them to produce a list or tuple or something else as the last thing
above shows.

The simplest data structures are lists. They come in two forms, the tuple with
round brackets and the list itself with square brackets. Lists can contain anything
at all, or nothing at all. They can be indexed, starting from zero. A negative index
is also acceptable, it counts backwards from the end.

 1 >>> L = [99, "cat", math.pi, (8, 5, 2), []]
L
[99, 'cat', 3.141592653589793, (8, 5, 2), []]
L[1]
'cat'
L[3][1]
5
T = (99, "cat", math.pi, [8, 5, 2], ())
type(L)
<class 'list'>
type(T) == tuple
True
len(L), len(T) # a tuple is created for multiple results
(5, 5)
L[-2]
(6, 5, 2)

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16

The contents of square bracket lists can be changed, but round bracket tuples
can't.

41

Lists are examples of mutable objects, tuples are immutable objects.

 1 >>> L[2] = 12345
L
[99, 'cat', 12345, (8, 5, 2), []]
T[2] = 12345 # this causes an error
T[3][1] = "dog" # but this doesn't, T[3] is a list
T
(99, 'cat', 3.141592653589793, [8, 'dog', 2], ())

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>
 7

In many cases, comma-separated things are automatically made into tuples.

 1 >>> 8, 4, [5, 6, 7]
(8, 4, [5, 6, 7]) 2

With lists and tuples, and empty pair of brackets produces the desired length-zero
object. For lists, a pair of square brackets with a single item inside them makes
the length-one list we would expect. But if you want a tuple of just one thing, an
extraneous comma is required, otherwise it just appears to be a normal
parenthesised expression.

 1 >>> len((2)) # this causes an error, (2) is just a number
len((2,))
1
len(())
0

 2 >>>
 3
 4 >>>
 5

i. Operations

Lists and tuples may be appended using the ordinary + operator. This does not
modify the lists being added, it creates a new list containing all the combined
elements. + requires the types of its operands to be the same, both lists or both
tuples.

 1 >>> (1, 2, 3) + (9, 8)
(1, 2, 3, 9, 8)
[1, 2, 3] + [9, 8]
[1, 2, 3, 9, 8]

 2
 3 >>>
 4

They may also be multiplied by an int to get any number of repetitions

 1 >>> (1, 2, 3) * 4
(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3)
[0] * 6
[0, 0, 0, 0, 0, 0]

 2
 3 >>>
 4

Slices are available, just as with strings

 1 >>> L = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
L[3:7]
[1, 5, 9, 2]
L[-4:]

 2 >>>
 3
 4 >>>

42

 5 [6, 5, 3, 5]

index and count are methods. They tell you where something appears or how
many times it appears. in is an operator, it tells you whether a value appears or
not. not in too.

 1 >>> A = ["ant", "bat", "cat", "dog", "cat", "ant", "cat"]
A.index("cat")
2
A.count("cat")
3
B = ("ant", "bat", "cat", "dog", "cat", "ant", "cat")
B.index("cat")
2
B.count("cat")
3
"cat" in B
True
"horse" in A
False
"horse" not in A
True

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16

Anything even slightly list-like can be converted into a list or tuple.

 1 >>> list((1, 4, 2, 7))
[1, 2, 4, 7]
tuple([1, 4, 2, 7])
(1, 2, 4, 7)

 2
 3 >>>
 4

range(oneafterlast), range(first, oneafterlast) and range(first,
oneafterlast, step) produce a special object that can easily be converted to a
list or tuple.

 1 >>> range(1, 7)
range(1, 7)
list(range(1, 7))
[1, 2, 3, 4, 5, 6]
tuple(range(99, 33, -11))
(99, 88, 77, 66, 55, 44)
list(range(5))
[0, 1, 2, 3, 4]

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

A few useful functions that operate on list-like things are provided. sorted does
what the name suggests (except maybe it doesn't. “sorted” suggests a question
rather than a command), and so do the others:

 1 >>> sorted([4, 1, 7, 2])
[1, 2, 7, 4]
sorted((4, 1, 7, 2))
[1, 2, 7, 4] # note: input was a tuple, output was a list
max([5, 2, 9, 3, 6])
9

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>

43

 8 min((5, 2, 9, 3, 6))
2
sum((4, 1, 3, 2))
10

 9 >>>

10

There are two variants of the sorted function, both indicated by keyword
parameters:

reverse = True means the items will be arranged in descending order instead of

the usual ascending; ascending order may be made explicit with reverse =
False

key = f, where f is any function, specifies how items are to be compared. If the
two items are a and b, then normally a < b means a will appear before b. if
key = f is specified, then f(a) < f(b) means a will appear before b.

Lists and tuples may be compared as though they were numbers or strings with
the <, >, <=, and >= operators. The items the contain are compared one-by-one
from left to right. As soon as a non-equals pair is encountered, the result of their
comparison is returned

 1 >>> (12, "cat") < (99, "dog")
True # 12 comes before 99
(12, "cat") > (99, "dog")
False
(12, "cat") > (12, "dog")
False # 12s are the same but cat comes before dog
(12, "cat") < (12, "dog")
True
[12, "cat"] < [12, "dog"]
True
sorted([("cat", 63), ("dog", 12), ("ant", 17), ("cat", 8)])
[('ant', 17), ('cat', 8), ('cat', 63), ('dog', 12)]
min([("cat", 63), ("dog", 12), ("ant", 17), ("cat", 8)])
('ant', 17)

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14

ii. Comprehensions

A list or tuple comprehension allows a list or tuple to be created by applying some
operation to a sequence of values.

 1 >>> [x * x for x in (3, 6, 1, 2, 4)]
[9, 36, 1, 4, 16]
[x + 10 for x in range(1, 7)]
[11, 12, 13, 14, 15, 16]
[x * y for (x, y) in [(1, 3), (4, 6), (2, 7)]]
[3, 24, 14]

 2
 3 >>>
 4
 5 >>>
 6

If a tuple is created this way, the result is a special object, not a tuple yet, but it
can easily be converted into a tuple.

 1 >>> (x + 10 for x in range(1, 7))

44

 2 <generator object <genexpr> at 0x0000009C75BB3920>
tuple((x + 10 for x in range(1, 7)))
(11, 12, 13, 14, 15, 16)

 3 >>>
 4

The list of values used may also be filtered

 1 >>> [i * 10 for i in range(1, 25) if i % 3 == 2]
[20, 50, 80, 110, 140, 170, 200, 230] 2

Comprehensions may be nested.

 1 >>> array = [[3, 5, 8], [1, 6, 2], [9, 4, 7]]
[[x * x for x in row] for row in array]
[[9, 25, 64], [1, 36, 4], [81, 16, 49]]
[[row[i] for row in array] for i in range(len(array))]
[[3, 1, 9], [5, 6, 4], [8, 2, 7]] # transposed array
[[x * y for x in range(1, 4)] for y in range(1, 4)]
[[1, 2, 3], [2, 4, 6], [3, 6, 9]]
[x * 10 for x in [y * y for y in range(9)]]
[0, 10, 40, 90, 160, 250, 360, 490, 640]

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9

iii. Object identity

Everything in Python, with the exception of very small ints, is an object (struct,
class, or whatever you want to call it). Objects are always accessed through
pointers, but that is completely automatic, you don't have to do anything about it.
When you assign an object to a variable, all you are doing is making that variable
point to the object, no copying is done. If you assign the same object to two
variables, you will not get two copies of the object. But if you type in two identical
objects, Python will not notice that, it will make two separate objects.

The operators is and is not just compare pointers, they do not look at the
objects being compared at all. The operator == does a deep comparison, the
pointer values are ignored, the contents are recursively compared with == as far
as is necessary. If for some reason you want to see the pointer value itself, the id
function will reveal it. A is B is the same thing as id(A) == id(B).

 1 >>> T = (99, "cat", math.pi, [8, 5, 2], ())
U = T
V = (99, "cat", math.pi, [8, 5, 2], ())
W = (99, "cat", math.pi, [8, 5.0001, 2], ())
T is U
True
T is V
False
T == U
True
T == V
True
V == W
False
id(T)

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>

45

 16 276001797712
id(U)
276001797712
id(V)
276001799952

 17 >>>
 18
 19 >>>
 20

Beware when trying to create multi-dimensional lists. If you want a five row, six
column array of zeros, [[0] * 6] * 5 seems to do the trick. But it doesn't. That
expression only creates two lists. One, the inner list, is as expected, a list of six
zeros. The other, the outer list, is just a list of five identical copies of the pointer to
the inner list. The effect is seen when you try to change a single item, every item
in the same columns also gets changed.

 1 >>> A = [[0] * 6] * 5
A[2][3] = 99
A
[[0, 0, 0, 99, 0, 0], [0, 0, 0, 99, 0, 0], [0, 0, 0, 99, 0, 0],
 [0, 0, 0, 99, 0, 0], [0, 0, 0, 99, 0, 0]]

 2 >>>
 3 >>>
 4
 5

The right way to create such an array is with a comprehension.

 1 >>> A = [[0] * 6 for i in range(0, 5)]

the comprehension forces the [0] * 6 to be re-evaluated five times, producing a
new list at each iteration. Of course, you could go even further:

 1 >>> A = [[0 for j in range(0, 6)] for i in range(0, 5)]

iv. Copying

If you have a mutable object and you want to keep it in two variables but don't
want changes to one to be reflected in the other, you need to make a copy of it. It
wouldn't be difficult to write a function that makes a copy of an object if you know
what that object contains, but there is a standard library that has every possibility
built into it. It is called copy and it has two useful methods. copy(x) makes and
returns a shallow copy of x. Most objects have a copy() method that does exactly
the same thing. Shallow means that a new object is created with the same shape
and size, and assignments are used to transfer the contents of x into the new
copy.

 1 >>> import copy
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
b = copy.copy(a)
a[1] = "hello"
a
[[1, 2, 3], 'hello', [7, 8, 9]]
b
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8

That shows clearly that a and b are not the same object, even though they did
start out identical. But ...

46

 1 >>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

b = copy.copy(a)
a[1][1] = "hello"
a
[[1, 2, 3], [4, 'hello', 6], [7, 8, 9]]
b
[[1, 2, 3], [4, 'hello', 6], [7, 8, 9]]

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7

That shows exactly what is meant by a shallow copy. Only the “top level” thing
was built anew, all of the contents are just copied pointers. A deep copy works
recursively as far as it needs to. Every single thing anywhere in the object has a
new copy of it made, nothing is shared. copy.deepcopy does that.

 1 >>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
b = copy.deepcopy(a)
a[1][1] = "hello"
a
[[1, 2, 3], [4, 'hello', 6], [7, 8, 9]]
b
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7

v. Updates on tuples

This seems to be against the rules:

 1 >>> a = (9, 8, 7)
a += (1, 2, 3)
a
(9, 8, 7, 1, 2, 3)

 2 >>>
 3 >>>
 4

but it isn't. No tuples were modified. += is not defined for tuples, but when a
programmer uses += when += isn't defined but + is, python substitutes a += b
with a = a + b. So the ordinary plus operator was used, a totally new tuple was
created and assigned to a. The process is illustrated here.

 1 >>> a = (9, 8, 7)
b = a
a += (1, 2, 3)
b
(9, 8, 7)

 2 >>>
 3 >>>
 4 >>>
 5

but

 1 >>> a = [9, 8, 7]
b = a
a += [1, 2, 3]
b
[9, 8, 7, 1, 2, 3]

 2 >>>
 3 >>>
 4 >>>
 5

7. Operations only applicable to lists

47

Being mutable, there are many operations that apply to lists but not to tuples.
Indexes and slices can be assigned to. del can be used to remove things. del is
used in many other contexts too, it generally just makes things go away. The
clear method removes everything.

 1 >>> L = [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
L[4] = 555
L
[9, 8, 7, 6, 555, 4, 3, 2, 1, 0]
L[2:8] = [33, 44, 55]
L
[9, 8, 33, 44, 55, 1, 0]
L[1:2] = (100, 101, 102, 103, 104, 105)
L
[9, 100, 101, 102, 103, 104, 105, 33, 44, 55, 1, 0]
del L[5]
L
[9, 100, 101, 102, 103, 105, 33, 44, 55, 1, 0]
del L[2:-3]
L
[9, 100, 55, 1, 0]
L.clear()
L
[]

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12 >>>
 13
 14 >>>
 15 >>>
 16
 17 >>>
 18 >>>
 19

The append method adds a single item to the end. It doesn't return any value, it
modifies the list in place.

 1 >>> LL = [1, 2, 3, 4, 5]
L.append(9)
L
[1, 2, 3, 4, 5, 9]
L.append([25, 24, 23])
L
[1, 2, 3, 4, 5, 9, [25, 24, 23]]

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7

The pop() method removes and returns the last item, it is fast, O(1).
pop(N) removes and returns the Nth item, it is not fast, O(N).
remove(X) searches for the item X, and removes it, O(N).
reverse() does what the name suggests, it reverses the list in place rather than
creating a new list.

 1 >>> L = [11, 22, 33, 44, 55, 66, 77, 88, 99]
L.pop()
99
L
[11, 22, 33, 44, 55, 66, 77, 88]
L.pop(4)
55
L
[11, 22, 33, 44, 66, 77, 88]
L.remove(77)
L

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11 >>>

48

 12 [11, 22, 33, 44, 66, 88]
L.remove(999) # this causes an error
L.reverse()
L
[88, 66, 44, 33, 22, 11]

 13 >>>
 14 >>>
 15 >>>
 16

8. Sets

Sets are, like lists and tuples, collections of values. With a set there is no ordering,
and each value can only appear once (adding an already present value to a set has
no effect). Sets are created by putting their contents in curly brackets. set(some
sort of collection) will create a set that contains every element of the collection.
set() is used to create an empty set, empty curly brackets { } mean something
else.

 1 >>> s = { 7, 2, "cat", 9, 2, 7, 1 }
s
{1, 'cat', 2, 7, 9}
set([2, 4, 6, 8])
{8, 2, 4, 6}
type({7, 2, 4})
<class 'set'>
type({ })
<class 'dict'>
type(set()) == set
True

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>

11

The add(x) method adds a new item; it modifies the set in place, and returns
nothing. update(some sort of collection) adds everything to a set. remove(x)
removes x from the set, error if it isn't there. discard(x) is the same as remove,
but no error if x wasn't there. clear() empties a set. The pop() method removes
and returns one member; the member that is removed is usually the one that
would appear first if the set were printed.

 1 >>> s = { 7, 3, "cat", 9, 2, 7, 1 }
s
{1, 'cat', 3, 7, 9}
s.add(999)
s
{1, 'cat', 3, 999, 7, 9}
s.update([11, 22, 33])
s
{ 1, 3, 7, 9, 11, 22, 33, 'cat', 999}
s.remove(22)
s.discard(7)
s
{1, 3, 9, 11, 33, 'cat', 999}
s.pop()
1
s.pop()
3

 2 >>>
 3
 4 >>>
 5 >>>
 6
 7 >>>
 8 >>>
 9
 10 >>>
 11 >>>
 12 >>>
 13
 14 >>>
 15
 16 >>>
 17
 18 >>>

49

 19 s
{9, 11, 33, 'cat', 999}
s.clear()
s
set()

 20 >>>
 21 >>>

22

The traditional set operations are available. & is for intersection, | is for union, -
is for difference, > for superset, == for exact equality, <= for subset or equal, ^
selects items that are in one set but not both, in tests for membership, and not
in is for non-membership.

 1 >>> { 1, 4, 7, 3, 8, 9 } & { 2, 1, 6, 4, 5, 8 }
{8, 1, 4}
{ 7, 2, 4, 5 } | { 2, 8, 6, 4 }
{2, 4, 5, 6, 7, 8}
{ 7, 2, 4, 5 } - { 4, 1, 6, 7 }
{2, 5}
{ 7, 2, 4, 5 } ^ { 4, 1, 6, 7 }
{1, 2, 5, 6}
{ 3, 1, 6 } <= { 4, 1, 3, 7, 6, 8 }
True
6 in { 8, 4, 2, 7, 1 }
False

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>

12

Sets may also be generated from comprehensions, and used in them, just like lists
and tuples

 1 >>> {i * 10 for i in range(1, 25) if i % 3 == 2 }
{230, 200, 170, 140, 110, 80, 50, 20}
[x ** 2 for x in {6, 4, 9, 1, 4}]
[1, 16, 36, 81]

 2
 3 >>>

4

A frozenset is exactly the same as a set, except that it is immutable.

 1 >>> s = { 1, 4, 7, 3, 8, 9 }
fr = frozenset(s)
fr
frozenset({1, 3, 4, 7, 8, 9})
fz = frozenset([6, 2, 4, 8, 1])
fr & fz
frozenset({8, 1, 4})
fr.add(123) # this causes an error

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7

8 >>>

Sets are implemented as hash tables. This means that only things that Python is
willing to calculate a hash value for can be members of sets. Generally only
immutable things are hashable, so lists and sets themselves can not be members
of sets, but tuples, strings, and numbers can. Programmers can make hashable
versions of mutable objects for themselves. The section on inheritance shows how
to make hashable versions of non-hashable things.

 1 >>> hash("cat")
2723113519068126242 2

50

 3 >>> hash((5, 3, 88, 1))
8429117336997265710
hash([5, 3, 88, 1]) # this causes an error
s = { "cat", (5, 3, 88, 1) }
s
{'cat', (5, 3, 88, 1)}
s = { "cat", [5, 3, 88, 1] } # this causes an error

 4
 5 >>>
 6 >>>
 7 >>>
 8

9 >>>

9. Statements

Statements may appear all on their own in a .py file, in which case they are
executed as they are seen when the file is imported, or inside functions.
Assignments and function calls and returns have already been seen.

Most kinds of statements are perfectly clear to anyone with any experience of
programming. With those I'll start with just a quick summary of the syntax before
going on to the details. You'll probably be able to skip the details completely, but
they're there just in case something comes up.

The structured statements are the (almost) usual if, while, for, with and try,
and there is also a definitely unusual case statement. try and case will be
covered in later sections.

Simple statements include pass which does nothing, yield, raise, assert, and
with. pass is often used as a place holder for something that has not been written
yet, but it can also make statements a little clearer. yield and raise will be
covered later. assert takes an expression and a string. If the expression is false,
an error is caused and the string is shown. If the expression is true, nothing
happens.

 1 >>> if x == "cat":
 pass
else:
 print("It isn't a cat!")
assert -7 >= 0, "It's too small"
 # produces an error message that ends with
AssertionError: It's too small
assert 7 >= 0, "It's too small"
 # does nothing

 2 ...
 3 ...
 4 ...
 5 >>>
 6
 7
 8 >>>
 9

return is only allowed inside a function. If the function is to produce a value that
can be used by the caller, provide that value after the word return. If a function is
not supposed to produce a value, just say return on its own. The type of what's
returned from a function does not have to be consistent. As soon as a return is
reached, the function is stopped, nothing following the return will be executed.

 1 >>> def f(x):
 if x >= 0:
 return
 print("x is positive")

 2 ...
 3 ...
 4 ...

51

 5 ... else:
 return x * 2
f(6)
f(-5)
-10

 6 ...
 7 >>>
 8 >>>
 9

ii. If

Syntax outline:

 if some condition:
 what to do if it's true
 elif another condition:
 what to do if that one's true
 elif another condition:
 what to do if that one's true
 else:
 what to do if none of them are true

The if statement causes following statements to be executed only if certain
conditions are met. It always begins with the word if, then an expression, then a
colon. If the expression is true the following statements are executed. Those
following statements must have extra indentation. As soon as the extra
indentation ends, we are back to normal unconditional statements. All statements
that end with a colon have the same extra indentation requirement. Immediately
after an if, there may be any number of elif (short for else if) statements. elif
is also followed by an expression and a colon. An elif is only checked if the
preceding if (and any prior elifs associated with it) had false conditions. Under
those circumstances, the elif condition is evaluated and if it is true the following
indented statements are executed. After an if, and the optional elifs, there may
be a final else, also followed by a colon. The statements indented under the else
are only executed if none of the if and the elifs were selected.

 1 >>> if x == 0:
 print("it is zero")
elif x > 0:
 print("it is positive")
 totalpos += x
else:
 print("it is negative")
 totalneg += x

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...

iii. While

Syntax outline:

 while some condition:
 what to do so long as it's true
 break and continue are allowed

52

 else:
 what to do if we stopped naturally, not for a break

The while statement is just like the same-named statement in other languages. It
is followed by an expression and a colon. The expression is evaluated, and if it is
true the following indented statements are executed. Then it starts again
evaluating the condition again and so on. If the expression is found to be false at
the start of any iteration, the loop stops and execution continues with the
following else: statement if these is one, or with the rest of the program if there
isn't. A loop can be interrupted by a break statement. As soon as a break is
encountered, the loop stops. It doesn't wait until the condition is tested again. If a
break is executed, the following else: part will not be executed; else is only for
natural termination. A continue statement inside a loop abandons the rest of the
current iteration and goes straight on to evaluating the condition again.

 1 >>> while x > 0:
 x -= 1
 if x % 2 == 0:
 continue
 print(x)
else:
 print("all done")
9
7
5
3
1
all done
x = 11
while x > 0:
 x -= 1
 if x % 6 == 0:
 break
 print(x)
else:
 print("all done")
10
9
8
7

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9
 10
 11
 12
 13
 14 >>>
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22
 23
 24
 25

iv. For

Syntax outline:

 for some variable in some iterable:
 what to do for every value of that variable
 break and continue are allowed
 else:
 what to do if we stopped naturally, not for a break

53

The for statement is another form of loop, this time controlled by a variable that
takes on a range of different values. When the range is exhausted, the loop stops.
for statements can also be controlled by break or continue statements which
behave exactly as they do in a while statement. A for statement can also be
followed by an else: which is again only executed if the loop ends naturally, not
with a break.

 1 >>> for x in (9, 3, 7, 2):
 print(x, x * x)
9 81
3 9
7 49
2 4
for (x, y) in [(2, 7), (8, "cat"), ("dog", 3.14159)]:
 print(y, x)
7 2
cat 8
3.14159 dog

 2 ...
 3
 4
 5
 6
 7 >>>
 8 ...
 9
 10
 11

If a string is given, its individual characters are delivered.

 1 >>> for c in "cat":
 print(c)
c
a
t

 2 ...
 3
 4
 5

A for statement can also be made to run over a given range of numbers without
having to type them all explicitly. This is done with a range expression. range
produces a regular sequence of numbers as though they were in a list, but the
whole list is never actually created, the numbers are just generated one-by-one
only as needed.

range() with no parameters produces an unending sequence of numbers
starting with zero and increasing by 1 each time. range(a) is the same except
that it starts with a instead of 0. range(a, b) produces a sequence starting with
a, and ending immediately before it reaches b. range(a, b, c) is the same, but c
is added each time instead of 1.

 1 >>> range(3, 6)

range(3, 6)
list(range(3, 6))
[3, 4, 5]
for i in range(3, 6):
 print(i)
3
4
5
for i in range(100, 70, -7):
 print(i)
100
93
86
79

 2
 3 >>>
 4
 5 >>>
 6 ...
 7
 8
 9
 10 >>>
 11 ...
 12
 13
 14
 15

54

 16 72

v. With

A with statement protects programs from damage caused by errors, or exceptions
as they are properly called. We'll use a typical piece of file-handling code as an
example. Files are covered properly in a later section, but it's easy to get the
basics. If you want to create a file, you use the open function to bring it into
existence, then the write method to give it some contents, and finally the close
method to finish off. A lot like this:

 1 >>> f = open("newfile.txt", "w")
for item in to_do_list:
 result = complicated_calculation(item)
 f.write(str(item) + " -> " + str(result) + "\n")
f.close()

 2 >>>
 3 ...
 4 ...
 5 >>>

But what if something goes wrong during all those complicated calculations? If a
file isn't properly closed, it will find itself in an unknown state, and it will continue
to consume resources until the entire program exits, and even what we wrote to
the file before the error could be lost. The with statement protects us:

 1 >>> with open("newfile.txt", "w") as f:
 for item in to_do_list:
 result = complicated_calculation(item)
 f.write(str(item) + " -> " + str(result) + "\n")

 2 ...
 3 ...
 4 ...

When an object is created at the head of a with statement, it is absolutely
guaranteed that no matter what goes wrong while the statements of the with are
executed, that object will be properly closed down. Programmers who define
objects that give access to critical resources have to define special methods that
will enable a with statement to work. Only the designer of an object can know
what "properly closed down" will mean for it. We'll see that later on in the section
on exceptions, after classes have been properly covered.

If you don't need access to the object created by with, perhaps you just want the
guaranteed close operation, you can leave out the as part:

 1 >>> with Thing():
 f(x) 2 ...

vi. Executable function definitions

Syntax outline:

 def function name (comma separated parameter names):
 " optional documentation string "
 what to do when the function is called
 return is allowed

55

Function definitions, unlike in most other languages, are executable statements,
and they are executed when they are seen. They behave like assignment
statements, assigning a function value to the function's name as though it were a
variable (which it is). Functions may defined using calls to other functions that
have not yet been defined, no checking is done until to function is actually called.
But when a Python file is imported, any executable statements directly within it
(i.e. not inside functions) can only use functions that have already been defined.
Because of the executable nature of function definitions, functions may be defined
conditionally:

 1 >>> if x > 7:
 def f(x):
 return x * x
else:
 def f(x):
 return math.sqrt(x)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

Some complex statements, including if while and for, may be compressed, with
a few semi-colon separated simple statements immediately following and on the
same line as the colon. Simple statements do not include other ifs, whiles or
fors.

 1 >>> if 3 < 5: print(66); a = 99; b = "cat"

Other kinds of statements, del, yield, raise, match, and nonlocal will be
covered later on, after their pre-requisites have been covered.

10. Documentation and help

The dir function takes any object as its parameter, and returns a list of the
names of all of its methods and attributes.

The help function also takes any object as its parameter, and prints out the
documentation for that object, which can be quite extensive. For example,
help(3+4) will tell you everything there is to know about ints in general, nothing
specific to the number 7; help(string) will tell you everything about strings. If
the parameter is a function or class name, it will give you the documentation for
that particular function or class.

Whenever you define a function or class or method, the normal Python coding
style says that you should also provide documentation for it. This is very easy to
do. If the first thing after class xxx: or def fff(...): is a string, it is taken to be
the documentation for it. Typically this will be a triple-quoted string to allow the
documentation to be reasonably formatted.

help(function) always gives the name and parameter list for that function,
immediately followed by any documentation string it may have. If there is no

56

documentation string, you still get the name and parameters just as they
appeared after the word def.

help(class) always starts with the name of the class and its constructor's
parameters in the form of a function call. Then it prints the class's documentation
string, if any. Then it lists all methods along with their own documentation
strings. Then it lists a few things that it calls data descriptors, and finally it lists
all of the attributes (variables within the class’ objects) along with their
initialisations. This last part is only done for variables that are defined and
initialised directly under the class ccc:, it knows nothing about attributes that
are created by the constructor or any other methods.

11. Assignments with patterns and pattern matching

You can extract items from a list-like object with an assignment statement that
has multiple variables in the same “shape” as the object.

 1 >>> T = (99, "cat", math.pi, [8, 5, 2], ())
(a, b, c, d, e) = T
print(e, d, c, b, a)
() [8, 5, 2] 3.141592653589793 cat 99
(a, b, c, [d, e, f], g) = T
print(g, f, e, d, c, b, a)
() 2 5 8 3.141592653589793 cat 99
(a, b, c) = T # this causes an error
[a, b, c, (d, e, f), g] = T # but this doesn't
(a, b, c) = (x, y, z)
[a, b, c] = (x, y, z)

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7
 8 >>>
 9 >>>
 10 >>>
 11 >>>

In simple cases, the variables being assigned to do not need brackets:

 1 >>> a, b, c = [2, 4, 6]
a, b, c = (2, 4, 6)
a, b, c = {2, 4, 6}
a, b, c = "cat"
print(a, b, c, sep = ", ")
c, a, t

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6

but a set of variables may not be assigned to, sets are supposed to be unordered,
so you wouldn't know which elements correspond with which others:

 1 >>> {a, b, c} = {2, 4, 6} # this causes an error

If a dictionary is used in this way, only the keys are taken

 1 >>> a, b, c = { "cat": 1, "abc": 7, "hello": 9 }
print(a, b, c)
cat abc hello

 2 >>>
 3

If one of the variables is preceded by a star, it can “soak up” a large number of
values, they will always appear as a list

57

 1 >>> a, *b, c = (1, 2, 3, 4, 5, 6, 7)

print(a, b, c)
1 [2, 3, 4, 5, 6] 7

 2 >>>
 3

If one of the variables being assigned is an iterable, preceding it with a star
expands it out into its separate values

 1 >>> a = [9, 8, 7]
v, w, x, y, z = 99, *a, 66
print(v, w, x, y, z, sep = ", ")
99, 9, 8, 7, 66

 2 >>>
 3 >>>
 4

Multiple assignments like this are executed so that they act as though they were
simultaneous. As a result, this is a valid way to swap two values:

 1 >>> a = 1234
b = 9876
a, b = b, a
print("a =", a, ", b =", b)
a = 9876, b = 1234

 2 >>>
 3 >>>
 4 >>>
 5

Strings are pulled apart for multiple assignments

 1 >>> a, b, c = "cat"
print(a, b, c)
c a t
a, b, *c, d, e = "Hippopotamus"
print(a, b, c, d, e)
H i ['p', 'p', 'o', 'p', 'o', 't', 'a', 'm'] u s

 2 >>>
 3
 4 >>>
 5 >>>
 6

match is a statement that allows one from a number of patterns to be assigned to,
the pattern chosen being the first that matches the shape of the value being
assigned. The word match is followed by the expression to be assigned, then a
colon. Indented under the match is a list of case statements, each case
statement consists of the word case, followed by a pattern of variables, followed
by a colon. After the case statement comes a sequence of further indented
statements that will be executed if the case’s pattern is the one selected.

 1 >>> def show(x):
 match x:
 case (a, b): # any two item list or tuple
 print("two items", a, b)
 case list([a, b, c]): # only a three item list
 print("three-list", a, b, c)
 case [a, b, c, d] as e: # e is the whole thing
 print("four items", a, b, c, d, e)
 case [a, b, c, d, *e]:
 print("long list", a, b, c, d, e)
 case (a, b, c):
 print("three-tuple", a, b, c)
 case [*a]:

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...

58

 15 ... print("short list", a)
 case ("one" | "two" | "three" | "four") as a:
 print("small number", a)
 case { "jenny": a } as b: # any dictionary which
 # contains "jenny" as a key
 print("dictionary with jenny =", a, "all =", b)
 case _:
 print("something else")
show((1, 2))
two items 1 2
show([1, 2])
two items 1 2
show({1, 2})
something else
show([1, 2, 3])
three-list 1 2 3
show((1, 2, 3))
three-tuple 1 2 3
show([1])
short list [1]
show([])
short list []
show((1, 2, 3, 4))
four items 1 2 3 4 [1, 2, 3, 4]
show(1, 2, 3, 4, 5)

 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 >>>
 23
 24 >>>
 25
 26 >>>
 27
 28 >>>
 29
 30 >>>
 31
 32 >>>
 33
 34 >>>
 35
 36 >>>
 37

38

>>>

 39 long list 1 2 3 4 [5]
show((1, 2, 3, 4, 5, 6, 7, 8))
long list 1 2 3 4 [5, 6, 7, 8]
show("two")
small number two
show({ "cat": 21, "jenny": 99 })
dictionary with jenny = 99 all = {'cat': 21, 'jenny': 99}
show(False)
something else

 40 >>>
 41
 42 >>>
 43
 44 >>>
 45
 46 >>>
 47

An underline can appear multiple times in a pattern, it will match with anything.
The same variable may not appear more than once. If it does, the error message is
totally unhelpful. Lists and tuples can match with either lists or tuples, but the
type can be made explicit, as in the second case above. Between vertical lines any
patterns are allowed, not just simple values. Anything that matches any one of the
vertical lined patterns will match the whole case.

12. Formatting for strings and output

The pprint module provides functions that make complicated data structures
readable. For example, the plain old print function produces something like this:

 1 >>> a = ("cat", "hat", "pat")
b = ["mat", (2, 3, 4), 6]
c = {"a", "b", "t", a}
d = "hello"

 2 >>>
 3 >>>
 4 >>>
 5 >>>

59

 6 >>> e = [a, b, c, d]
f = (7, 6, 5, b)
g = [e, f]
print(g)
[[('cat', 'hat', 'pat'), ['mat', (2, 3, 4), 6], {('cat',
'hat', 'pat'), 'b', 't', 'a'}, 'hello'], (7, 6, 5, ['mat',
(2, 3, 4), 6])]

 7 >>>
 8 >>>
 9
 10

11

It is very hard to work out what we are looking at. But:

 1 >>> pprint.pprint(g, indent = 3)
[[('cat', 'hat', 'pat'),
 ['mat', (2, 3, 4), 6],
 {('cat', 'hat', 'pat'), 'b', 't', 'a'},
 'hello'],
 (7, 6, 5, ['mat', (2, 3, 4), 6])]

 2
 3
 4
 5
 6

Which is definitely better, but I would have liked them to go a bit further in
splitting things up, especially the last line. Apart from the thing to be printed, g,
all of pprint’s parameters are optional. The default value for indent is 1, which
just isn't enough. The example used 3, which means that every time it starts a
new line the indentation will be adjusted by +3 or -3.

Other optional parameters are width, default 80, the maximum number of
characters to allow on any line, stream should be a file-like object that is open for
writing, that's where the result will be sent instead of appearing on your monitor,
depth is the maximum level of list within set within tuple, etc that it is allowed to
go. If the depth of printing would exceed this value pprint just prints ... instead.

The pformat function is exactly the same, except that instead of printing the
result, it returns a string containing exactly what would have been printed.
Naturally it doesn’t accept a stream parameter.

If you need to print a number of things with exactly the same values for the
optional parameters, you can create a PrettyPrinter object with all the same
parameters, and just use its pprint or pformat methods, each of which takes
only the object to be printed.

 1 >>> p = pprint.PrettyPrinter(indent = 3, width = 100)
p.pprint(g) 2 >>>

Objects can become recursive. If I create a list and store it in a variable, then
append that list to itself, the list will have a reference to itself as its last element.
pprint functions notice that and replace the recursive object with a warning
inside < and >. If you want to be warned about that in advance, the isrecursive
function and method will tell you.

 1 >>> x = [1, 2, 3]
x.append(x)
pprint.pprint(x)
[1, 2, 3, <Recursion on list with id=2621512555072>]
pprint.isrecursive(x)

 2 >>>
 3 >>>
 4
 5 >>>

60

 6 True

Finally, the isreadable function or method tells you whether the result from
pprint or pformat would be a proper Python expression that you could type back
into Idle or give to the eval function to reconstruct the original object. Obviously,
things like recursion and the ... caused by reaching the depth limit would make
the answer be False, but so would most objects, as methods and functions don't
have very good representations.

i. The % operator

This is considered to be the old style, but it is still preferred by many
programmers because it is so similar to printf in old C. Values may be inserted
into strings using
formatting specifiers that say what the type of the value is, and optionally some
details modifying its appearance. %s for a string, %d for an int, %f for a float, %x or
%X for an int in hexadecimal, %c for a single character. Its new replacement is
more in the Python style, the idea is that Python knows what type everything is, so
the programmer shouldn't have to specify it in formats. Lots of variation is
possible.

 1 >>> "The square root of %d is %f" % (2, math.sqrt(2))
'The square root of 2 is 1.414214'
"The square root of %d is %.3f" % (2, math.sqrt(2))
'The square root of 2 is 1.414'
"%ss eat %ss" % ("cat", "dog")
'cats eat dogs'
"%X is the unicode for %c" % (937, 937)
'3A9 is the unicode for Ω'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

The ord function can be reversed with the % operator as above.

 1 >>> ord('A')
65
"%c" % (65,)
'A'

 2
 3 >>>
 4

Note the extra comma with the 65. What comes to the right of the % operator is not
a list of parameters, as it may seem, but just a single value which must be a
“tuple”. Tuples are coming soon, they are mostly just lists of values surrounded by
round brackets. If you want a tuple of one thing, it must be followed by a comma,
otherwise it will appear to be just an ordinary expression in parentheses. The %
operator also works with bytes objects.

If there is only one thing to print, there is no need to make it into a tuple

 1 >>> "%X" % 108
6C 2

61

And the right operand to % can also be a dictionary (coming soon). To say which
entry you want, just put its key inside parentheses just after the % sign in the
format.

 1 >>> d = {'z': 88, 'y': 'yak', 'x': 6.41}
"%(y)s likes %(x)s" % d
'yak likes 6.41'

 2 >>>
 3

ii. Details of the % operator's format specifications

A % sign always signals the beginning of a format specification, and it is always
ended by one of the type letters. The type letters are:

 %a any object, made printable with the ascii function
 %c int ASCII code or length one string, print as single character
 %d an int to be printed in decimal
 %E a float to be printed in “scientific” notation: 3.521E+03
 %e same as %E but 3.521e+03
 %F a float, never E notation, always just digits and a decimal point
 %f exactly the same as %F, a float, just digits and decimal point
 %G chooses between %E and %F for best appearance based on size
 %g chooses between %e and %f for best appearance based on size
 %i same as %d, an int to be printed in decimal
 %o an int to be printed in octal
 %r any object, made printable with the repr function
 %s any object, made printable with the str function
 %X an int to be printed in hexadecimal, letters ABCDEF
 %x an int to be printed in hexadecimal, letters abcdef
 %% just print %, no parameter is consumed

With the string formats %a, %r, and %s, the thing being printed does not need to be
a string, it can be anything understood by the ascii, repr, or str functions
respectively.

Just before the type letter, there may be one or two numbers separated by a
decimal point.

For strings, %a, %r, and %s:

%12.20s min = 12, max = 20
%12s min = 12, max is unlimited
%.20s no minimum, max = 20
%s no minimum, max is unlimited

min is the minimum width, if the string is shorter it gets padded.
max is the maximum width, if the string is longer the end is lost.
padding is usually spaces added to the left.
if a - appears before the min, e.g. %-12s, padding is added to the right.

For floats, %e, %f, and %g:

62

%12.20f min = 12, precision = 20
%12f min = 12, precision = 6
%.20f no minimum, precision = 20
%.0f no minimum, precision = 0
%f no minimum, precision = 6

min as with strings, minimum number of characters to be printed.
precision is the exact number of digits after the decimal point.
 zero precision means no decimal point is printed.
padding is usually spaces added to the left.
if a - appears before the min, e.g. %-12f, padding is added to the right.
if a + appears before the min, the + or - sign is shown even for positives.
if a space appears there, positive numbers get an extra space at the left.
it is permissible to have both + and - signs, order doesn't matter.
if a 0 appears before the min and there is no -, padding is zeros, not spaces.

For ints, %d, %o, and %x:
%12d min = 12
%d no minimum

min as with strings, minimum number of characters to be printed.
padding is usually spaces added to the left.
if a - appears before the min, e.g. %-12d, padding is added to the right.
if a + appears before the min, the + or - sign is shown even for positives.
if a space appears there, positive numbers get an extra space at the left.
it is permissible to have both + and - signs, order doesn't matter.
if a 0 appears before the min and there is no -, padding is zeros, not spaces.

Any and all of min, max, and precision can be replaced with a *, in which case an
extra parameter will be taken, it should be an int, and it will be used where the *
appeared, "%*.*f" % (15, 7, math.pi) is the same as "%15.7f" % (math.pi,).

Finally, a # may appear immediately after the %. that signals an “alternate form”,
which depends on the format letter:

%#...f forces a decimal point even if no digits would follow.
%#...g forces a decimal point even if no digits would follow.
%#...h forces a decimal point even if no digits would follow.
%#...o adds 0o at the beginning.
%#...x adds 0x at the beginning.
%#...X adds 0X at the beginning.

iii. The format method

Strings also have a .format method that does similar things to the % operator,
but
in a different way. When processing s.format(a, b, c), curly brackets inside s
are used instead of % signs to cause a substitution. Empty curly brackets are the
simplest, they just cause the next parameter to be inserted in its natural format.

 1 >>> "{} owes me ${} still".format("Joe", 4.28)

63

 2 'Joe owes me $4.28 still'

A number in the curly brackets allows parameters to be taken out of order

 1 >>> s = "{2} is last, {1} is second, {0} is first"
s.format(65, "Herbert Smith", 3.1415)
'3.1415 is last, Herbert Smith is second, 65 is first'

 2
 3

Names in the curly brackets allow a more explicit selection.

 1 >>> "one: {fred}, two: {jim}".format(jim = 123, fred = 987)
'one: 987, two: 123' 2

If the value associated with the name is an iterable, the name may be followed by
an int inside square brackets to select one item. If the value is a dictionary
(coming very soon), the square brakets would contain a key name instead.

 1 >>> things = [123, "cat", 654]
"{0[1]} should be cat".format(things)
'cat should be cat'
others = { "ant": 16, "bat": 98, "cat": 8 }
"{0[bat]} should be 98".format(others)
'98 should be 98'

 2 >>>
 3
 4 >>>
 5 >>>
 6

iv. Details of the format method's format specifications

After any positioning or selection, two characters may be added to indicate the
conversion that should be used to turn the value into a printable string:

!a means use the ascii function.
!r means use the repr function.
!s means use the str function.

After all of that there may be a colon : followed by a format specification. Format
specifications are quite like the % sequences used with the % operator, but not the
same. The complete form is:

First, an optional fill specifier, this may be any character that hasn't got a
special meaning inside a format already. If the thing being printed needs
to be padded to meet a minimum width requirement, this is the
character used to do the padding. Default is a space.

Next, an alignment specifier. If a fill was given, then the alignment is required,
otherwise it is optional. The possibilities are:

< padding is added to the right, to give left justification
> padding is added to the left, to give right justification
^ padding is added equally to left and right, centering
= for numbers, the sign, + or -, is put at the very left, and the

number itself at the very right, padding is added between
them

Next, an optional sign specifier, only used for numeric values:
+ print the sign, + or -, regardless of the sign of the number
- the default, only print the sign if the number is negative

64

space add a space to the left for positive numbers
Next, an optional # which means exactly the same as for % formatting
Next, an optional 0 any left padding will be with zeros, any fill overrides this.
Next, an optional minimum width, also the same as with %.
Next, an optional grouping character, which may be either , or _ (comma or

underline), only for numeric values. The number will be displayed as
groups of digits separated by this character. For decimal formats the
digits are grouped in threes, others in fours. 12345678 with a comma
would become 12,345,678.

Next, an optional . followed by a precision or minimum width. It means the
same as it does for the % operator

Finally, an optional type letter, not preceded by a %. The letters c, d, E, e, F, f,
G, g, o, s, X, and x means exactly what they do for the % operator. To the
set, b for binary has been added, and % for percentages. The % symbol is
only used for numeric values, it causes them to be multiplied by 100 and
followed with a %, so the number 0.65 is rendered as 65%.

 1 >>> "it costs ${0:,}".format(12345678)

'it costs $12,345,678'
"{0} in binary is {0:b}".format(116)
'116 in binary is 1110100'

 2
 3 >>>
 4

There are special format letters for dates and times, they are covered in the
section on dates and times.

format_map is the same as format, except that it takes a dictionary.

 1 >>> d = { "ant": 123, "dog": "bad", "hat": "good" }
"{hat} a b c {ant}".format_map(d)
'good a b c 123'

 2 >>>
 3

v. Formatted string literals

There is yet a third string formatting method in Python. Put the letter f in front of
a string, and it will be reprocessed, substituting things in curly brackets with
values from the string's environment. curly brackets may contain whole
expressions. Big f strings may be spread across multiple lines just like ordinary
strings.

 1 >>> x = 12
y = 144
f"{x} times {y} is {x * y}"
'12 times 144 is 1728'

(f"{x} t"
 f"imes {y}"
f"is {x * y}")
'12 times 144 is 1728'

 2 >>>
 3 >>>
 4
 5
 6 >>>
 7 ...
 8 ...
 9
 10
 11 >>>

65

 12 ... f"""{x} t
 imes {y}
is {x * y}"""
'12 t\n imes 144\nis 1728'

 13 ...

14

For some reason, you are allowed to use quotes inside the curly brackets to
prevent evaluation, and if you want curly brackets to appear in the result, you
must double them.

 1 >>> f"{'x'} is {x}"

'x is 12'
f"{{{'x'}}} {{is}} {x}"
'{x} {is} 12'

 2
 3 >>>
 4

An equals sign: f"abc=" is a shorthand for f"abc=abc"

 1 >>> x1 = 12 * 7
f"{x1=}"
x1=84

 2 >>>
 3

Directly after an expression and its optional =, you can add either !a, !r, or !s.
The meaning is the same as with the format method.

After that, you can have a colon : followed by some detailed formatting
specifications, these specifications are the same as those used with the format
method, so a few examples should suffice.

 1 >>> x = 13737
f"{x:10}"
' 13737'
f"{x:<10}"
'13737 '
f"{x:10X}"
' 35A9'
f"{x:,}"
'13,737'
f"{math.pi:25.17f}"
' 3.14159265358979312'
f"{math.pi:*>25.17f}"
'******3.14159265358979312'

 2 >>>
 3
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

13 >>>

There are special format letters for dates and times, they are covered in the
section on dates and times.

13. Dictionaries

Dictionaries are like associative arrays or very simple databases. When data
values are added to a dictionary, they are associated with "key" values. Later, you
can access those data values just by providing their keys. Like sets, dictionaries
are implemented as hash tables, so only hashable values may be used as keys.
The data values can be anything though. The section on inheritance shows how to

66

make hashable versions of non-hashable things. Values in a dictionary are
accessed with the syntax dictionary[key], which produces a value, but can also
be assigned to.

 1 >>> di = { "cat": [1, 2, 3], 98: "dog", "bat": 1234 }
di
{'cat': [1, 2, 3], 98: 'dog', 'bat': 1234}
type(di)
<class 'dict'>
di[98]
'dog'
di["cat"]
[1, 2, 3]
di["horse"] # this causes an error
di["bat"]
1234
di["bat"] = 765
di["bat"] += 20
di["bat"]
785

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14 >>>
 15 >>>
 16

There is a dictionary constructor that takes named parameters, converts those
names into strings, and uses them as keys.

 1 >>> di = dict(aa = 99, bb = "cat", dd = 6, cc = 123)

di["bb"]
'cat'
di
{'aa': 99, 'bb': 'cat', 'dd': 6, 'cc': 123}

 2 >>>
 3
 4 >>>
 5

The in operator when used on a dictionary only looks at the keys, but the
.items() method means that isn't a problem, it delivers a special object that can
be converted into a list.

 1 >>> di = {"cat": 34, "dog": 99, 66: 77 }
"dog" in di
True
99 in di
False
for x in di:
 print(x, end = " ")
cat dog 66
[w * 2 for w in di]
['catcat', 'dogdog', 132]
di.items()
dict_items([('cat', 34), ('dog', 99), (66, 77)])
[(b, a) for (a, b) in di.items()]
[(34, 'cat'), (99, 'dog'), (77, 66)]

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7 ...
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14

The .keys() method delivers a list of all the keys. Actually, it produces a special
object that can be converted to a list or whatever. .values() is the same for the
values. del d[k] removes an item, error if it isn't present. .pop(k) is the same,
but it returns the value associated with k. .pop(k, v) is the same as that, but if

67

k is not present, v is returned instead of causing an error. .get(k, v) is the
same but does not remove anything. The .clear() method empties a dictionary.
k in d and k not in d check to see if a key is present. The .popitem() method
removes and returns one (key, value) tuple. len(d) returns the number of values
in a dictionary.

 1 >>> di
{'aa': 99, 'bb': 'cat', 'dd': 6, 'cc': 123}
di.pop("bb")
'cat'
di.pop("bb", -1)
-1
di.pop("bb") # this causes an error
di.get("bb", -1)
-1
a = di.keys()
a
dict_keys(['aa', 'dd', 'cc'])
a[1] # this causes an error
a = list(a)
a[1]
'dd'
list(di.values())
[99, 6, 123]
"cc" in di
True
di.popitem()
('cc', 123)
len(di)
2

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8 >>>
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14 >>>
 15 >>>
 16
 17 >>>
 18
 19 >>>
 20
 21 >>>
 22
 23 >>>
 24

The di.update() method takes another dictionary as a parameter, and adds its
contents to those di already has.

 1 >>> di
{'aa': 99, 'dd': 6}
di.update({ "xx": 17 })
di
{'aa': 99, 'dd': 6, 'xx': 17}

 2
 3 >>>
 4 >>>
 5

There are special conditional and loop statements for working with dictionaries.

 1 >>> di
{'aa': 99, 'dd': 6, 'cc': 123}
if "aa" in di:
 print("it is here:", d["aa"])
it is here: 99
for k in di:
 print(k)

 2
 3 >>>
 4 ...
 5
 6 >>>
 7 ...

 8 aa

dd
cc
for (k, v) in di.items():

 9
 10
 11 >>>

68

 12 ... print(k, v)
aa 99
dd 6
cc 123

 13
 14
 15

The | operator produces the union of two dictionaries, but the other set operators
are not provided. d1.update(d2) is the same as d1 = d1 | d2 but a bit more
efficient.

 1 >>> di = { "aa": 99, "cc": 123, "dd": 6 }
e = {"zz": 76, "yy": 41}
(di | e)["zz"]
76
di.update(e)
di
{'aa': 99, 'cc': 123, 'dd': 6, 'zz': 76, 'yy': 41}

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7

The del statement as usual makes things go away

 1 >>> di
{'aa': 99, 'dd': 6, 'cc': 123}
del di["dd"]
di
{'aa': 99, 'cc': 123}

 2
 3 >>>
 4 >>>
 5

Dictionaries may be used with the % formatting operator

 1 >>> di = { "nn": 99, "ani": "cat", "xx": 123, "len": 6 }
"%(ani)ss are %(len)d inches long" % di
'cats are 6 inches long'

 2 >>>
 3

14. enum types

enums are quite common in programming languages, but Python's idea of an enum
is a bit different from the usual. An enum is like a very simple new type for values,
where the possible values just have unique names. bool is like an enum with just
two values, True and False.

I want to create a new type that represents a vague idea of size. It will have five
values, tiny, small, medium, big, and enormous. Here is how it is defined:

 1 >>> from enum import Enum
size = Enum("size", ["tiny", "small", "medium",
 "big", "enormous"])

 2 >>>
 3 ...

The Python community says that enum values should be spelled in all capitals, but
I'm not listening.

You see that we have to import something from the enum module to make this
work. In the definition, size is used for two different things, and it does make
sense for them to have the same name. The variable size is what we need to be

69

able to make values of this type. The string "size" is only used when Python
displays a value of this type.

 1 >>> size

<enum 'size'>
x = size.medium
x
<size.medium: 3>
x.value
3
x.name
'medium'
size(4)
<size.big: 4>
size["tiny"]
<size.tiny: 1>
size.big == size.small
False

 2
 3 >>>
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15

There is an alternative syntax for defining enums, and it allows the programmer to
decide which value each name should be associated with. This has exactly the
same effect as the previous definition:

 1 >>> class size(Enum):

 tiny = 1
 small = 2
 medium = 3
 big = 4
 enormous = 5

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

The syntax is a bit strange, but will make sense much later on when we look at
“inheritance” in “classes”. You need to enter a blank line at the end of the
definition.

There are some varieties of Enum also available. The basic Enum used above
associates names with ints, but does not let you use the names as numbers. An
IntEnum does. IntEnums can be used along with numbers just about everywhere
that an ordinary int could be, but the results are no longer IntEnums.

 1 >>> from enum import IntEnum

size = IntEnum("size", ["tiny", "small", "medium",
 "big", "enormous"])
size.small
<size.small: 2>
size.small + 1
3
type(size.small)
<enum 'size'>
type(size.small + 1)
<class 'int'>

 2 >>>
 3 ...
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11

Similarly, StrEnum does the same for strings:

 1 >>> from enum import StrEnum

70

 2 >>> size = StrEnum("size", ["tiny", "small", "medium",
 "big", "enormous"])
size.small
<size.small: 'small'>
size.small + size.medium
'smallmedium'

 3 ...
 4 >>>
 5
 6 >>>
 7

Flag is a bit like IntEnum, but the values chosen are all powers of two, so the
bitwise operations |, &, ^, ~ can be used to combine them. This time the results
are still members of the Flag class, although we can't use the abbreviated form
that Python uses when printing them. IntFlag is a combination of IntEnum and
Flag.

 1 >>> from enum import Flag

size = Flag("size", ["tiny", "small", "medium",
 "big", "enormous"])
size.tiny
<size.tiny: 1>
size.small
<size.small: 2>
size.enormous
<size.enormous: 16>
x = size.small | size.big | size.tiny
x
<size.tiny|small|big: 11>
~ size.medium
<size.tiny|small|big|enormous: 27>
list(x)
[<size.tiny: 1>, <size.small: 2>, <size.big: 8>]
len(x)
3

 2 >>>
 3 ...
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18

15. Functions

In general function definitions have the form of structured statements. First a line
beginning with the word def, then the name of the function, then the list of
parameter names enclosed in parentheses (you still need the parentheses even if
there are no parameters), and finally a colon. The statements that make up the
body of the function then appear indented under that heading. Calling a function
is just the same as in most modern programming languages.

 1 >>> def biggest_of_three_cubes(a, b, c):
 acubed = a * a * a
 bcubed = b * b * b
 ccubed = c * c * c
 if acubed > bcubed and acubed > ccubed:
 return acubed
 elif bcubed > ccubed:
 return bcubed
 else:
 return ccubed

biggest_of_three_cubes(3, 5, 2)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 >>>

71

 13 125

Small functions may be compressed in the same way as for statements

 1 >>> def f(x): x *= 2; print(x)

type doesn't work as expected for functions. If you want to see if something is a
function, define your own dummy function and compare its type to your
something's type. Unfortunately, perfectly ordinary functions like math.sqrt are
not recognised as functions. Also, every type has a __name__ attribute which is
always a string, and always different from the __name__ of any other type.

 1 >>> def square(x):
 return x * x

type(square)
<class 'function'>
type(square) == function # this causes an error
... NameError: name 'function' is not defined

def f():
 pass

function = type(f)

type(square) == function
True # now it works

type(math.sqrt)
<class 'builtin_function_or_method'>

 2 ...
 3 ...
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10 ...
 11 ...
 12 >>>
 13
 14 >>>
 15
 16
 17 >>>
 18

Also, every type has a __name__ attribute which is always a string, and always
different from the __name__ of any other type. That gives us a uniform but slightly
less efficient way of comparing types. Unfortunately the __name__ of a type also
distinguishes between ordinary functions and those whose implementation is not
in Python and are considered to be built in. And ordinary methods are considered
to be just functions.

 1 >>> type(square).__name__
'function'
type(math.sqrt).__name__
'builtin_function_or_method'
type(int).__name__
'int'
type(None).__name__
'NoneType'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

Functions may take other functions as parameters and return functions as their
results. Functions may be stored in variables, lists, whatever.

 1 >>> def applytwice(f, x):
 return f(f(x))
def square(x):
 return x * x

 2 ...
 3 >>>
 4 ...

72

 5 >>> applytwice(square, 2)
16
fs = [math.sin, square, math.sqrt]
fs[2](81)
9.0

 6
 7 >>>
 8 >>>
 9

ii. Inner functions

Functions may define their own private functions within them. The inner function
may access the outer function's variables and parameters if it declares them
nonlocal. When an inner function gets out of an outer function (by being
returned or assigned to a global variable) it retains its context.

 1 >>> def multiplier_by_twice(x):
 x = 2 * x
 def f(a):
 nonlocal x
 return a * x
 return f
g = multiplier_by_twice(5)
g(7)
70
multiplier_by_twice(5)(99)
990
def apply_to_all(f, L):
 R = []
 for x in L:
 R.append(f(x))
 return R
apply_to_all(multiplier_by_twice(10), [8, 3, 5, 1])
[160, 60, 100, 20]

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 >>>
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13 ...
 14 ...
 15 ...
 16 ...
 17 >>>
 18

iii. Keyword and unknown parameters

When a function is called, instead of putting the parameters in the right order,
values can be directed to specific parameters with keyword assignments.

 1 >>> def something(one, two, three, four):
 return [one, two, three, four]
something(three = 333, two = 222, four = 444, one = 111)
[111, 222, 333, 444]

 2 ...
 3 >>>
 4

If you still want to use positional parameters, they must come before any named
ones.

 1 >>> something(111, 222, four = 444, three = 333)
[111, 222, 333, 444] 2

If you want to insist that every parameter must be passed with a keyword, make a
star appear to be the first parameter in the declaration.

 1 >>> def abc(*, one, two, three):

73

 2 ... return [one, two, three]
abc(three = 3, one = 1, two = 2)
[1, 2, 3]

 3 >>>
 4

A starred parameter insists that all subsequent parameters are passed by
keyword, and it absorbs any additional positional parameters.

 1 >>> def ffff(one, two, *three, four, five):
 return [one, two, three, four, five]
ffff(1, 2, 3, 4, 5, 6, 7, five = 55, four = 44)
[1, 2, (3, 4, 5, 6, 7), 44, 55]
ffff(1, 2, five = 55, four = 44)
[1, 2, (), 44, 55]

 2 ...
 3 >>>
 4
 5 >>>
 6

A special case of this allows a function to take a variable number of parameters of
any type whatsoever, just make the starred parameter be the first and only one.

 1 >>> def fff(* a):
 print(len(a), "parameters:")
 for i in range(len(a)):
 print(" ", i, ": (", type(a[i]), ") ", a[i], sep = "")

fff()
0 parameters:
fff(9745, "cat", [2, 4, 6])
3 parameters:
 0: (<class 'int'>) 9745
 1: (<class 'str'>) cat
 2: (<class 'list'>) [2, 4, 6]

 2 ...
 3 ...
 4 ...
 5
 6 >>>
 7
 8 >>>
 9
 10
 11
 12

iv. Receiving parameters as dictionaries

A double-starred parameter takes all remaining parameters, which must use
keyword assignment, as a dictionary. There must be no space between the two
stars.

 1 >>> def gg(one, **two):
 return [one, two]
gg(1, a = 6, cat = 99, dog = 4)
[1, 'a': 6, 'cat': 99, 'dog': 4]

 2 ...
 3 >>>
 4

v. All possibilities

A starred parameter can also be combined with a double-starred parameter to
accept just about anything imaginable.

 1 >>> def allsorts(* a, ** k):
 print("Unnamed parameters:")
 for v in a:
 print(" ", v)
 print("named parameters:")
 for (n, v) in k.items():

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

74

 7 ... print(" ", n, ": ", v, sep = "")

allsorts(9876, "cat", joe = 66, dog = "bat")
Unnamed parameters:
 9876
 cat
named parameters:
 joe: 66
 dog: bat

 8
 9 >>>
 10
 11
 12
 13
 14
 15

but even here, all ordinary parameters must appear before any keyword
parameters.

vi. Default values

Parameters may also be given default values

 1 >>> def qqq(one = 1, two = 2, three = 3, four = 4):
 return [one, two, three, four]
qqq()
[1, 2, 3, 4]
qqq(111, 222)
[111, 222, 3, 4]
qqq(three = 333)
[1, 2, 333, 4]

 2 ...
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

vii. Expanding lists for parameters

When a function is called, a star before a list-like parameter takes the contents of
the list and passes them to the function as individual positional parameters.

 1 >>> def yyy(a, b, c, d):
 return [d * 2, c * 2, b * 2, a * 2]
L = [1, 10, 100, 1000]
yyy(* L)
[2000, 200, 20, 2]
yyy(*(i * i for i in range(4)))
[18, 8, 2, 1]

 2 ...
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>

viii. Expanding dictionaries for parameters

a double star before a dictionary treats the dictionary's key-value pairs as keyword
parameters.

 1 >>> def zzz(one, two, three):
 return [one, two, three]
di = { "three": 333, "one": 111, "two": 222 }
zzz(** di)
[111, 222, 333]

 2 ...
 3 >>>
 4 >>>
 5

75

ix. Lambda expressions

Lambda expressions create functions that do not need to be named. The word
lambda is followed by a comma-separated list of parameter names, a colon, and
on the same line, a single expression. The value of a lambda expression is a
function just like any other. Its result is of course the value of the expression.

 1 >>> apply_to_all(lambda x: x * x, [8, 3, 5, 1])
[64, 9, 25, 1] 2

If a lambda expression is created in a function, it brings with it a memory of that
function's parameters and local variables.

 1 >>> def fff(y):
 return lambda x : x * y
fff(11)(100)
1100
z = fff(2)
z(12)
24

 2 ...
 3 >>>
 4
 5 >>>
 6 >>>
 7

Finally, there is a very strange and seemingly useless special piece of syntax. If a
function only has one parameter, and it is supposed to be something list-like, you
may use a comprehension without its own set of brackets to provide that
parameter. It will not appear as a list inside the function, but as a special kind of
object that can easily be turned into a list or a tuple or used in a for statement,
etc.

 1 >>> def g(x):
 return [[tuple(x)]]
def h(x):
 for i in x:
 print(i)
g(i * i for i in range(5))
[[(0, 1, 4, 9, 16)]]
h(i * i for i in range(2, 6))
4
9
16
25

 2 ...
 3 >>>
 4 ...
 5 ...
 6 >>>
 7
 8 >>>
 9
 10
 11
 12

x. Function overloading

Python doesn't really support name overloading: every function must have a
different name, but there are two ways of achieving the safe effect. The first uses
only Python features that we have already seen, and can handle all cases, but it
can get long and untidy. The second, using a thing called a decorator, is neater
but quite restricted in what it can do.

First method, standard Python features.

76

Determine the largest number of parameters that any overloaded version of the
function in question needs. Define a function with that many parameters, and give
them all default values of None.

Inside the function, you can tell which version is needed by counting the number
of non-None parameters, and checking their types in a series of ifs.

 1 >>> def horse(a = None, b = None, c = None, d = None):

 if type(a) == int and b == None:
 print("one int parameter", a)

 elif type(a) == str and type(b) == str and c == None:
 print("two string parameters", a, b)

 elif a == None:
 print("no parameters")

 else:
 raise TypeError("horse: given parameters don't match")

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...

Naturally you would not do all the work inside that big if. Once you determine the
correct number and types of parameters, just call on a normal, uniquely named
function to do everything. That way you can even have parameters with
meaningful names. We would change horse so that each case is more like this

 6 ... elif type(a) == str and type(b) == str and c == None:
 return horse_str_str(a, b) 7 ...

and for each case, create a function like this

 1 >>> def horse_str_str(first_name, last_name):
 whatever 2 ...

Second method, the singledispatch decorator.

the @singledispatch decorator from functools gives a lot of the functionality of
overloading. Decorators are covered in a later section. For now, they are just
strange and ugly syntax that begins with an @ character.

The following shows a function called something that has three different
definitions, a base version that is used when none of the more specific versions
are applicable, and two of those more specific versions. One to be used only when
the parameter is a string, and only for only when it is a list.

 1 >>> import functools

@functools.singledispatch
def something(value):
 print("base version:", value)

@something.register
def _(value: str):

 2
 3 >>>
 4 ...
 5 ...
 6
 7 >>>
 8 ...

77

 9 ... print("string version: \"", value, "\"", sep = "")

@something.register
def _(value: list):
 print("list, len = ", len(value), " : ", value, sep = "")

something("hello")
string version: "hello"
something([1, 2, 3, 4])
list, len = 4 : [1, 2, 3, 4]
something(77)
base version: 77
something(3.14)
base version: 3.14

 10
 11 >>>
 12 ...
 13 ...
 14
 15 >>>
 16
 17 >>>
 18
 19 >>>
 20
 21 >>>
 22

You start by defining the base version of the function. This is the one that will be
used when no other version fits. It is perfectly alright if that means never. This has
to come first, because it is where you give the function its name. Just start with
the line @functools.singledispatch and define a perfectly normal function on
the next line, no extra indentation.

For every one of the specific versions, you start with a similar decorator, but this
time it is @basefunctionname.register. Of course basefunctionname needs to be
the name you gave the first version of the function. In the function definition that
follows, two things are required. You must not give the function a name, just use
an underline instead, and you must specify a type for the parameter as shown
above. Whenever the originally named function, something, is called, the
registered versions are checked for one that matches the actual parameter. If
one is found it is used. If none is found then the original base version is used.

This sort of overloading is quite restricted. Type discrimination only works for the
first parameter, but the different versions do not all have to have the same
number of parameters.

xi. Type hints

Python doesn't allow functions to demand parameters to be of any particular type
unless the programmer explicitly checks with the type() function as part of the
function's definition.

But “type hints” are allowed. They don't mean much except when it comes to
function overloading, covered in the section on decorators. A type hint is given by
following a parameter name with a colon and a type name. In the function fff
below, the hint tells readers that the parameter is expected to be an int, but
Python won't do anything to enforce that. Some third-party software and
extensions can make use of type hints.

 1 >>> def ggg(i : int):
 print(i, type(i))

ggg(45)

 2 ...
 3
 4 >>>

78

 5 45 <class 'int'>
ggg(3.14)
3.14 <class 'float'>
ggg("hello")
hello <class 'str'>
ggg([1, 2, 3])
[1, 2, 3] <class 'list'>

 6 >>>
 7
 8 >>>
 9
 10 >>>
 11

xii. Possibly dangerous features

eval(s) takes a string, which should have the form of a valid Python expression.
It delivers the result that that expression would produce. It has access to all
variables and functions and other things that currently exist.

 1 >>> x = 123
y = 99
eval("10 * x + y")
1329

 2 >>>
 3 >>>
 4

eval(s, d) is the same except that it uses the dictionary d to find that value of
anything that looks like a variable. Only d is used for such purposes, if a variable
that does not appear in d is used, there will be an error.

 1 >>> eval("10 * x + y", { "y": 3, "x": 7 })
73 2

exec(s) takes a string which this time should contain a Python statement or a
sequence of the separated by \n characters. It will execute those statements.

 1 >>> exec("x = 10\ny = 5\nx *= y\nprint(x)\nzzz = x + 1")
50
zzz
51

 2
 3 >>>
 4

exec(s) may also take a dictionary as a parameter. In this case, it is still not
possible to look at the value of a variable that does not appear in the dictionary,
but if you assign to such a variable, exec will just create a temporary variable of
that name, so executing the statements will not affect any existing variables.

These features are considered dangerous not because they go wrong, but because
they can be exploited by malicious users. If you exec a string that was entered by
a user, they will be able to make your program do anything they want.

16. Operators as functions

There is a library that provides named functions that do exactly what the standard
operators do.

 1 >>> import operator
operator.add(3, 7) 2 >>>

79

 3 10

def reduce(items, func, init):
 r = init
 for x in items:
 r = func(r, x)
 return r
reduce([1, 2, 3, 4, 5, 6], operator.add, 0)
21
reduce([1, 2, 3, 4, 5, 6], operator.mul, 1)
720

 4
 5 >>>
 6 ...
 7 ...
 8 ...
 9 ...
 10 >>>
 11
 12 >>>
 13

These are the available operator functions. The meanings of many of them are
obvious from their names, some are not. Some, like and_, end with underlines
because otherwise they would be Python reserved words.

operator.abs(a) is the absolute value
operator.add(a, b) is a + b
operator.and_(a, b) is bitwise a & b
operator.call(f, a, b, ...) same as f(a, b, ...)
operator.concat(a, b) same as add, but error for numbers
operator.contains(a, b) is b in a, note reversed order
operator.countOf(a, b) is a.count(b)
operator.delitem(a, b) is del a[b]
operator.eq(a, b) is a == b
operator.floordiv(a, b) is a // b
operator.ge(a, b) is a >= b
operator.getitem(a, b) is a[b]
operator.gt(a, b) is a > b
operator.index(a, b) is a + b
operator.indexOf(a, b) is position of first b in a
operator.inv(a) is ~ a, Python's weird idea of bitwise not
operator.invert(a) exactly the same as inv
operator.is_(a, b) is a is b
operator.is_not(a, b) is a is not b
operator.le(a, b) is a <= b
operator.lshift(a, b) is a << b
operator.lt(a, b) is a < b
operator.matmul(a, b) is a @ b
operator.mod(a, b) is a % b
operator.mul(a, b) is a * b
operator.ne(a, b) is a != b
operator.neg(a) is - a
operator.not(a) is not a
operator.or_(a, b) is bitwise a | b
operator.pos(a) is + a
operator.pow(a, b) is a ** b
operator.rshift(a, b) is a >> b
operator.setitem(a, b, c) is a[b] = c

80

operator.sub(a, b) is a - b
operator.truediv(a, b) is a / b
operator.truth(a) is True if a would be considered true, else False
operator.xor(a, b) is a ^ b

There are a number of operator functions whose names begin with i, and at first
glance seem not to work. For example, operator.iadd(a, b) is supposed to
implement a += b, but if you have a variable called a whose value is 7,
operator.iadd(a, 5) leaves a unchanged. This is because the fact is that a += b
is not really implemented by operator.iadd(a, b), but by a = operator.iadd(a, b).
There is an assignment too. So it seems that operator.add and operator.iadd
should be exactly the same. But they shouldn't, and the reason will become clear
in the section on classes. The list of update methods is:

operator.iadd(a, b) is a += b
operator.iand(a, b) is bitwise a &= b
operator.iconcat(a, b) is the update version of concat
operator.ifloordiv(a, b) is a //= b
operator.ilshift(a, b) is a <<= b
operator.imatmul(a, b) is a @= b
operator.imod(a, b) is a %= b
operator.imul(a, b) is a *= b
operator.ior(a, b) is a |= b
operator.ipow(a, b) is a **= b
operator.irshift(a, b) is a >>= b
operator.isub(a, b) is a -= b
operator.itruediv(a, b) is a /= b
operator.ixor(a, b) is a ^= b

17. Special operations on functions

The functools module provides a few useful features.

functools.reduce will squash any iterable down to a single value by applying
a two argument function repeatedly to combine an accumulated value with each of
the elements of the iterable in turn. The accumulated value starts out equal to
the iterable's first item unless you provide a third parameter to override that.

 1 >>> functools.reduce(operator.add, [1, 2, 3, 4, 5])
15 # note that 1+2+3+4+5 is 15
functools.reduce(operator.mul, [1, 2, 3, 4, 5])
120 # note that 1*2*3*4*5 is 120

 # this will demonstrate the order of evaluation
def combine(a, b):
 return "comb(" + str(a) + ", " + str(b) + ")"
functools.reduce(combine, [1, 2, 3, 4, 5])
'comb(comb(comb(comb(1, 2), 3), 4), 5)'

 2
 3 >>>
 4
 5
 6 >>>
 7 >>>
 8 ...
 9 >>>
 10
 11

81

 12 >>>
 # and changing the initial value
functools.reduce(operator.add, [1, 2, 3, 4, 5], 200)
215
functools.reduce(combine, [1, 2, 3, 4, 5], 10)
'comb(comb(comb(comb(comb(10, 1), 2), 3), 4), 5)'

 13 >>>
 14
 15 >>>

16

functools.partial allows a special version of a function to be created. The
result behaves like the original function except that some of its parameters have
already been provided, so fewer will be needed for the call. Some trivial examples
will make that perfectly clear.

 1 >>> def takefive(a, b, c, d, e):
 return [a, b, c, d, e]

takefive("z", "y", "x", "w", "v")
['z', 'y', 'x', 'w', 'v']

takethree = functools.partial(takefive, "A", "B")
takethree("z", "y", "x")
['A', 'B', 'z', 'y', 'x']

takeone = functools.partial(takethree, "M", "N")
takeone("z")
['A', 'B', 'M', 'N', 'z']

takezero = functools.partial(takeone, "Q")
takezero()
['A', 'B', 'M', 'N', 'Q']

quadruple = functools.partial(operator.mul, 4)
quadruple(7)
28

def xyz(a, b, * c, first, second, third):
 return [a, b, c, first, second, third]
xyz(1, 2, 3, third = 4, first = 5, second = 6)
[1, 2, (3,), 5, 6, 4]

xyz(1, 2, third = 4, first = 5, second = 6)
[1, 2, (), 5, 6, 4]

one = functools.partial(xyz, "A", second = "sec")
one("bbb", third = "thi", first = "fir")
['A', 'bbb', (), 'fir', 'sec', 'thi']

 2 ...
 3
 4 >>>
 5
 6
 7 >>>
 8 >>>
 9
 10
 11 >>>
 12 >>>
 13
 14
 15 >>>
 16 >>>
 17
 18
 19 >>>
 20 >>>
 21
 22
 23 >>>
 24 ...
 25 >>>
 26
 27
 28 >>>
 29
 30
 31 >>>
 32 >>>
 33

Also functools.partialmethod does the same thing for methods of classes, and
will be covered in the section on classes.

18. Bytes and bytearray

These are two different but very closely related types that have a lot in common
with strings. Whereas strings are based on multi-byte Unicode characters, these

82

consist only of single byte values. When used in a string-like way, their bytes are
just ASCII characters extended in various ways to use all eight bits. They are not
only for string-like uses, they are also used to store generic byte-based data.
bytes objects are immutable, bytearray objects are mutable.

i. Bytes

The bytes type is a lot like str. The objects are sequences of characters that
support just about all of the usual string operations, and they too are immutable.
The main difference is that bytes objects do not use Unicode, all characters are
just 8 bit bytes using ASCII codes. This makes bytes useful when dealing with
files and especially network communications, where protocols do not usually
understand Unicode. bytes constants are typed like strings but with the letter b
immediately before the opening quote. They are printed the same way. There are
also constructors that provide more options.

 1 >>> x = b"Hello"
x
b'hello'
bytes([65, 66, 67, 97]) # those are the ASCII codes you’d expect
b'ABCa'
bytes((65, 66, 67, 97))
b'ABCa'
bytes(range(65, 75))
b'ABCDEFGHIJ'
bytes("∂₤∑←ЯÆΩ", "utf32")
b'\xff\xfe\x00\x00\x02"\x00\x00\xa4 ... \x00\x00'
bytes("∂₤∑←ЯÆΩ", "utf8")
b'\xe2\x88\x82\xe2\x82\xa4 ... \xd0\xaf\xc3\x86\xce\xa9'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>

13

The string method encode does the same thing:

 1 >>> "∂₤∑←ЯÆΩ".encode("utf8")
b'\xe2\x88\x82\xe2\x82\xa4 ... \xd0\xaf\xc3\x86\xce\xa9' 2

In the last two examples, "utf32" tells the constructor how to encode the Unicode
characters, it means use exactly four bytes for each of them. Most of the bytes
produced happened not to be proper ASCII codes (32 to 126) so were shown in
their hexadecimal form. The double quote in there is from a byte that happened to
be a printable ASCII code. The ... is where I cut parts out because the line was too
long. "utf8" is a more compact encoding that requires a bit more effort to
process, and "utf16" is also available, along with many variations on "CPnnn" for
what are sometimes called code pages. A bytes decode method takes things the
other way. With no parameter, .decode assumes standard ASCII.

 1 >>> y = b"\xD8\xE1\xB7\xEB\xA8\xE5\x20\xD2\xB7\xE1"
z = y.decode("CP855")
z
'привет мир'
b"ABC".decode()
'ABC'

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>

83

8
 bytes(z, "CP855")

b'\xd8\xe1\xb7\xeb\xa8\xe5 \xd2\xb7\xe1'

As usual, str() will convert a bytes into a string, but probably not the string you
would be hoping for. The other common conversions are also there. Indexing also
works, but the result is not a character but an int, its ASCII code. The fromhex
method requires a string with exactly two characters for each byte, but it doesn't
object to spaces. hex is the exact opposite of fromhex.

 1 >>> x = b"ABCDE"
str(x)
"b'ABCDE'"
list(x)
[65, 66, 67, 68, 69]
tuple(x)
(65, 66, 67, 68, 69)
x[2]
67
bytes.fromhex("4142 437879 7A")
b'ABCxyz'
b"ABCxyz".hex()
'41424378797a'

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

translate and maketrans work just as they do for strings.

 1 >>> tr = bytes.maketrans(b"abcdefghijklmnopqrstuvwxyz",
 b"ABCDEFGHyJKLMN@PQRS+UVWXYZ")
"There Are 7 Spiders On You.".translate(tr)
'+HERE ARE 7 SPyDERS @N Y@U.'

 2 ...
 3 >>>
 4

Unsurprisingly, slicing works too, but unlike [indexing] does not deliver ints.

 1 >>> b"abcdefghijkl"[3:8]
b'defgh' 2

The usual string operators +, *, in, ==, >=, >, <=, <, and !=, along with the
functions hash(x) and len(x) are also available. As are the methods
capitalize, center, count, endswith, expandtabs, find, index, isalnum,
isalpha, isascii, isdigit, islower, isspace, isupper, join, ljust, lower,
lstrip, partition, removeprefix, removesuffix, replace, rfind, rindex,
rjust, rpartition, rstrip, split, splitlines, startswith, strip, swapcase,
upper, and zfill.

ii. Bytearray

A bytearray is exactly the same as a bytes, except that it is mutable. That
means that assignments to indexes and del are both allowed, but you can only
assign a numeric ASCII code. There is nothing similar to the b"abc" syntax for
creating a bytearray, you have to use an explicit constructor.

The constructor for a bytearray may take as its parameter:

84

 nothing at all, make an empty bytearray.
 a bytes or another bytearray, just copy the contents.
 an int, make a bytearray of that length, full of zeros.
 an iterable of ints between 0 and 255, just copy those bytes.
 a string and an encoding, e.g. bytearray("abc", encoding = "utf-8")

 1 >>> x = bytearray(b"abcdefghijklmnopqrstuvwxyz")
x
bytearray(b'abcdefghijklmnopqrstuvwxyz')
x[3]
100
y = bytearray(range(65, 88))
y
bytearray(b'ABCDEFGHIJKLMNOPQRSTUVW')
x[5] = '*' # this causes an error
x[5] = 42
x
bytearray(b'abcde*ghijklmnopqrstuvwxyz')

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10 >>>
 11 >>>
 12

The decode method gives the ordinary string that the object represents, assuming
ASCII encoding.

 1 >>> y = bytearray(range(65, 88))
y
bytearray(b'ABCDEFGHIJKLMNOPQRSTUVW')
y.decode()
'ABCDEFGHIJKLMNOPQRSTUVW'

 2 >>>
 3
 4 >>>
 5

The append method will enlarge a bytearray by adding one single byte to the
end. The parameter must be an int value that fits in 8 bits. extend will add a
whole sequence or iterator of suitable values to the end. insert(position,
value) inserts the value into the bytearray so that it will be at the given position
and none of the original contents are lost. del can remove a single value or a
whole slice.

 1 >>> x = bytearray(b"abcdefghijklmnopqrstuvwxyz")
x.append(65) # 65 is the ASCII code for A
x.append(ord('Z'))
x
bytearray(b'abcdefghijklmnopqrstuvwxyzAZ')
x.extend([68, 69, 70])
x
bytearray(b'abcdefghijklmnopqrstuvwxyzAZDEF')
x.extend(bytearray(b"5678"))
x
bytearray(b'abcdefghijklmnopqrstuvwxyzAZDEF5678')
x.insert(2, ord('-'))
x
bytearray(b'ab-cdefghijklmnopqrstuvwxyzAZDEF5678')
del x[3:8]
x
bytearray(b'ab-hijklmnopqrstuvwxyzAZDEF5678')

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10 >>>
 11
 12 >>>
 13 >>>
 14
 15 >>>
 16 >>>
 17

85

Two update assignment operators, += and *= are also allowed. So is append, but it
can only take an integer ASCII code.

 1 >>> x = bytearray(b"abcdefghij")
x
bytearray(b'abcdefghij')
x += bytearray(b"123")
x
bytearray(b'abcdefghij123')
x *= 2
x
bytearray(b'abcdefghij123abcdefghij123')

 2 >>>
 3
 4 >>>
 5 >>>
 6
 7 >>>
 8 >>>
 9

The .copy() method delivers an exact copy of a bytearray. .pop() returns the
ASCII code for the last character and permanently removes it. .remove(n)
removes the first occurrence of ASCII code n. .replace(a, b) returns a new
bytearray leaving the original unchanged. In the new one, every occurrence of a
is replaced with b. a and b may be either bytearrays or bytes. .reverse()
changes the bytearray by reversing the order of all of its bytes. On top of that, all
of the bytes methods are also available.

 1 >>> x = bytearray(b"abcdefghij")
y = x.copy()
y == x
True
y is x
False
x.pop()
106 # 106 is the ASCII code for 'j'
x
bytearray(b'abcdefghi')
x.remove(101) # 101 is the ASCII code for 'e'
x
bytearray(b'abcdfghi')
x.reverse()
x
bytearray(b'ihgfdcba')
x = bytearray(b"The cat sat on the mat")
x.replace(bytearray(b"he"), bytearray(b"hat"))
bytearray(b'That cat sat on that mat')
x.replace(b"at", b"AT*")
bytearray(b'The cAT* sAT* on the mAT*')
x
bytearray(b'The cat sat on the mat')

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12 >>>
 13
 14 >>>
 15 >>>
 16
 17 >>>
 18 >>>
 19
 20 >>>
 21
 22 >>>
 23

iii. ASCII encodings of non-ASCII data

When binary data needs to be stored using only readable characters, such as
when a graphical image is embedded in an email, there is a commonly used
scheme known as base 64 encoding. The range of upper case letters, lower case
letters and digits adds up to 62 characters. Just adding '+' and '/' gives 64

86

characters that can be used as the 64 digits that would be necessary to write a
number in base 64.

A base 64 digit is worth six binary digits, so the encoding is performed by taking
the binary data six bites at a time. Every three bytes of data results in four digits
of base 64. Line breaks can be inserted to prevent lines from getting too long, they
are ignored on decoding. If the length of the data being encoded isn’t a multiple of
three bytes, then one or two '=' signs are added at the end.

Sadly there are variations in the rules for some applications. Some use '-'
instead of '+', some use ',' instead of '/', some use '_' instead of '/'. Some
require '=' padding if the amount of data indicates it, some make it optional, and
some forbid it. Some specify a maximum line length. There is no common core
version, you have to know the circumstances that you are encoding for.

Python has a base64 module for all of this.

base64.b64encode(data, altchars = None)

data must be a bytes or bytearray object, the returned result will be a
bytes object. Newlines are not added to produce short lines. The optional
altchars parameter must be a length two bytes or bytearray object that
specifies the two characters to be used in place of '+' and '/'.

base64.b64decode(data, altchars = None, validate = False)

performs the obvious opposite operation. It insists that '=' padding is used
when indicated, raising an exception if it is missing. If validate is False,
any characters not in the set of base 64 digits is just ignored. If True they
cause an exception. Even newlines cause an exception.

base64.urlsafe_b64encode(data) and
base64.urlsafe_b64decode(data)

Are the same, but follow the slightly different rules that apply when
something has to be part of a URL. '-' is used instead of '+', and '_'
instead of '/'. Note that there is only one parameter, no options. The
decode option behaves as though validate were False.

There are also versions for different bases, but I’m not going to devote any more
space to them. The official documentation is quite readable.

19. Reading and writing files

So long as you remain aware of the distinction between text files and binary files,
dealing with files is quite straightforward. Nothing even needs to be imported. A
text file is essentially one that can be read easily by humans without any
assistance. Usually they are just a sequence of single byte character codes as
defined by the ASCII standards. Things like Word's .docx files may seem at first
sight to meet this condition, but they don't. Words does a lot of work to make the
contents of the file human readable. A binary file is different. Think of an int from

87

a normal programming language. It will normally by a 32-bit value, giving it a
range of -2147483648 to +2147483647. That is ten digits, plus the possible
minus sign, plus at least one extra character so you can tell when one number
ends and the next begins, so a text file containing ints could need twelve bytes for
each of them. But we know that 32 bits is just four bytes. Inside the computer,
those ints take up only a third as much space. And that is all there is to a binary
file. Data is stored in its internal computer format. Not only can that save a lot of
space, but it also speeds up processing because all those conversions from
decimal to binary are unneeded. Text files usually consist of a number of lines of
characters, but there is no concept of a line in a binary file.

i. Reading text files

There are three stages: first open the file, then read whatever you want from it,
then close it. If you use Idle interactively, it is more important to remember to
close files than it is in other languages. Normally when a program ends any files it
had left open are automatically closed. When you are working interactively, there
isn't really such a thing as a program ending. Most systems limit the number of
files you can have open simultaneously, and on some systems having a file open
prevents any other programs from accessing it.

To open a file, use f = open(filename, "r"), where f is any variable you choose to
use. The value of f is not the file itself, but just enough information to be able to
process it effectively and remember our current position in it. It is an error to try
to open a file that doesn’t exist.

The object returned by open is normally called a file object, but for text files its
type is really _io.TextIOWrapper, and for binary files it is _io.BufferedReader
or _io.BufferedWriter.

Then there are four methods of f that can extract the file's contents:

f.read() reads the entire file all at once, and returns the contents as a long
string, with \n characters to represent the ends of lines.

f.read(n) reads n characters from the file and gives them to you as a string.
The parameter n is measured in characters for text files and in bytes for binary
files, Unicode means there is a difference. It doesn't care about lines. If those n
bytes cover any line ends, the string will contain \ns to represent them, but it
won’t stop reading just because it hits the end of a line. If there are fewer than n
bytes left in the file, you will just get a shorter string. The empty string means that
you are already at the end of the file.

f.readline() reads from the current position to the next end of line and
gives you a string with \n as its last character. When the file ends without a
newline as its last character, the final string you get will also not have a \n at the
end. Empty string means end of file.

f.readlines() reads the entire file from the current position onwards, and
returns it as a list of strings. Each string, except possibly for the last, ends with a
\n character.

88

There is also a special form of a for loop that has the same effect as doing
readline() until the end is reached.

Finally, f.close() closes the file and frees any Python resources that were
associated with keeping it open.

To illustrate, we have a file called file.txt containing the following three lines of
text.

Hello,
one two three,
Cats eat dogs.

We will read the file in each of the four ways. I will use __repr__ when printing
the strings because that makes the \ns visible.

read():
 1 >>> f = open("file.txt", "r")

s = f.read()
print(s.__repr__())
'Hello,\none two three,\nCats eat dogs.\n'
f.close()

 2 >>>
 3 >>>
 4
 5 >>>

read(n):
 1 >>> f = open("file.txt", "r")

while True:
 s = f.read(10)
 if s == "":
 break
 print(s.__repr__())
'Hello,\none'
' two three'
',\nCats eat'
' dogs.\n'
f.close()

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8
 9
 10
 11 >>>

readline():
 1 >>> f = open("file.txt", "r")

while True:
 s = f.readline()
 if s == "":
 break
 print(s.__repr__())
'Hello,\n'
'one two three,\n'
'Cats eat dogs.\n'
f.close()

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8
 9
 10 >>>

readlines():
 1 >>> f = open("file.txt", "r")

s = f.readlines()
s
['Hello,\n', 'one two three,\n', 'Cats eat dogs.\n']
f.close()

 2 >>>
 3 >>>
 4
 5 >>>

89

for:
 1 >>> f = open("file.txt", "r")

for s in f:
 print(s.__repr__())
s
'Hello,\n'
'one two three,\n'
'Cats eat dogs.\n'
f.close()

 2 >>>
 3 ...
 4 >>>
 5
 6
 7
 8 >>>

Different computer systems have different rules for what constitutes the end of a
line of text. Under windows, it is a two character sequence \r\n (ASCII codes 13,
10). Under Unix it is the single character \n, and under some older systems it was
the single character \r. When you open a text file, Python tries to give it to you in
a uniform way, so the sequence \r\n and a single \r will both be converted into a
single \n behind the scenes. To stop this, and leave those characters untouched,
just add a third parameter newline = "" to the open function call.

If a file contains unicode characters you must specify an encoding (almost
certainly UTF8) when opening the file like this:

 1 >>> fi = open("test.txt", "r", encoding = "utf8")

This will still work for ordinary (ASCII only) files, so it would seem that this is the
safest way to open any text file. Unfortunately it isn't. If the file contains any
characters whose byte values are more than 127 (commonly referred to as being in
a code page) it will not work, and there is no practical way of knowing.

ii. Writing text files

To write to a file, you use open and close in the same way as reading, except that
the second parameter to open should be either "w" or "a" instead of "r". With
either of those, a new file will be created if no file with the given name exists. "w"
means that any existing file will be overwritten, all of the original contents will be
lost. "a" means "append", everything you write will be added to the end if the file
already exists.

The only method for writing is called write, and it must take exactly one string as
a parameter. The string is written to the file. You may use write as many times as
needed to build up the entire file. Unlike print, write does not automatically
begin a new line after each call. If you want your file to have lines of text in it, your
strings must contain \n characters at the appropriate positions.

 1 >>> f = open("convert.txt", "w")

for c in range(101):
 f.write(str(c) + " centigrade is")
 f.write(" " + str(c * 9 / 5 + 32) + " fahrenheit\n")
f.close()

 2 >>>
 3 ...
 4 ...
 5 >>>

90

write returns the number of characters written as its result. For some reason
that means that that loop will produce 202 lines of annoying output. Obviously,
when you're working interactively, you'd want to have the results of any
commands or expressions displayed. But in a for loop? That doesn't make sense.
Printing the final result of the loop, if there were one, would make perfect sense.
To avoid the output, I just built a function that encloses the loop. The function
was sensible and kept quiet.

Making use of a special form of the standard print function may be a little more
convenient, as it takes as many parameters as you care to give it, and
automatically applies str to them. This is done by giving print a keyword
parameter called file. Its value should be a file object.

 1 >>> f = open("a.txt", "w")

print(6, "times", 9, "is", 6 * 9, file = f)
print(list(range(10)), file = f)
print("The end", file = f)
f.close()

f = open("a.txt", "r")
f.readlines()
['6 times 9 is 54\n',
 '[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n',
 'The end\n']
f.close()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8 >>>
 9
 10
 11
 12 >>>

If a string contains unicode characters the file must be opened with an extra
parameter specifying the encoding method to use (almost certainly UTF8) as for
reading, otherwise the write or print operations will not work. This time we're in
luck, it is perfectly safe to add this parameter always, so you don't have to know
whether or not unicode characters will appear in advance.

 1 >>> fo = open("test.txt", "w", encoding = "utf8")

iii. Positioning and read/write files

Normally, when working on a file, you start at the beginning, work your way
steadily to the end, and then stop. It doesn't have to be that way. If you are
working with a very large database and know that the data you want is near the
end, you don't want to have to read all the uninteresting data before that point.

f.seek lets you change the position in the file that the next operation will happen
at. It has two parameters. The first says the position you want to go to, measured
in characters. The second says what that position is relative to. 0 means from the
beginning of the file, 1 means from the current position, and 2 means from the
end of the file. For some reason, the only position you're allowed to ask for when
measuring relative to the current position or the end of the file is 0. seek returns
your position in the file after the requested movement. It is OK to seek past the
end of the file. If you write there, the intervening character positions will be filled
with blanks.

91

f.seek(0, 0) goes right back to the beginning of the file.
f.seek(1234, 0) goes back or forward to the 1234th character.
f.seek(0, 1) tells you your current position.
f.seek(0, 2) goes right to the end of the file.

This sort of position control isn't very common with text files, but it does come up.
It is a bit more common when you have a file open for reading and writing at the
same time. To enable that, the second parameter to open should be "r+" or "w+".
The difference is that with "r+" it is an error file the file does not exist and the
file's original contents are there for you to read or overwrite. With "w+" it is OK for
the file not to exist, and existing data is erased as soon as the file is opened.

 1 >>> f = open("xxx.txt", "w+")
f.write("The cat sat on the mat\n")
23
f.write("One two three four\n")
19
f.write("abcdefghijklmnopqrstuvwxyz\n")
27
f.write("Elephants\n")
10
f.seek(22, 0)
22
f.readline()
'\n'
f.seek(23, 0)
23
f.readline()
'\n'
f.seek(24, 0)
24
f.readline()
'One two three four\n'
f.seek(0, 2)
83
f.write("The End.\n")
9
f.seek(57, 0)
57
f.read(20)
'nopqrstuvwxyz\nElepha'
f.close()

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15
 16 >>>
 17
 18 >>>
 19
 20 >>>
 21
 22 >>>
 23
 24 >>>
 25
 26 >>>
 27
 28 >>>
 29
 30 >>>

Notice that the first line written to the file was 23 characters long, but in order to
re-read the second line I had to seek to position 24. This is because of the
character conversions that are done at the end of a line, and I am doing this on a
PC. The single \n that I typed at the end of each string was converted to \r\n, but
the write method didn't include that lengthening in the result it returned. On
seeking to 22, the proper end of the first line, the character seen was \r which
was converted to \n when read. On seeking to 23, where the next line should
begin, there was a real \n. It is very deceptive.

92

There is also an f.tell() method. It returns your current position in the file,
measured from the beginning, without changing it.

iv. Binary files

To specify that a file is binary, not text, and every byte in it should be read and
written exactly as it is, with no conversions, the second parameter to open should
grow a letter b: "rb", "wb", "ab", or "rb+". Everything remains almost the same, but
with these exceptions.

The write method must be given a bytes parameter instead of a string. The type
bytes is described fully in a later section, but it is very much like a string.
constants have a b in front of the opening quote: b"bytes", and when you [index]
to get the individual characters you get ints, ASCII codes, not unicode characters.

There is only one read method. When given no parameters it reads the whole file,
and when given one parameter it reads that number of bytes, just as with text
files. The difference is that it returns a bytes object instead of a string.

Positioning and closing operations remain unchanged.

v. Data packing

Although binary files provide a good way of efficiently and quickly storing and
retrieving data, extracting ordinary data types like ints, floats, strings and so on
from the necessary bytes objects can be a very awkward and error-prone process.
The opposite, squeezing ints and floats and things into bytes objects is just as
bad. Python's struct module goes some way towards improving this. The
methods it provides exactly follow the standard rules for structs in C, even down
to adding bytes of padding to ensure good alignment.

struct operations rely on two things: a format and a buffer. A format is in concept
very similar to Python's % format strings, but in detail is very different. A buffer is
usually a bytes or bytearray object that contains the data to be unpacked, or
will contain the data that gets packed. Remember that when unpacking, data is
being read from the buffer so bytes will do, but when packing, data is going into
the buffer, so immutable bytes will not do and a bytearray becomes necessary.
It is allowed for the buffer to be not really a bytes or bytearray, but something
that behaves like one. I won't bother to mention that again in the descriptions.

Methods that do packing behave a bit like print, the values to be packed are
provided as a sequence of individual parameters. Methods that do unpacking
always return tuples, even if only one thing was unpacked. There is one exception.
iter_unpack returns an iterator for all the extracted items instead of a tuple of
them. The methods are all class methods, you never create a struct object.

pack(format, a, b, c, d, e,)

93

The values a, b, c, d, e, ... are packed according to the format to make a
bytes object which is returned as the result.

pack_into(format, buffer, offset, a, b, c, d, e,)

The values a, b, c, d, e, ... are packed according to the format into the
provided bytearray buffer. Beware: bytearray has append and extend
methods that can enlarge a bytearray, but pack_into will not use them.
You must create the bytearray big enough for everything you intent to
insert, with the constructor bytearray(size). offset says where to start
the packing: if offset is 63 then buffer[63] is the first to receive a byte.
This is so that you can conveniently build up a large buffer with multiple
calls to pack_into.

unpack(format, buffer)

The data in the buffer is unpacked according to the given format and
returned as a tuple. The size of the buffer must exactly match the size that
the format would produce, even being longer than necessary is not allowed.

unpack_from(format, buffer, offset = 0)

The data in the buffer is unpacked according to the given format and
returned as a tuple. The size of the buffer must be at least the size that the
format would produce, being longer than necessary is allowed. offset says
where to start the unpacking. If offset is 63 then the first 63 bytes will be
ignored.

iter_unpack(format, buffer)

The data in buffer is unpacked according to format over and over and over
again until the whole buffer has been used, creating a tuple each time. The
value returned is an iterator that will produce all of those tuples. The size of
buffer must be an exact multiple of the size dictated by format.

calcsize(format)

Returns the size of the bytearray buffer that format would need. This
makes unpack's and iter_unpack's pickiness over buffer size possible to
handle.

Formats are strings that describe each data value with a single character (either a
letter or “?”). The single characters may be preceded by a decimal integer to
provide a repetition count: 5c is equivalent to ccccc. The whole format string may
begin with one of five special characters that apply to the whole rest of the format.

Byte order refers to the representation of data values that are more than one byte
long. For example, the number 22238 requires 16 bits (2 bytes) and is called a
short int. Its hexadecimal representation is 56DE, so its two bytes are, in
hexadecimal, 56 and DE. But which order are those two bytes to be stored in?
Little-endian means least significant first, so the order is DE, 56. Big-endian
means the opposite, most significant first giving 56, DE. In a bytes object 0x56
would appear as V because of the ASCII encoding, 0xDE would appear as \xde.
When numbers are written in decimal it makes no difference, but when numbers

94

are packed into bytes it makes a very big difference. All well-designed data
transfer protocols make it explicit, but sometimes you will not know what the
appropriate endianness is. Python adds two more possibilities: Native means
whatever the C compiler that was used to create the Python you are running used.
Network means what the standard network protocols use to represent IP
addresses and so on. It happens to be identical to big-endian.

Size is simply the number of bytes required to represent a value, and again there
are two options. Native means the same as it does for endianness. Standard
means what the designers of the struct package decided it should be. The two
are almost never going to differ.

Alignment causes extra unnecessary bytes to be inserted in order to give your data
proper alignment. What it means is that a two byte value should start at a
position that is a multiple of two, a four byte value should start at a position that
is a multiple of four, and so on. Two examples should be enough. If your data
consists of an int followed by a byte, everything is OK. Ints are four bytes long,
and the starting position is always zero. If your data consists of a byte followed by
an int, then storing the byte first would naturally result in the int starting at
position 1, so three bytes of padding are added to bring the position up to 4. On
some computers, good alignment just makes access a little faster. On some
(usually very cheap) computers alignment makes no difference at all. On some,
few these days, misalignment is a fatal error to a running program. struct allows
two kinds of alignment: Native, with the same meaning as above, and None which
means that no padding is ever added. If you need the end of the packed data to
align properly with something, use zero repetition count with the format letter for
that something.

Now with that behind us, the optional first character of a format string will be
understandable. If none of these characters appears, @ is assumed.

 character: @ byte order: native size: native alignment: native
 = native standard none
 < little standard none
 > big standard none
 ! network standard none

The format letters:

letter Python type C type standard size
B int unsigned char 1
b int signed char 1
c bytes, len = 1 char 1
d float double 8
e float (none) 2
f float float 4
H int unsigned short 2
h int short 2
I int unsigned int 4
i int int 4

95

L int unsigned long 4
l int long 4
N int size_t (none)
n int ssize_t (none)
P int any pointer (none)
p bytes char array (none)
Q int unsigned long long 8
q int long long 8
s bytes char array (none)
x b"\0" char = 0 1
? bool _Bool 1

N and n are only allowed with native size
P and p are only allowed with native byte order.
p is not a real C string. It is limited to 255 bytes length, the length is stored in the
first byte, and there is no terminating zero byte.
s: the repetition count is not a repetition count, it is the length of the bytes
object.

 1 >>> import struct
struct.pack("s", b"Hello")
b'H'
struct.pack("5s", b"Hello")
b'Hello'
struct.pack("10s", b"Hello")
b'Hello\x00\x00\x00\x00\x00'
struct.pack("p", b"Hello")
b'\x00'
struct.pack("2p", b"Hello")
b'\x01H'
struct.pack("6p", b"Hello")
b'\x05Hello'
struct.pack("10p", b"Hello")
b'\x05Hello\x00\x00\x00\x00'
struct.pack("<i", 22238)
b'\xdeV\x00\x00' # DE 56 00 00
struct.pack(">i", 22238)
b'\x00\x00V\xde' # 00 00 56 DE
x = struct.pack("9h", 2, 3, 4, 8, 7, 6, 4, 7, 9)
x
b'\x02\x00\x03\x00\x04\x00 ... \x00\x04\x00\x07\x00\t\x00'
struct.unpack("9h", x)
(2, 3, 4, 8, 7, 6, 4, 7, 9)
y = struct.iter_unpack("3h", x)
list(y)
[(2, 3, 4), (8, 7, 6), (4, 7, 9)]
x = struct.pack("i7p?", 7636374, b"blue", True)
x
b'\x96\x85t\x00\x04blue\x00\x00\x01'
struct.unpack("i7p?", x)
(7636374, b'blue', True)
struct.unpack("hh6pBB", x)
(-31338, 116, b'blue', 0, 1)

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15
 16 >>>
 17
 18 >>>
 19
 20 >>>
 21 >>>
 22
 23 >>>
 24
 25 >>>
 26 >>>
 27
 28 >>>
 29 >>>
 30
 31 >>>
 32
 33 >>>
 34

96

vi. CSV files

CSV (Comma Separated Values) files are a common way of storing very simple
databases or spreadsheets. They are exactly as their name suggests. They are text
files in which each line represents an individual record, and that consists of a
unform number of fields or attributes. They can be slightly complicated to process
for a few reasons. There may or may not be spaces next to the commas, it doesn't
have to be commas that do the separating, if a data field actually contains a
comma it needs to be quoted in some way, and that brings about the question of
what to do when a data field needs to contain a quote. Sometimes there is a
special line at the top whose fields are not data, but the names of the fields in the
data lines that follow.

Here is a small part of a very basic CSV file:

"atomic number", name, symbol, "atomic weight"
1, Hydrogen, H, 1.00794
2, Helium, He, 4.002602
3, Lithium, Li, 6.941
...

To deal with a CSV file in Python, import the csv module, and open the file in the
normal way, specifying that ends of lines should be left alone (newline = ""), then
use the class method reader or writer from csv to create a new object based on
your file. These methods take an optional keyword parameter to say what the
separator character is (delimiter = ","), the default value is a comma.

The reader object can be treated as an iterable (a list-like thing):

 1 >>> import csv
f = open("table.csv", "r", newline = "")
cr = csv.reader(f)
for row in cr:
 print(row)
['atomic number', 'name', 'symbol', 'atomic weight']
['1', 'Hydrogen', 'H', '1.00794']
['2', 'Helium', 'He', '4.002602']
['3', 'Lithium', 'Li', '6.941']
...
f.close()

 2 >>>
 3 >>>
 4 >>>
 5 ...
 6
 7
 8
 9
 10
 11 >>>

As you can see, you get a list for every line in the file, and every piece of data is
presented as a string. There is no widely accepted method for recording the proper
types of each of the fields in a CSV file, the user has to be aware of what the data
is, and use int(...), float(...), or whatever as needed.

The writer object has two useful methods. writerow is given a list, or list-like-
thing, of strings and it returns the total length of the line written. writerows is
given a list of those row lists and returns nothing.

97

 1 >>> f = open("newtable.csv", "w", newline = "")

cw = csv.writer(f)
cw.writerow(["Henry", "Smith", "1234"])
18
cw.writerow(["Jenny", "Jones", "6235"])
18
cw.writerows([["Arthur", "O'Pod", "6731"],
 ["Sally", "X", "1984"],
 ["Wally", "McKay", "6935"]])
f.close()

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9
 10 >>>

There are two variations on reader and writer, they work with dictionaries
instead of lists and are called DictReader and DictWriter.

csv.DictReader(file, names), like csv.reader(file), builds a reading object
from an already open file. The names parameter should be a list containing the
names of the fields in each row, as strings. If the names parameter is None or left
out, the field names will be taken from the first line of the file. Each row of data
from the file will be returned as a dictionary.

 1 >>> fimport csv
f = open("table.csv", "r", newline = "")
cdr = csv.DictReader(f)
for row in cdr:
 print(row)
{'atomic number': '1', 'name': 'Hydrogen',
 'symbol': 'H', 'atomic weight': '1.00794'}
{'atomic number': '2', 'name': 'Helium',
 'symbol': 'He', 'atomic weight': '4.002602'}
{'atomic number': '3', 'name': 'Lithium',
 'symbol': 'Li', 'atomic weight': '6.941'}
...
f.close()

 2 >>>
 3 >>>
 4 >>>
 5 ...
 6
 7
 8
 9
 10
 11
 12
 13 >>>
 14

csv.DictWriter(file, names) is very similar, but this time the names parameter
is required, and the parameters you give to writerow must be dictionaries. The
names parameter must be a list containing exactly the names of all the keys those
dictionaries will have. It is used to determine the order that the values are written
to the file. writerows still works too. There is also a writeheader() method that
may be used before any calls to writerow or writerows. It writes those keys, in
the order given, as the first row in the .csv file.

vii. File-like objects

io.StringIO is a class whose objects behave as files, but only exist in memory.
The allow complex strings to be built up one part at a time over a long period, or
the reverse, to let you extract things from a string in the same way as you would
from a file. The constructor can take nothing at all, in which case the “file” starts
empty, or it can take a string which provides the initial contents.

98

The “file” position starts off as 0, so read operations will be able to get the whole
thing. That of course means that write or print operations will overwrite the initial
contents. You can avoid this by using that standard file seek method.

 1 >>> from io import StringIO
sio = StringIO("Elephants\none two three\nThe End\n")
print(1, 2, 3, file = sio)
sio.readlines()
['nts\n', 'one two three\n', 'The End\n']
sio.seek(0, 0)
0
sio.readlines()
['1 2 3\n', 'nts\n', 'one two three\n', 'The End\n']
print('afterwards', file = sio)
sio.readlines()
[]
sio.seek(0, 0)
0
sio.readlines()
['1 2 3\n', 'nts\n', 'one two three\n',
 'The End\n', 'afterwards\n']

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17

There is also an io.BytesIO class which behaves exactly the same way except
that it is all based on bytes objects instead of strings.

20. Classes

Class definitions provide a template for creating new objects. Classes and objects
usually contain variables (usually called members, but Python likes to call them
Class definitions provide a template for creating new objects. Classes and objects
usually contain variables (usually called members, but Python likes to call them
attributes) and functions (which are properly called methods when they belong to
a class or object). Each of those can come in two different varieties, the static or
class kind, and the normal or object kind. Imagine that you have somehow
invented a new kind of number, and you want to write Python programs that can
work on numbers of this kind. You would define a class that says how these
numbers work: what data is needed to represent them, and what operations are
possible and how they are performed. From this class definition that just says
general things about how everything works, you would be able to create objects or
instances to be the actual numeric values of this new kind. Let's say this new kind
of number is called a newnum. A bit of program using them might look like this:

 1 >>> a = newnum("twenty-three")
b = newnum("six-and-a-half")
c = a + b
d = c.magnitude()
print(c)
twenty-nine-and-a-half

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6

In that, newnum is the class name, and can be used as a function to create new
values (objects or instances), you would have to define a method to say how that

99

happens. + is an operator on newnums, you would also have to define a method to
say how that works. magnitude is just a method, which you would also have to
define. print is the normal familiar Python print, you would have to define a
method that tells print what newnums should look like when printed.

+ and magnitude are regular methods, they can only be used if you already have a
newnum instance for them to work on. But when newnum itself is used as a
function, that's different. It doesn't need an existing newnum to work on, it just
makes them. What if you wanted something that keeps track of the number of
newnums that have been created, or the biggest newnum yet created in this
program? Neither of those methods needs a newnum to work on, they are totally
independent of any particular newnum, but are obviously something closely
connected to newnums. And you might want to provide a value that represents π.
That would certainly be a newnum, but again, it does not depend on any existing
newnum instances, you can use it even if you have not yet created any newnums in
your program. These last four things, the constructor newnum(...), count(),
biggest(), and pi, which don't need any existing instances to do their job are
class or static methods (or attribute in the case of pi).

ii. Defining a class

A class definition begins with the keyword class, then the name of the new class,
then a colon, followed by the definitions of members and static variables, all
evenly indented below the class. The idea of a newnum is too complicated for a
reasonable example, so let's go with fractions instead. Every fraction is
represented by a numerator and a denominator (top and bot for short) ...

 1 >>> class fraction:

 count = 0

 def __init__(self, t, b):
 self.top = t
 self.bot = b
 self.simplify()
 fraction.count += 1

 def magnitude(self):
 return abs(self.top / self.bot)

 def simplify(self):
 div = math.gcd(self.top, self.bot)
 if div != 1:
 self.top /= div
 self.bot /= div

 def add(self, other):
 newtop = self.top * other.bot + other.top * self.bot
 self.bot = self.bot * other.bot
 self.top = newtop
 self.simplify()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...

100

 25 ...
a = fraction(1, 4)
b = fraction(1, 6)
print(a.magnitude())
0.25
a.add(b)
print(fraction.count)
2

 26 >>>
 27 >>>
 28 >>>
 29
 30 >>>
 31 >>>
 32

First we have the assignment count = 0. When an assignment appears directly
inside a class definition, it creates a static attribute. It is shared by every
instance ever created, and is accessible to the whole world, as demonstrated by
our ability to print it right at the end. Inside methods, or in the outside world, you
must refer to count as fraction.count. If you just say count, it will be assumed
to be a new variable local only to where it appears.

Next look at the definition of magnitude. The best was to see how big a fraction is,
and do easy comparisons, is to do the division that the fraction represents. When
a represents the fraction 1/4, we would divide a's top, 1, by a's bot, 4, to produce
0.25. magnitude is an ordinary instance method. When a is a fraction, you call
the method to find a's magnitude by writing a.magnitude(). Every non-static
method must be given an extra first parameter, usually called self, but you can
call it anything you want. If a is a fraction, then writing a.magnitude() really
produces the function call fraction.magnitude(a). The first parameter is
always automatically set to the object that the method was called on, that's why it
is usually called self. Whenever you refer to an object's attribute or method, you
must connect the object to the name of the attribute or function with a dot, hence
self.top.

Next, go down to the definition of add. This is not meant to represent the +
operation, but more like the += update. a.add(b) means that you want to change
a by adding the value of b to it. Just as with the magnitude method the call
a.add(b) is automatically converted to fraction.add(a, b). self is a and
other is b. self.top = ... updates a's top. So you can see how add works, the
normal rules for arithmetic on fractions are used to calculate a's new numerator
and denominator, and the result is simplified: 2/3 + 5/12 would naturally result
in 39/36 which is correct but unsatisfactory, the common divisor, 3, must be
factored out to produce 13/12.

All that remains is __init__. This is how constructors are defined, they always
have the name __init__. Whenever a class name is used to create a new object,
as in fraction(1, 4), first a new empty object is created and connected to the
class definition so that the methods can be found when needed. Then the class’
__init__ method is called with the new empty object as its first parameters, and
the remaining original parameters (1, 4) follow as the second and further
parameters. All you need to do to create an ordinary instance variable or attribute
is to assign something to it inside a method. If it doesn't already exist, it will be
created. Of course, assigning to an attribute that does exist just updates the
existing value.

101

Of course you would never just type a class definition into Idle like that, you'd
type it into a file, maybe called fraction.py and import it. fraction.py would
need import math at the top, and the session would really look like this:

 1 >>> import fraction as fra
a = fra.fraction(1, 4)
b = fra.fraction(1, 6)
print(a.magnitude())
0.25
a.add(b)
print(fra.fraction.count)
2

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>
 8

iii. Destructors

A destructor is a method that is called when an object can never be accessed
again. This happens when there is nothing left in the Python environment that
contains (a reference to) the object, or when del is used on the object. A
destructor is just a method named __del__ that has no parameters apart from
self.

 1 >>> class notify_when_gone:
 def __init__(self, n):
 self.name = n
 def __del__(self):
 print(self.name, "gone")

y = notify_when_gone("first")
z = notify_when_gone("second")
y = 66
first gone
del z
second gone
notify_when_gone("third")
<__main__.notify_when_gone object at 0x000001F0B00A59D0>
x = notify_when_gone("fourth")
L = [1, 2, x, 4, 5]
x = 999
L[2] = 3
fourth gone

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16 >>>
 17 >>>
 18 >>>
 19

The example of “third” shows that sometimes Python doesn’t notice that an object
is inaccessible. The third object was never held anywhere, so as soon as it was
printed it was discarded. Sometimes when I do something like this, Python notices
and calls the destructor after the very next command, but as above, sometimes it
doesn’t.

If you are used to programming in languages like C++, destructors are very
important. They are your last chance to release any memory allocated by your
object. Because Python has automatic garbage collection, this is not the case here.
Any memory used for objects that are inside your object become inaccessible as

102

soon as the object itself does (unless something that still exists has a reference to
it) so they are automatically deleted.

But Python destructors are not useless. Very often an object will have some active
data that needs to be saved. If there is a chance that your own shut-down method
might not be called, a destructor makes things safe. The fact that Python
sometimes doesn't notice the loss of an object (which I suspect is a mistake that
might be fixed soon) means that __del__ is not up to the task. A safer solution
would be to enclose everything in a try ... except construction (coming later) that
catches every possible failure (just have an except for BaseException) and call
an ordinary method for closing down at every possible exit point.

A method may be taken from an object and be used as a function independently,
it retains access to the object’s state:

iv. Special uses of methods

 1 >>> one = fra.fraction(1, 1)

incrementer = one.add
thing = fraction(5, 2)
incrementer(thing)
fraction(7, 2)

 2 >>>
 3 >>>
 4 >>>
 5

A partial method is identical to an existing method with some of its parameters
already provided, an import from functools is needed first.

 1 >>> from functools import partialmethod
class strange:

 def bigmethod(self, a, b, c, d, e):
 self.first = a
 self.second = b
 self.third = c
 self.fourth = d
 self.fifth = e

 def show(self):
 print([self.first, self.second, self.third,
 self.fourth, self.fifth])

 mediummethod = partialmethod(bigmethod, "AAA", "BBB")
 littlemethod = partialmethod(mediummethod, "CCC", "DDD")
 emptymethod = partialmethod(littlemethod, "EEE")

obj = strange()
obj.bigmethod(1, 2, 3, 4, 5)
obj.show()
[1, 2, 3, 4, 5]

obj.mediummethod(11, 12, 13)
obj.show()
['AAA', 'BBB', 11, 12, 13]

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18
 19 >>>
 20 >>>
 21 >>>
 22
 23
 24 >>>
 25 >>>
 26
 27

103

 28 >>> obj.littlemethod(1111)
obj.show()
['AAA', 'BBB', 'CCC', 'DDD', 1111]

obj.emptymethod()
obj.show()
['AAA', 'BBB', 'CCC', 'DDD', 'EEE']

 29 >>>
 30
 31
 32 >>>
 33 >>>
 34

Keyword parameters can be handled exactly as with functoold.partial from the
section on special operations on functions.

v. Constants

Python has no real concept of a constant. If somebody really wants to change
something, they can probably find a way. Instead it relies on people following
various conventions. If you see an attribute whose name begins with a single
underline, that means that the designer of this class is telling you that you really
should not change its value, correct operations depend on it only being set in
certain ways. You can come close to making a constant by defining something as a
property. That is described in the methods acting as attributes subsection of the
section on decorators.

vi. Useful attributes and methods

The type function, applied to an object, will return a class object. A class object
has attributes called __name__ and __qualname__, they tell you the class’ name
as a string. qualname is needed to get a unique name for a class that was defined
inside another class. Every object created from a class has a __dict__ attribute
that contains all of its attributes and their values as a dictionary. Remember that
__dict__ is only for objects created from a class definition, not for Python’s own
objects sich as dicts and strs. The __dict__ for an ordinary object created from
a class definition does not include the methods, but for a class object, it does. A
class’ __bases__ attribute lists all the classes that it inherited from, __mro__
shows the order they will be searched in.

A class object's __subclasses__ is a method that returns a list of all the
currently in-use classes that inherited from it. class objects also have a __new__
method that can be used to create an object without calling the constructor. The
__new__ method must be given the class itself as a parameter. The created object
will have no instance attributes, but it will still have all of its methods. Using the
fraction example again:

 1 >>> o = fra.fraction.__new__(fra.fraction)

o.__dict__
{}
o.simplify() # error because o has no top or bot but simplify uses them
o.top = 24
o.bot = 60
o.magnitude()

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8

104

 9 >>> 0.4
o.top, o.bot
(24, 60)
o.simplify()
o.top, o.bot
(2, 5)

 10
 11 >>>
 12 >>>

13

21. Operators and printing for objects

Now we can make things more sophisticated. We want to be able to use familiar
operators like + or += instead of having to type out long method names, and we
want print to know how to show a fraction. To make an operator work, you just
define methods with the same names as the operator... functions from the
section on operators as functions, except that the names have to begin and end
with __. For the update operators, you usually just put the letter i in front of the
normal operator's name. Just to support addition, these two definitions would be
added to the fraction class:

 1 ... def __add__(self, other):
 newtop = self.top * other.bot + other.top * self.bot
 newbot = self.bot * other.bot
 r = fraction(newtop, newbot)
 r.simplify()
 return r

 def __iadd__(self, other):
 newtop = self.top * other.bot + other.top * self.bot
 self.bot = self.bot * other.bot
 self.top = newtop
 self.simplify()
 return self

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...

Then we could say things like this:

 1 >>> a = fra.fraction(1, 4)
b = fra.fraction(1, 6)
c = a + b
a += b

 2 >>>
 3 >>>
 4 >>>

Note that the update operators are required to return the new value, it isn't
enough just to update self. In fact, there is no point in updating self, because
when Python sees a += b, it isn't really translated to a.__iadd__(b), but to a =
a.__iadd__(b), so updating self is a total waste of time. In fact we might just
as well write the following, we've already done all the work for __add__, so why
duplicate it?

 1 ... def __iadd__(self, other):
 return self + other 2 ...

In fact, we could go even further. If a class has no definition for __iadd__, but a
programmer uses a += b anyway, it is still OK. Python will in that case translate

105

it to a = a.__add__(b) or indeed just a = a + b. The __iadd__ and so on
operators are only used when you want a += b to mean something different from
a = a + b, and that is usually not a good idea at all. So a perfectly reasonable
way to do it is to just not bother with defining __iadd__ at all.

ii. Update assignments with mutability

But things are different if you consider mutability. Our fractions are mutable
objects. We should probably prefer them to be immutable like other forms of
number, but as things stand they are not. Things become different for update
operators when different variables hold the same object. id and is can be used to
detect this situation:

 1 >>> a = fra.fraction(1, 4)
b = fra.fraction(1, 4)
c = a
id(a)
1999823809552
id(b)
1999823829648 # different from a
id(c)
1999823809552 # same as a: a and b are the same object
a is b
False
a is c
True
a.top = 99
(a.top, a.bot), (b.top, b.bot), (c.top, c.bot)
((99, 4), (1, 4), (99, 4))

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15 >>>
 16

With mutable objects, this is the way it is supposed to work. Changes to an object
should be reflected in all variables that refer to it. But if we don’t define our own
__iadd__, then __add__ followed by an assignment will be used, and __add__
creates a new object, so we would see:

 1 >>> a = fra.fraction(1, 4)
b = fra.fraction(1, 4)
c = a
a += b
id(a)
1999823809552
id(b)
1999823829648
id(c)
1999823827600
a is c
False
(a.top, a.bot), (c.top, c.bot))
((1, 2), (1, 4))

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14

a and c have clearly stopped sharing. But if we go back to our original version of
__iadd__, we'll see that it doesn't create any new objects at all. It updates self

106

and returns self, so in a += b, self is a, and a = a.__iadd__(b) results in a
being assigned its own self. Its contents have been changed, but it is the same
object. It will still be shared with c.

You can define how (almost) any operator works for your classes just by creating a
method with the same name as one of the operator-dot functions from the section
on operators as functions. This only applies to those methods that actually
correspond to Python operators. Those that are always used as methods, such as
a.count(b) should just be defined as methods with exactly the same names. But
you must surround their names with double underlines, as you saw in the
examples. __matmul__ is intended for matrix multiplication but can be used for
anything. It gets called when you write a @ b. @ is an otherwise meaningless
operator with the same priority as multiplication and division.

The full list of operator method names is:

+ __add__(self, other) += __iadd__(self, other)
- __sub__(self, other) -= __isub__(self, other)
+ __pos__(self) (unary) - __neg__(self) (unary)
* __mul__(self, other) *= __imul__(self, other)
// __floordiv__(self, other) //= __ifloordiv__(self, other)
/ __truediv__(self, other) /= __itruediv__(self, other)
% __mod__(self, other) %= __imod__(self, other)
** __pow__(self, other) **= __ipow__(self, other)
& __and__(self, other) &= __iand__(self, other)
| __or__(self, other) |= __ior__(self, other)
^ __xor__(self, other) ^= __ixor__(self, other)
<< __lshift__(self, other) <<= __ilshift__(self, other)
>> __rshift__(self, other) >>= __irshift__(self, other)
<< __lshift__(self, other) <<= __ilshift__(self, other)
< __lt__(self, other) > __gt__(self, other)
<= __le__(self, other) >= __ge__(self, other)
== __eq__(self, other) != __ne__(self, other)
@ __matmul__(self, other) @= __imatmul__(self, other)
~ __invert__(self)

You may have noticed that there are no special methods for defining how
assignment, and, or, and not should work. There is no way to change the
behaviour of an ordinary assignment statement like a = b. The others are absent
because of Python’s view of truth and falsity. Recall that in conditions, such as
“if x:”, any value of x that is sort-of zero like, or in some way empty, it will be
taken as True, otherwise it will be taken as False. If you want some control over
how your objects behave in conditions, just define a method __bool__(self)
which simply returns True if you think the object should be considered true, and
False if you don't. You can also define __int__(self) and __float__(self) to
control how typecasts work.

iii. Printing

Now for print(...). There are two special methods that you will probably want to
define for any new class, and they are __str__(self) and __repr__(self).

107

They are both supposed to return a string that is exactly how the object should be
displayed. When an object is the final result of an interactively entered
computation, Python uses the __repr__ method. When print is called, it uses the
__str__ method. The difference is because print is supposed to make nice
polished friendly output, but when you're testing things interactively you are likely
to be debugging, and will want to be sure you know what you're looking at. So
__repr__ returns a string that gives as much information as possible, and
__str__ returns a string that is pleasing to the eye. Perhaps we would add:

 1 ... def __str__(self):
 sign = ""
 t = self.top
 b = self.bot
 if b < 0:
 t = - t
 b = - b
 if t < 0:
 t = - t
 sign = "-"
 if t == 0:
 return "0"
 if t < b:
 return sign + str(t) + "/" + str(b)
 whole = t // b
 t -= whole * b;
 if t == 0:
 return sign + str(whole)
 if sign:
 return "-(" + str(whole) + " " + str(t) + "/" + str(b) + ")"
 else:
 return str(whole) + " " + str(t) + "/" + str(b)

 def __repr__(self):
 return "fraction(" + str(self.top) + ", " + str(self.bot) + ")"

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...

then

 1 >>> fra.fraction(5, 12)
fraction(5, 12)
print(fra.fraction(5, 12))
5/12
fra.fraction(17, 2)
fraction(17, 2)
print(fra.fraction(17, 2))
8 1/2
print(fra.fraction(17, -2))
-(8 1/2)

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

22. Special methods for classes

If, somehow, your program knows the name of an attribute as a string, it can use
the functions (not methods) getattr and setattr to look at or change that

108

attribute, and hasattr to check that it exists before trying to use it. Best
understood when seen in action:

 1 >>> a = fra.fraction(27, 12)
getattr(a, "top")
27
setattr(a, "top", 77)
a
fraction(77, 12)
hasattr(a, "top")
True
hasattr(a, "Herbert")
False

 2 >>>
 3
 4 >>>
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

If you want to change the way that attributes are accessed, there are three special
methods. Here's an example of the first, as part of the fraction class:

 1 ... def __getattr__(self, name):
 if name == "sum":
 return self.top + self.bot
 elif name == "top":
 return "Access denied!"

a = fra.fraction(27, 12)
a.sum
39
a.top
27

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 >>>
 9
 10 >>>
 11

You will remember that our fractions do not have an attribute called sum. With
this definition in place, we are pretending that there is an attribute called sum.
Any time you look at the value of a.xxx or getattr(a, "xxx"), if a's class has
no attribute called xxx, the __getattr__ method will be used. It only changes
what happens if you try to access something that doesn't exist. Anything that does
exist will just work the normal way, as you can see where the example asked for
a.top. There is a very similar method called __getattribute__ that is used for
things that do exist as well as those that don't, but using it makes it just about
impossible to do anything.

The second controls how attributes are changed. This one is used for attempts to
change anything, regardless of whether it exists or not:

 1 ... def __setattr__(self, name, value):
 if name == "top":
 print("changing top from", self.top, "to", value)
 self.__dict__[name] = value

a = fra.fraction(27, 12)
changing top from Access denied! to 27
a.bot = 43
a.top = 17
changing top from 27 to 17
a
fraction(17, 43)

 2 ...
 3 ...
 4 ...
 5
 6 >>>
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12

109

The possibly surprising output after the assignment a = fra.fraction(27, 12) is
because when the constructor is called, it does the assignment self.top = t, that
triggers the “changing top” warning. But top doesn't quite exist yet, it is the
completion of that assignment that makes it spring into existence. So when the
warning is produced, top is non-existent, so __getattr__ is used. Notice that
__getattr__ doesn’t cover all the possibilities. It does nothing unless the
attribute is sum or top. When a function doesn't end with a return, Python makes
it return None, so we will never get the normal error from trying to look at an
attribute that doesn’t exist.

The last line of __setattr__, or something like it, is required if you want to be
able to do anything with these objects. Every assignment to an attribute triggers
__setattr__, so if it is to be possible to ever assign to an attribute, even in the
constructor, there must be some way to reproduce normal behaviour. This works
because objects are really implemented as dictionaries. The keys are the method
and attribute names, and the values are obviously their values. That dictionary is
made available to us under the name __dict__.

The third is for when del is used. del’s job is to make things go away. If you were
to say del a.top, then a’s top attribute would disappear. It isn't just zeroed or set
to None, it just doesn't exist any more, top is removed from a's __dict__. As well
as saying del a.top, you could instead say delattr(a, "top").

If there are attributes that must be kept at all costs, or if you just want to be
warned when something is deleted, we need a __delattr__ method, like this:

 1 ... def __delattr__(self, name):
 if name == "top" or name == "bot":
 printf("You can not delete", name)
 else:
 self.__dict__[name] = None

 2 ...
 3 ...
 4 ...
 5 ...

This makes the top and bot attributes indestructible. It also softens the
behaviour on deleting any other attributes that may exist, instead of removing
them from the object, it just erases their values. Normally, after saying del a.xxx,
an access to a.xxx would cause an error. With this, it would not, it would produce
None instead. But this has an unfortunate effect. If ever you del an attribute that
doesn't exist, it springs into existence with the value None. That is almost certainly
not what would be wanted. The last part should probably have been

 4 ... elif name in self.__dict__:
 self.__dict__[name] = None 5 ...

__getitem__ and __setitem__ define how an object behaves when accessed with
square brackets, and __len__ tells the standard len function how to work.
Perhaps we want to be able to pretend fractions are like arrays, with [1] being
top and [2] being bot:

 1 ... def __getitem__(self, index):

110

 2 ... if index == 1:
 return self.top
 elif index == 2:
 return self.bot
 else:
 return None

 def __setitem__(self, index, value):
 if index == 1:
 self.top = value
 elif index == 2:
 self.bot = value

 def __len__(self):
 return 2

a = fra.fraction(27, 12)
a[1]
27
a[2]
12
a[1] = 99
a
fraction(99, 17)
len(a)
2

 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17
 18 >>>
 19 >>>
 20
 21 >>>
 22
 23 >>>
 24 >>>
 25
 26 >>>
 27

The __call__ method is also quite useful. It lets an object behave like a function
and be called.

 1 >>> class multiplier:

 def __init__(self, value):
 self.value = value

 def __call__(self, other = 1):
 return self.value * other

trebler = multiplier(3)

trebler(6)
18
trebler()
3
callable(math.sqrt)
True
callable([1, 2, 3])
False
callable(trebler)
False
callable(multiplier)
True

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18
 19 >>>
 20
 21 >>>
 22

Here, trebler is an object of type multiplier, whose value is 3. Its __call__
method just has one optional parameter beyond the required self. So when we do
what looks like a function call, trebler(), the __call__ method is used and the

111

default other of 1 is multiplied by value. If we do provide a parameter, it gets
trebled. trebler is not a function, but it can pretend to be one.

The callable function tells you whether or not something can be used as though
it were a function. multiplier is callable not because of its __call__ method (it
hasn't really got one, methods belong to objects, they can't be used on the class
itself) but because the way we use it as a constructor, multiplier(3), looks like
a function call.

ii. Automation with dataclass

Many classes that a programmer creates have obvious constructors (just provide
values for all of the attributes in order as parameters) and __repr__ methods
(just show the name of the class followed by all of the attributes and their values)
and so on. But Python knows nothing of obviousness, so we have to type them
anyway. dataclass allows us to state that things should be done the obvious
way, and does those things automatically. dataclass is an example of a
decorator. We'll see how to create decorators in the next section.

 1 >>> from dataclasses import dataclass

@dataclass
class thing:
 name: str
 number: int = 0

 def get_more(self, n):
 self.number += n

a = thing("cat", 8)
b = thing("bat")
a
thing(name='cat', number=8)
b
thing(name='bat', number=1)
a == b
False

 2
 3 >>>
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10
 11 >>>
 12 >>>
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18

@dataclass must appear immediately before the class definition, and does not
want extra indentation. Very un-Python-like, but there we are. With that, anything
that appears to be a class variable with a type hint stops being a class variable
and becomes an instance attribute instead. A type hint is a colon followed by a
type name, any type will do. Type hints are not enforced in any way. For lists and
such things, you should also say what it is a list of, e.g. list[int]. Any initial
value given to the variable becomes a default value in the constructor.

The __init__ (constructor) method is automatically added. It takes as parameters
initial values for all of the known attributes, in the same order as they appeared. A
__repr__ method and an __eq__ method are also added as shown in the
example. __eq__ just checks that all the attributes have equal values.

112

If you give the dataclass an order parameter (keyword only) of True, it will also
generate __lt__, __le__, __gt__, and __ge__ methods so that the comparison
operators will also work. They just compare the attributes in their given order
until a difference is found.

 1 >>> @dataclass(order = True)

... class definition as before

... and create a and b as before

a < b
False

 2 ...
 3 ...
 4
 5 >>>
 6

If frozen is True, all of the attributes become read-only. Setting eq to False
prevents the __eq__ method from being generated, so the == operator will not
work.

If eq and frozen are both True (eq is by default but frozen isn’t) then a
__hash__ method will be generated and your objects will be able to be stored in
sets and used as keys in dictionaries. Setting unsafe_hash to True forces a
__hash__ method to be created regardless of anything else.

The default value given to an attribute in a dataclass may be given by a call to the
field function. All of its parameters are keyword only.

kw_only
If this is set to True, then this field’s parameter in the constructor will
be keyword-only. This is not the default behaviour.

default = d
d will be the default value, x: int = field(default = 3) is the same
as x: int = 3.

default_factory = f
f must be something that can be used as a zero-parameter function.
Every time a default value is needed for this attribute, f will be called
to generate it. You can't have both default and default_factory.

init default True
If this is False, the constructor will not have a parameter
corresponding to it.

repr default True
If this is False, this attribute will not appear in the string returned by
__repr__.

compare default True
If this is False, this attribute will be ignored in any comparison: ==,
!=, <, <=, >, or >=.

hash default None
If this is True or if it is None and compare is True (which it is by
default), this attribute will be taken into account in the __hash__
method.

The function fields allows you to see all of these special attributes and their
details. It may be applied to an object or the class. But the same information is

113

available through a few ordinary attributes, and if you only want the basics, they
may be easier to deal with.

 1 >>> a.__annotations__

{'name': <class 'str'>, 'number': <class 'int'>}
a.__dataclass_params__
_DataclassParams(init=True,repr=True,eq=True,order=False,
 unsafe_hash=False,frozen=False)
a.__dataclass_fields__
{'name': Field(name='name',type=<class 'str'>,default=<da
 ... kw_only=False,_field_type=_FIELD),
 'number': Field(name='number',type=<class 'int'>,default
 ... kw_only=False,_field_type=_FIELD)}

 2
 3 >>>
 4
 5
 6 >>>
 7
 8
 9

10

Sometimes it is important that a constructor should receive some information to
aid in the construction of an object, but there is no future need for that
information so it would be wasteful for it to be stored as an attribute of the object.
InitVar is for that. Instead of just saying the type of a variable you put the type
inside square brackets after the word InitVar:

 1 >>> capitalise_name: InitVar[bool] = False

capitalise_name will be a parameter to __init__ with a default value of False,
but the object created will not have a capitalise_name attribute.

23. Decorators

Static attributes and class attributes are exactly the same thing, but static
methods and class methods are supposedly different. A class method is as
described at the beginning of this section. Class methods have access to all of the
class’ class or static members or methods. Static methods don't. Except that
nothing in a class is private, anything can access everything just by using the
name of the class, so there really isn't much of a distinction.

i. Class methods

To make a class method, put the symbol @classmethod on a line on its own,
immediately before the def for the method. Yes, that is ugly syntax. A class
method, just like a normal one, receives an automatic extra first parameter. This
time, it isn't self, it doesn't represent the object that the method was called on
(because there won't be one), but the class it is part of. If we want a method that
makes use of the class attribute counter to tell us if any fraction objects have
been created yet:

 1 ... @classmethod
 def have_any_been_created_yet(thisclass):
 return thisclass.counter != 0

reload(fra)

 2 ...
 3 ...
 4
 5 >>>

114

 6 >>> fra.fraction.have_any_been_created_yet()
False
a = fra.fraction(3, 7)
fra.fraction.have_any_been_created_yet()
True

 7
 8 >>>
 9 >>>
 10

There is something very odd about the way Python loads classes. In experimenting
with this, I originally started with the exact class definition as shown. After a few
runs and reloads, I added a class variable to represent π by adding the line
 pi = fraction(22, 7)
just below the counter = 0. Everything worked exactly as expected, over many
reloads. But then I closed the Idle session and restarted it, and couldn’t import
fraction any more. It always gave an error at the definition of pi, saying that
fraction has not been defined. That isn’t really the Python way, functions and
methods can refer to themselves without anything special, so why can't a class
make use of its own constructor? Moving the definition of pi to below the
constructor made no difference. This still mystifies me.

But it does make a useful introduction to another use of class methods, which is
in implementing the “singleton” design pattern. Sometimes we want to be sure
that only one object with some special meaning should ever be created.
Subsequent attempts to create an identical object should not fail, they should just
return the same already-created object. Pi is a good example of this.

 1 ... pi_value = None # a class attribute

 @classmethod
 def pi(thisclass):
 if thisclass.pi_value == None:
 thisclass.pi_value = fraction(22, 7)
 return thisclass.pi_value

x = fra.fraction.pi()
x
fraction(22, 7)
y = fra.fraction.pi()
id(x)
2737869046864
id(y)
2737869046864 # the two ids are identical

 2
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9 >>>
 10 >>>
 11
 12 >>>
 13 >>>
 14
 15 >>>
 16

ii. Static methods

Creating a static method is just the same, but you say @staticmethod instead of
@classmethod, and there is no special first parameter because static methods
supposedly can't access anything of the class they belong to. The fact that this is
untrue is illustrated in the example below, with a static method that tells us
whether or not the special pi value has been created yet. There is also a static
method that shows how they are meant to be used. It tells you whether or not a
particular number would make a good denominator. Everyone knows that the

115

denominator of a fraction must not be zero, that knowledge requires no access to
the fraction class at all.

 1 ... @staticmethod

 def has_pi_been_created():
 return fraction.pi_value != None

 @staticmethod
 def good_denominator(n):
 return return n != 0

x = fra.fraction.has_pi_been_created()
False
fra.fraction.pi()
fraction(22, 7)
x = fra.fraction.has_pi_been_created()
True
fr.fraction.good_denominator(0)
False

 2 ...
 3 ...
 4
 5 ...
 6 ...
 7 ...
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16

iii. Methods acting as attributes

One more thing. Users who have not seen the implementation might imagine that
magnitude should be an attribute, and be surprised that it needs a pair of
parentheses. If you want to cater to that expectation, the @property symbol
(those @ things are supposed to be called decorators) can make a parameterless
(apart from self of course) method seem like an attribute:

 1 ... @property

 def magnitude(self):
 return abs(self.top / self.bot)

a = fra.fraction(22, 7)
a.magnitude
3.142857142857143

 2 ...
 3 ...
 4
 5 >>>
 6 >>>
 7

Those users may be surprised to find that an assignment to that attribute,
a.magnitude = 66, causes an error. If you want to allow what seems like an
assignment to magnitude, there is a special decorator for that too:

 1 ... @magnitude.setter
 def magnitude(self, value):
 self.top = int(value)
 self.bot = 1

a = fra.fraction(22, 7)
a.magnitude = 66
a
fraction(66, 1)
a.magnitude
66

 2 ...
 3 ...
 4 ...
 5
 6 >>>
 7 >>>
 8 >>>
 9
 10 >>>
 11

116

That isn't a very practical example, but it does show everything that is needed.
The decorator is specific to the property you are dealing with, and the method that
implements it must have the same name as the property too.

There is a much neater way of doing this. You just define normal methods, with
whatever names you want, to define what happens in any or all of these
situations: getting the attribute (x = a.magnitude), setting the attribute
(a.magnitude = 17), and trying to delete the attribute (del a.magnitude). Then
create a class variable with the name you want the property to have, and set its
value to the result of the property function. It has four parameters, all of them
optional (default is None), they are, in order, getter, setter, deleter, and
documentation string. Any parameter of None means that the corresponding
operation is forbidden.

 1 ... def get_mag(self):
 return abs(self.top / self.bot)

 def change_mag(self, value):
 self.top = int(value)
 self.bot = 1

 magnitude = property(get_mag, change_mag)

a = fra.fraction(22, 7)
a.magnitude
3.142857142857143
a.magnitude = 17
a
fraction(17, 1)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9
 10 >>>
 11 >>>
 12
 13 >>>
 14 >>>
 15

iv. Creating decorators

You can even make your own decorators for ordinary functions. The decorator is a
function that takes as its parameter the function that it is to modify. It must
return as its result some other function. Usually this returned function will be an
inner function that as well as doing some other things, calls the original function.
The name of this decorator function, coupled with the usual @, is the decorator
symbol.

As a simple example, perhaps we have a function that is being called somewhere
unexpectedly, but we can't work out where. We would want to make it traceable,
so that something gets printed every time it is called or returns. Of course, we
could just add some print()s to the function itself, but it's possible we could
miss one of the returns, and this is only an example to show how it's done
anyway.

 1 >>> def traceable(f):
 def inner(x, y):
 print("The function", f.__name__, "being called")
 result = f(x, y)
 print("The function", f.__name__, "exitted")

 2 ...
 3 ...
 4 ...
 5 ...

117

 6 ... return result
 return inner

@traceable
def ordinary(x, y):
 a = x * y
 print("I just computed", a)
 return a + 1

x = ordinary(3, 6)
The function ordinary being called
I just computed 18
The function ordinary exitted
x
19

 7 ...
 8
 9 >>>
 10 ...
 11 ...
 12 ...
 13 ...
 14
 15 >>>
 16
 17
 18
 19 >>>
 20

Because it is decorated as @traceable, when ordinary is defined, its definition is
given to the function traceable, and replaced by whatever traceable returns. So
when you say ordinary(3, 6), it is really inner(3, 6) that gets executed, and
as far as inner is concerned, the value of f is the original function that
traceable had when inner was created. The __name__ is nothing special. Every
function knows its own name (if it has one) and that is how it is found.

Home made decorators are not particularly impressive, they can’t do anything to
the function while it is running, but they are moderately popular, so they are at
least worth knowing about.

24. Inheritance

Inheritance in Python is very much as it is in other languages. If a class already
exists that does a lot of what you want, but not all of it, you can build another
class on top of its functionality, adding new things, and inheriting everything it
has too. The new class is called a subclass, the one it was built from is called a
superclass.

For an example, I want something that behaves exactly like an ordinary dictionary
object, but has two extra methods. One is like .keys(), but delivers all the keys
in sorted order. The other delivers the sum of all the even numeric values. To
make a class inherit from another, just put the superclass name in parentheses
after the subclass name, then just define the new abilities in the normal way.

 1 >>> class specialdict(dict):

 def orderedkeys(self):
 k = self.keys()
 return sorted(k)

 def evensum(self):
 sum = 0
 for v in self.values():

 2
 3 ...
 4 ...
 5 ...
 6
 7 ...
 8 ...
 9 ...

118

 10 ... if type(v) == int and v % 2 == 0:
 sum += v
 return sum

d = specialdict()
d.update({ "cat": 8, "horse": "??", "dog": 6, "xx": 17 })
d.orderedkeys()
['cat', 'dog', 'horse', 'xx']
d.evensum()
14

 11 ...
 12 ...
 13
 14 >>>
 15 >>>
 16 >>>
 17
 18 >>>
 19

Notice that we could say self.keys() and self.values() even though we had
not defined them, they were inherited and are part of self.

This is also the way to create hashable versions of non-hashable things like lists.
Only hashable things can be stored in sets or used as keys in a dictionary. An
object is hashable if it has a __hash__ method that returns an int, called the
object’s hash value. A hash value should be quite large and seemingly random,
but it is required that the hash values of two identical objects are equal. It is also
important that the hash values of two unequal objects should be very unlikely to
be equal.

The purpose is that a hash value (or a hash value reduced to a much smaller
range through the % operator) can be used as a position in a list where something
can be stored. Later when you need to search for an object, its hash value will tell
you exactly where in the list it must be if it is there at all. It is possible for two
different objects to have the same hash value, so it will really be a list of lists.
table[h] is a list of all inserted objects whose hash value is h. A normal search of
table[h] will be needed to verify presence. If an object such as a list has many
parts, it is perfectly reasonable to combine the hash values of the object’s parts to
produce the object’s own hash value. The built-in function hash takes any
hashable object and returns its hash value.

 1 >>> class hashable_list(list):
 def __hash__(self):
 h = 1
 for item in self:
 h = (h * hash(item)) & 0x7FFFFFFFFFFFFFFF
 return h

x = hashable_list(["bat", "cat", "dog"])
x
['bat', 'cat', 'dog']
hash(x)
4023728796228314549
x.append("cat")
hash(x)
760896232467004203

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>

The & 0x7FFFFFFFFFFFFFFF is to ensure that the numbers don’t get too big, that
would make the calculation very inefficient. Python uses small numbers as their
own hash values, that will explain some surprise results you might find while
experimenting.

119

It is important to remember why lists and sets are not already hashable. If you
use something as a key in a dictionary and then modify it, its hash value will
change, and you won’t be able to find it any more.

ii. Introspection

There are some useful things that can be done to examine an object. The type
function works in a helpful way:

 1 >>> type(d)
<class 'specialdict'>
type(d) == specialdict
True

 2
 3 >>>
 4

But always remember that you normally import your classes from a module, so
you would be saying something like type(d) == modulename.specialdict
instead.

The functions isinstance(obj, cls) and issubclass(sub, sup) do what their
names suggest. isinstance includes superclasses in its decision making.

 1 >>> isinstance(d, specialdict)
True
isinstance(d, dict)
True
isinstance(d, str)
False
issubclass(specialdict, dict)
True
issubclass(specialdict, object)
True # because all classes are

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

iii. Changing behaviours

Now suppose that I want to modify the behaviour of something that was inherited.
If I want to completely replace the old behaviour, then I just define a new method
with the same name and that's that. But if I want to make use of the old
behaviour in defining the new, I can still call the old method by saying the name of
the superclass instead of self in the call. If I do that, I also have to provide self
explicitly as a first parameter. Let’s say I want to change values so that the values
are all turned into strings that are duplicated:

 1 ... def values(self):
 vs = []
 for v in dict.values(self):
 vs.append(str(v) * 2)
 return vs

d = specialdict()

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 >>>

120

 9 >>> d.update({ "cat": 8, "horse": "??", "dog": 6, "xx": 17 })
d.values()
['88', '????', '66', '1717']

10

And I didn't need to be so clumsy in creating d. In Python, constructors are
inherited along with all the other methods, so I could have made use of the dict
constructor’s ability to copy an existing dict:

 1 >>> e = specialdict({ "cat": 8, "horse": "??", "dog": 6 })
e.values()
['88', '????', '66']

 2 >>>
 3

Of course, if I want to make my own constructor but make use of the inherited
one to do most of the work, that's easy.

 1 ... def __init__(self, d):
 print("Creating a specialdict")
 dict.__init__(self, d)

 2 ...
 3 ...

But if the inherited constructor has a complicated definition to allow it to take
many different forms of parameters, I would have to duplicate its parameters in
my own definition. Referring back to the section on functions, subsection on
keyword and unknown parameters, you can make a constructor that can take any
number of parameters, look at their types, and decide exactly what actions are
required in each case.

 1 >>> def __init__(self, * a, ** k):
 ... 2 ...

iv. The super() notation

Inside a method, the function super() will return a special instance of the
method’s class’ superclass that has access to all of the current instance’s data.
That means that calling a method on super() is an alternative to explicitly saying
the superclass name in the method call. It also removes the need for the self
parameter. That means that the constructor and values methods above could have
been written thus:

 1 ... def __init__(self, d):
 print("Creating a specialdict")
 super().__init__(d)

 def values(self):
 vs = []
 for v in super().values():
 vs.append(str(v) * 2)
 return vs

 2 ...
 3 ...
 4
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

In this, the parameterless call to super() is shorthand for super(specialdict,
self). super takes a class, which must be a subclass of something, and an object

121

of that given class. The type of the object it returns, is the given class' immediate
superclass. The two parameter super can be used outside of methods, like this:

 1 >>> ob = specialdict({ "cat": 8, "horse": "??", "dog": 6 })
sup = super(specialdict, ob)
sup.values()
dict_values([8, '??', 6])

 2 >>>
 3 >>>
 4

From the values printed, you can see that this really was a call to dict’s original
values() method, they haven’t been doubled. Having to explicitly state the name
of the superclass that you want is missing the point, and some of the advantages,
of object oriented programming.

v. Multiple inheritance

It is possible that two different classes provide useful functionality and you want
to create a class that inherits from both of them. In fact, we’ll make it a little bit
more complicated than that.

Class A has a method called meth.
Class B inherits from A and also has its own method called meth.
Class C has a method called meth.
Class D inherits from B and C and also has its own method called meth.

 1 >>> class A:

 def meth(self, x):
 return 10 * x

class B(A):
 def meth(self, x):
 return 100 * x

class C:
 def meth(self, x):
 return 1000 * x

class D(B, C):
 def meth(self, x):
 return 10000 * x
 def use(self, x):
 return [A.meth(self, x), B.meth(self, x),
 C.meth(self, x), D.meth(self, x)]

obj = D()
obj.use(9)
[90, 900, 9000, 90000]

 2 ...
 3 ...
 4
 5 >>>
 6 ...
 7 ...
 8
 9 >>>
 10 ...
 11 ...
 12
 13 >>>
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19
 20 >>>
 21 >>>
 22

In that example we explicitly said which of our inherited class’ version of meth was
wanted. You can always do that to make things clear, but you’d be giving yourself
extra work and losing flexibility. What would happen is we just said
self.meth(x) and perhaps not all of the classes had their own meth to offer.
Which meth would be chosen? The search order is very clear. When searching for
a method, the current class is always checked first, then for each of the classes it

122

inherited, in left to right order (in our case, B before C) its entire inheritance tree is
searched, lowest (B) first, highest (C) last. Last of all object is checked because
everything inherits ultimately from object. To check, you can look at the class D’s
__mro__ attribute. It tells us that the search order is D, B, A, C, object:

 1 >>> D.__mro__

(<class 'multi.D'>, <class 'multi.B'>,
 <class 'multi.A'>, <class 'multi.C'>,
 <class 'object'>)

 2
 3
 4

25. Iterables and iterators

Iterables are things like lists and tuples, as described in that section. They provide
a collection of data items (objects) that can be accessed one-by-one. Sometimes
the objects don't actually exist until it is their turn to be produced by the iterable.
Sets dictionaries strings, bytes, byetarrays, files, and ranges are all iterables.

i. Standard operations on iterables

The names of many iterable classes: tuple, list, set, dict, may be used to build
an iterable of that type from another iterable provided as a parameter, containing
the same values in the same order.

 1 >>> tuple(range(10, 3, -1))

(10, 9, 8, 7, 6, 5, 4)
list(range(10, 3, -1))
(10, 9, 8, 7, 6, 5, 4)
set(range(10, 3, -1))
{4, 5, 6, 7, 8, 9, 10}
tuple("elephant")
('e', 'l', 'e', 'p', 'h', 'a', 'n', 't')

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

The functions sum (combine all the objects with the + operator and return the
result), max (use the < or > operator, whichever exists, to find the biggest and
return it), min (use the < or > operator, whichever exists, to find the smallest and
return it), any (True if any of the items would be considered true as a condition,
False if not), all (True if all of the items would be considered true as a
condition, False if not), should work on all iterables.

sorted should return a list containing all the iterable's contents, in order
according to the < or > operator. sorted may take two keyword parameters, key =
a function that is applied to each of the items to provide the key for sorting, and
reverse = True to reverse the order of the sorting.

 1 >>> sorted("elephant")

['a', 'e', 'e', 'h', 'l', 'n', 'p', 't']
sorted(["Zebra", "cat", "Dog", "Yeti", "gnu"])
['Dog', 'Yeti', 'Zebra', 'cat', 'gnu']
sorted(["Zebra", "cat", "Dog", "Yeti", "gnu"],

 2
 3 >>>
 4
 5 >>>

123

 6 ... key = str.lower)
['cat', 'Dog', 'gnu', 'Yeti', 'Zebra']
min("elephant")
'a'

 7
 8 >>>
 9

A for loop should work on any iterable, as should comprehensions.

 1 >>> for c in "elephant":

 print(ord(c), c)
101 e
108 l
101 e
112 p
104 h
97 a
110 n
116 t
{ c * 2 for c in "elephant" if c < "m" }
{'ll', 'hh', 'aa', 'ee'}

 2 ...
 3
 4
 5
 6
 7
 8
 9
 10
 11 >>>
 12

enumerate creates a modified version of an iterable. It has all the same values in
the same order, but they are paired with their positions in tuples. The value
returned by enumerate is considered "opaque", you can't look at it and see the
contents, but you can still produce them in all the normal ways.

 1 >>> e = enumerate("elephant")

e
<enumerate object at 0x00000210F46920C0>
for i in e:
 print(i)
(0, 'e')
(1, 'l')
(2, 'e')
(3, 'p')
(4, 'h')
(5, 'a')
(6, 'n')
(7, 't')

 2 >>>
 3
 4 >>>
 5 ...
 6
 7
 8
 9
 10
 11
 12
 13

filter and map apply a function to every element of an iterable. filter produces
a new iterable containing all the items for which the function returns true, map
produces a new iterable containing the results of applying the function to all of the
original items. A function of three (for example) parameters may be mapped onto
three separate iterators to produce an iterable of the results. If map's iterables are
not all of the same length, it stops as soon as any one of them runs out of items.

 1 >>> def nice(n):

 return n % 2 == 0 and n != 6
x = filter(nice, [1, 8, 3, 5, 6, 4, 2, 3, 10])
x
<filter object at 0x00000210F46A1600>
list(x)
[8, 4, 2, 10]
def change(x):

 2 ...
 3 >>>
 4 >>>
 5
 6 >>>
 7
 8 >>>

124

 9 ... return x * 10 + 3
list(map(change, [1, 8, 3, 5, 6, 4, 2, 3, 10]))
[13, 83, 33, 53, 63, 43, 23, 33, 103]
a = [3, 7, 2, 5, 8, 4, 1]
b = [7, 4, 3, 1, 3, 5, 6]
c = "abcdefg"
def combine(x, y, z):
 return z + str(x * y)
tuple(map(combine, a, b, c))
('a21', 'b28', 'c6', 'd5', 'e24', 'f20', 'g6')

 10 >>>
 11
 12 >>>
 13 >>>
 14 >>>
 15 >>>
 16 ...
 17 >>>
 18

zip takes any number of iterables and returns a new iterable that produces
tuples. The first will contain the first items from each of the input iterables, and so
on.

 1 >>> a = [3, 7, 2, 5, 8, 4, 1]

b = [7, 4, 3, 1, 3, 5, 6]
c = "abcdefg"
list(zip(a, b, c))
[(3, 7, 'a'), (7, 4, 'b'), (2, 3, 'c'), (5, 1, 'd'),
 (8, 3, 'e'), (4, 5, 'f'), (1, 6, 'g')]

 2 >>>
 3 >>>
 4 >>>
 5
 6

ii. Iterators

An iterator is usually another kind of iterable. Like all iterables, they can be
converted into other iterables and operated upon as above. But that isn't their
normal use. Some are never-ending, converting them to lists or tuples would tie
up your computer until you close the Idle session. The usual plan for an iterator is
to just take the next item from it whenever you need it. The next(it) function
will return the next item from the iterator, and advance it so that the next time
next is used, you'll get the following item as expected.

The itertools module provides a lot of iterator-related things. The most basic is
count(). count() produces an unending stream of numbers starting with 0.
count(n) starts the sequence at n instead of 0. count normally adds one each
time to get the next value, but count(n, a) adds a instead. A count iterator is
not opaque, its __repr__ method shows its current state.

 1 >>> i = itertools.count(9, -2)

next(i)
9
next(i)
7
next(i)
5
i
count(5, -2)

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9

iter(iterable) creates an iterator that produces all the elements of the iterable, in
the same order.

 1 >>> i = iter([8, "cat", (3, 0, 5), 14])

125

 2 >>> next(i)
8
next(i)
'cat'
next(i)
(3, 0, 5)
next(i)
14
next(i) # causes an error

 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10 >>>

repeat(x, n) is an iterator that produces the same value n times, and then is
exhausted. If n is not provided, it just goes on for ever.

 1 >>> i = itertools.repeat("cat", 3)

next(i)
'cat'
next(i)
'cat'
next(i)
'cat'
next(i)
Traceback
StopIteration

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9
 10

This gives us an opportunity to see how to detect the end of an iterator without
having to use a try statement. next can take a second parameter, which provides
the value that will be returned instead of raising an exception if the iterator is
exhausted. To be completely safe from false positives, you can create a unique
object for this value:

 1 >>> done = object()

i = itertools.repeat("cat", 3)
while True:
 x = next(i, done)
 if x is done:
 break
 print(x)
cat
cat
cat

 2 >>>
 3 >>>
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9
 10

combinations(iterable, n) produces all possible n-tuples from the iterable
maintaining the order of the elements. Note that in this example below, the order
of the input is 4, 2, 3, 1; every tuple that begins with 4 is produced withs, then all
the 2s, then all the threes, and within the 4s and 2s the item in the second
position follows the same order.

permutations produces all possible combinations. They are also produced in
order, but permutations does not consider tuples to be duplicates just because
they have the same content but in a different order. permutations will produce
both (1, 4) and (4, 1), combinations would only produce (1, 4).

combinations never pairs a value with itself (unless that value appears in
the iterable twice) but combinations_with_replacement does.

126

product is a bit like combinations but it takes any number of iterables and
groups their contents in all combinations into tuples. It is really making a
Cartesian product. If you want to combine an iterable with itself a number of
times, just provide the iterable once, and use the keyword parameter repeat.

 1 >>> list(itertools.combinations((4, 2, 3, 1), 2))

[(4, 2), (4, 3), (4, 1), (2, 3), (2, 1), (3, 1)]

list(itertools.permutations((4, 2, 3, 1), 2))
[(4, 2), (4, 3), (4, 1), (2, 4), (2, 3), (2, 1),
 (3, 4), (3, 2), (3, 1), (1, 4), (1, 2), (1, 3)]

list(i...s.combinations_with_replacement((4, 2, 3, 1), 2))
[(4, 4), (4, 2), (4, 3), (4, 1), (2, 2), (2, 3),
 (2, 1), (3, 3), (3, 1), (1, 1)]

list(itertools.product([1, 2, 3], ("a", "b"), [9, 8]))
[(1, 'a', 9), (1, 'a', 8), (1, 'b', 9), (1, 'b', 8),
 (2, 'a', 9), (2, 'a', 8), (2, 'b', 9), (2, 'b', 8),
 (3, 'a', 9), (3, 'a', 8), (3, 'b', 9), (3, 'b', 8)]

list(itertools.product(["a", "b"], repeat = 3))
[('a', 'a', 'a'), ('a', 'a', 'b'), ('a', 'b', 'a'),
 ('a', 'b', 'b'), ('b', 'a', 'a'), ('b', 'a', 'b'),
 ('b', 'b', 'a'), ('b', 'b', 'b')]

 2
 3
 4 >>>
 5
 6
 7
 8 >>>
 9
 10
 11
 12 >>>
 13
 14
 15
 16
 17 >>>
 18
 19
 20

tee(iterable, n) returns an n-tuple of iterators based on the iterable. All are
initially identical but independent. If n is not provided, it defaults to 2. (x, y) =
tee([4, 2, 7, 3]) could give us this sequence: next(x) 4, next(x) 2,
next(x) 7, next(y) 4, next(y) 2, next(x) 3, next(y) 7, next(y)
 3.

cycle(iterable) just produces the values from the given iterable over and over
again. cycle([2, 6, 3]) would produce 2, 6, 3, 2, 6, 3, 2, 6, 3, 2, ... unendingly.

chain appends a bunch of iterables, and produces all of their values just once
before becoming exhausted. chain(("cat", "dog"), [7, 5, 9], "bat")
produces 'cat', 'dog', 7, 5, 9, 'b', 'a', 't'.

islice(it, na, nb, nc) does the work of a slice, but on an iterator. If only na is
provided, it produces the first na values from it, then stops. If only na and nb are
provided, it produces the items between positions na and nb - 1 inclusive, just
like the slice s[na:nb]. If all three are provided then after producing each item, it
will skip over then next nc - 1 to find the next.

islice(count(10), 5) produces 10, 11, 12, 13, 14.
islice(count(10), 5, 15) produces 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
islice(count(10), 5, 15, 3) produces 15, 18, 21, 24

accumulate(iterable, f), f must be a two parameter function. The first value
produced is iterable[0]. After that f is used on the previous value produced and

127

the next value in the iterable to produce the next result. The keyword parameter
initial lets you prime the results with a value that is not in the iterable.

 1 >>> list(itertools.accumulate([1, 2, 3, 4, 5], operator.add))

[1, 3, 6, 10, 15]
list(itertools.accumulate([1, 2, 3, 4, 5], operator.mul))
[1, 2, 6, 24, 120]
list(itertools.accumulate(["ab", "cde", "f", "gh"],
 operator.add))
['ab', 'abcde', 'abcdef', 'abcdefgh']
tuple(itertools.accumulate([1, 2, 3, 4, 5],
 operator.add, initial = 100))
[100, 101, 103, 106, 110, 115]

 2
 3 >>>
 4
 5 >>>
 6 ...
 7
 8 >>>
 9 ...
 10

pairwise(iterable) produces the list of all possible neighbouring pairs from the
iterable. pairwise("horse") produces ('h', 'o'), ('o', 'r'), ('r', 's'),
('s', 'e').

compress takes an iterable of anythings and a same-length iterable of bools. The
values produced are those from the first iterable that correspond with Trues in the
second.

 1 >>> list(itertools.compress(

 ("Sun", "Mon", "Tue", "Wed", "Thur", "Fri", "Sat"),
 (False, True, True, True, False, True, False)))
['Mon', 'Tue', 'Wed', 'Fri']

 2 ...
 3 ...
 4

filterfalse, takewhile, and dropwhile take a function and an iterable. The
values produced are those from the iterable that are in some way selected by the
function.

filterfalse produces only the items for which the function returns False.
Why would they choose to filter on False? You return False to indicate yes?
Filtering is always done on True.

takewhile produces items for as long as the function always returns True
for them. As soon as an item gets a False, the iterator is finished.

dropwhile ignores items for as long as the function always returns True for
them. As soon as an item gets a False, it and all subsequent items will be
produced by the dropwhile iterator, the function is ignored from then on.

 1 >>> list(itertools.filterfalse(

 lambda x: x > 6 and x < 15,
 itertools.islice(itertools.count(1), 21)))
[1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 20, 21]
list(itertools.takewhile(
 lambda x: x % 2 == 0,
 [4, 22, 8, 94, 6, 9, 2, 4, 6, 8, 11]))
[4, 22, 8, 94, 6]
list(itertools.dropwhile(
 lambda x: x % 2 == 0,
 [4, 22, 8, 94, 6, 9, 2, 4, 6, 8, 11]))
[9, 2, 4, 6, 8, 11]

 2 ...
 3 ...
 4
 5 >>>
 6 ...
 7 ...
 8
 9 >>>
 10 ...
 11 ...
 12

128

starmap takes a function and an iterable of tuples. Its values are produced by
giving the function each of the tuples as its parameter list.

 1 >>> list(itertools.starmap(

 operator.add,
 [(2, 5), (10, 3), ("a", "nt"), (math.pi, 1)]))
[7, 13, 'ant', 4.141592653589793]
list(itertools.starmap(
 lambda x, y, z: z + y + x,
 [(1, 2, 3), (8, 2, 5), ("a", "b", "c"), (0, 0, 7)]))
[6, 15, 'cba', 7]

 2 ...
 3 ...
 4
 5 >>>
 6 ...
 7 ...
 8

zip_longest is like the ordinary zip function for iterables, except that whereas
that function stops as soon as any of the iterables is exhausted, zip_longest
continues until all of them are exhausted. None is used to take the place of the
value from an exhausted iterable. They keyword argument fillvalue allows you
to specify a value other than None.

 1 >>> list(itertools.zip_longest(

 (9, 8, 7),
 itertools.islice(itertools.count(10), 6),
 "abcd"))
[(9, 10, 'a'), (8, 11, 'b'), (7, 12, 'c'),
 (None, 13, 'd'), (None, 14, None), (None, 15, None)]
list(itertools.zip_longest(
 (9, 8, 7),
 itertools.islice(itertools.count(10), 6),
 "abcd",
 fillvalue = "o"))
[(9, 10, 'a'), (8, 11, 'b'), (7, 12, 'c'),
 ('o', 13, 'd'), ('o', 14, 'o'), ('o', 15, 'o')]

 2 ...
 3 ...
 4 ...
 5
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11 ...
 12
 13

iii. Making an iterator

What is the real difference between an iterable and an iterator? Most of what
appears on-line from the Python community is very confused on this issue, but
there is a very simple answer: Any object that has an __iter__ method is, by
definition, an iterable. Any object that has a __next__ method is by definition an
iterator. The __iter__ method creates an iterator from an interable. The
__next__ method just returns the next result from an iterator. It is possible, and
quite common, for an object to be both iterable and iterator, but that sometimes
leads to trouble.

Once you make an iterator out of an object, everything is easy. Every time
next(obj) is used, obj's __next__ method is called to produce the result. If you
decide that the iterator is exhausted, raise the StopIteration exception.

The __iter__ method is like a constructor for an iterator. iter(obj) calls
obj's __iter__ method, which does whatever setup is required for an iterator and
we are usually advised that it should return self. But doing that causes trouble.
If you create an object and then use iter twice to get two iterators of that type,
the two iterators and the original object will all be the same thing. Not just
identical, but the same, there is only one object there. Saying next() to the first

129

iterator will advance the second one too, and that is almost certainly not the
behaviour that would be expected or wanted. Even if you only create one iterator
from the original object, you will still find that everything you do to the iterator is
also done to the original object.

This example shows a very inefficient iterator that produces prime numbers.
It behaves like an iterator, but is not one, due to the definition above. It has a
get_next_prime instead of a proper iterator’s __next__.

 1 >>> class primemaker:

 def __init__(self):
 self.value = 2

 def am_i_prime_now(self):
 for i in range(2, self.value):
 if self.value % i == 0:
 return False
 return True

 def get_next_prime(self):
 while True:
 if self.am_i_prime_now():
 result = self.value
 self.value += 1
 return result
 self.value += 1

pm = primemaker()
for i in range(20):
 print(pm.get_next_prime(), end = ", ")
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71,

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19
 20 >>>
 21 >>>
 22 ...
 23
 24

It is easy to make it into both an iterable and its own iterator. Just add the two
required methods. This version follows the advice generally given. The existing
parts of the class definition will not be repeated.

 1 ... def __iter__(self):

 return self

 def __next__(self):
 return self.get_next_prime()

 2 ...
 3 ...
 4 ...
 5 ...

But we can easily see the problem. In the following, two iterators seem to be
created, but it is clear they are both the same thing. Calling on each of the
iterators at random, we don't see the repeats that would be expected. Advancing
it_one also advances it_two because they are the same object.

 1 >>> pm = primemaker()

it_one = iter(pm)
it_two = iter(pm)
for i in range(20):
 if random.randint(1, 2) == 1:
 print("one:", next(it_one), sep = "", end = " ")

 2 >>>
 3 >>>
 4 >>>
 5 ...
 6 ...

130

 7 ... else:
 print("two:", next(it_two), sep = "", end = " ")
one:2 one:3 one:5 one:7 two:11 two:13 one:17 one:19 one:23 two:29
one:31 two:37 two:41 one:43 two:47 two:53 two:59 one:61 two:67
two:71

 8 ...
 9
 10
 11

One simple but not totally successful way to handle this would be to make
__iter__ return a totally new object each time it is called.

 1 ... def __iter__(self):

 return primemaker() 2 ...

The same code now produces two clearly independent iterators:

one:2 one:3 two:2 two:3 one:5 one:7 one:11 one:13 two:5
one:17 one:19 one:23 one:29 one:31 one:37 one:41 two:7
one:43 one:47 two:11

But that victory is very short lived. Think back to itertools.islice(it, n),
which gives you n values from the iterator it. I'll create an iterator, take a few
values from it, then use islice to get ten more:

 1 >>> pm = primemaker()

it = iter(pm)
(next(it), next(it), next(it), next(it), next(it))
(2, 3, 5, 7, 11)
tuple(islice(it, 10))
(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

 2 >>>
 3 >>>
 4
 5 >>>
 6

It takes a bit of thinking to see how that happened. How could the iterator go right
back to the beginning? Do iterators keep all the values they've produced so you
can repeat them? Do iterators store their initial state so they can be reset? No.
Both of those ideas would be quite bad. And why would anyone want to restart an
iterator anyway? The reality is that islice needs an iterator, so whenever it is
given an iterable, it calls its __iter__ to make an iterator without even
checking to see if it already is one. I don't call that sensible. If you want an iterator
and you're given an iterator, just use it. But there are no hard and fast rules
about this sort of thing.

We could create our own versions of all the itertools functions and make them
treat iterators with a bit more respect. Or perhaps we can find a less wasteful
approach. Maybe __iter__ can still create a new object, but also change that new
object’s state to be identical to the current object. That would be messy for a more
complex object, but we'll try it out. primemaker’s entire state is in the single
variable value.

 1 ... def __iter__(self):

 result = primemaker()
 result.value = self.value
 return result

pm = primemaker()

 2 ...
 3 ...
 4 ...
 5
 6 >>>

131

 7 >>> it = iter(pm)
(next(it), next(it), next(it), next(it), next(it))
(2, 3, 5, 7, 11)
tuple(islice(it, 10))
(13, 17, 19, 23, 29, 31, 37, 41, 43, 47)
(next(it), next(it), next(it), next(it), next(it))
(13, 17, 19, 23, 29)

 8 >>>
 9
 10 >>>
 11
 12 >>>
 13

A partial success, but of course when islice finishes, we're back to the original
object, with no way to recover islice’s private iterator’s final state.

Just to get one detail out of the way: having __iter__ make a new object and try
to manipulate its state is not very satisfactory. An iterable’s state could be very
complex. It would be much more straight-forward and generalisable just to make a
deep copy instead:

 1 ... def __iter__(self):

 return copy.deepcopy(self) 2 ...

The next step towards a solution could be to have two different kinds of object.
Our primemaker would be an iterable, but not an iterator (i.e. it has an __iter__
but no __next__). primemaker’s __iter__ would create a totally new but trivial
object to be the iterator. The new object would take a deep copy of the original
primemaker (that's much more general-purpose than creating a new primemaker
and trying to make its state match the original’s exactly). That deep copy would do
all the real work.

The real trick to this is that the new object’s __iter__ would go back to the old
design and just return self. When we deliberately create an iterator from a
primemaker we do create a new object, so all of its iterators are independent. But
when islice tries to make a new iterator out of it, it doesn't. islice’s iterator is
the same object as our intentional iterator.

In primemaker:

 1 ... def __iter__(self):
 return primeiterator(self) 2 ...

And the new primeiterator:

 1 >>> class primeiterator:

 def __init__(self, maker):
 self.worker = copy.deepcopy(maker)

 def __iter__(self):
 return self

 def __next__(self):
 return self.worker.get_next_prime()

pm = primemaker()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11
 12 >>>

132

 13 >>> it = iter(pm)
(next(it), next(it), next(it), next(it), next(it))
(2, 3, 5, 7, 11)
tuple(islice(it, 10))
(13, 17, 19, 23, 29, 31, 37, 41, 43, 47)
(next(it), next(it), next(it), next(it), next(it))
(53, 59, 61, 67, 71)

 14 >>>
 15
 16 >>>
 17
 18 >>>
 19

If making a deep copy is satisfactory, then the new class to represent an iterator is
unnecessary. So long as it remembers whether it is the result of __iter__ or not,
primemaker could do the entire job itself. It would of course have to have its
__next__ restored.

In primemaker:

 1 ... def __init__(self):
 self.value = 2
 self.i_came_from_an_iter = False

 def __next__(self):
 return self.get_next_prime()

 def __iter__(self):
 if self.i_came_from_an_iter:
 return self
 else:
 result = copy.deepcopy(self)
 result.i_came_from_an_iter = True
 return result

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...

26. Generators

A generator is a lot like an iterator, but it is implemented as a function, not a
class. Using the yield statement, a function is able to pause in its execution,
returning control back to its caller, but then be woken up again later, and
continue undisturbed from exactly where it yielded. This is a use of a closure. A
closure is simply an object that stores all the information necessary for that to
work. It includes of course which function was running, exactly where in that
function it had reached, the values of all local variables and parameters, and a few
more things too. Here is a very simple example, inefficiently generating prime
numbers again, but this time limited to those less than 100.

 1 >>> def primey():

 for n in range(1, 100):
 good = True
 for i in range(2, n):
 if n % i == 0:
 good = False
 break
 if good:
 yield n

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

133

Calling primey will not return a prime number. It will return one of those closure
objects that Python calls a generator. On that first call, the function is sort-of
started, just so there is something to make a closure of, but it is stopped before it
can do anything at all. You use next() to get successive prime numbers out of it.
Each call to next() lets the closure continue until it meets a yield. After the
function exits, next() causes a StopIteration exception.

 1 >>> it = primey()

while True:
 print(next(it), end = " ")
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
79 83 89 97 Traceback ...
... StopIteration

 2 >>>
 3 ...
 4
 5
 6

Naturally, a for loop and all the other tricks work too.

 1 >>> for n in primey():

 print(n) 2 ...

Communication with a generator doesn't have to be one way. You can also send
objects to them. You can only send something to a generator while it is at a yield,
and you can only send one thing at a time. Each send will trigger it to run again
until it reaches another yield.

To send an object to a generator, just use its send method. It works just like next
in that it returns the value that was yielded, but it also sends its parameter.
Inside the generator, just capture the value returned by yield. If nothing was
sent, the value will be None.

This demonstration is a modification of the previous one. primey always captures
and prints the value yield returns. user begins with a next, to ensure that it
won't do an illegal send before the first yield. Then in its loop, it randomly
chooses whether to send something or just use next. Either way, it prints the
value that was yielded. random.random() produces a number between 0 and 1.
random.randint(min, max) produces an int within the range given.

 1 >>> import random

def primey():
 for n in range(2, 100):
 good = True
 for i in range(2, n):
 if n % i == 0:
 good = False
 break
 if good:
 v = yield n
 print("primey received", v)

def user():
 p = primey()
 x = next(p)

 2
 3 >>>
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13
 14 >>>
 15 ...
 16 ...

134

 17 ... print("user started with", x)
 for i in range(1, 8):
 if random.random() < 0.33:
 r = random.randint(9000, 9999)
 x = p.send(r)
 print("user sent", r, "and got", x)
 else:
 x = next(p)
 print("user got", x)

user()
user started with 2
primey received None
user got 3
primey received 9169
user sent 9169 and got 5
primey received None
user got 7
primey received None
user got 11
primey received 9551
user sent 9551 and got 13
primey received None
user got 17
primey received None
user got 19

 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...
 26
 27 >>>
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

Notice that the sends and receives seem to be out of order. primey reports
receiving 9169 before user reports sending it. That is simply because user prints
its “sent” message after calling send, and control isn't returned from send until
primey reaches the next yield.

If you need to make a generator do something unusual, and it is too much trouble
to implement a proper communications protocol, you can instead trigger an
exception inside the generator function. That is done by calling the generator's
throw method, with an exception class as its parameter. So if user wanted to get
some special information out of primey, maybe the value of its loop counter i,
user would simply say result = p.throw(Exception). That would of course only
happen at the next yield. primey would have to surround every yield with a
try statement like this:

 1 ... try:
 v = yield n
 print("primey received", v)
except Exception:
 yield ("loop count", i)

 2 ...
 3 ...
 4 ...
 5 ...

With that, at the next yield after user caused the exception, user would receive
back from the call to throw the tuple ("loop count", n) as the value of the
variable result.

If ever you know a number of next values that need to be yielded in advance, you
can effectively yield them all at once by saying yield from it, where it is an

135

iterable. It is equivalent to saying for i in it: yield i, so it is only a very small
convenience. But that isn't its whole point. It also lets you take the divide and
conquer approach to achieving the effect of a big complicated generator from a few
smaller simpler ones. The it that is yielded from could be a call to another
generator function.

If a generator needs to be recursive, a little extra thought is required. Suppose we
have built an Ordered Binary Tree whose nodes are objects from this class

 1 >>> class node:
 def __init__(self, d):
 self.data = d
 self.left = None
 self.right = None

 2 ...
 3 ...
 4 ...
 5 ...

but rather than doing everything with node methods, we wrote separate functions
for all the operations. This would be the function for printing everything in a tree
in order.

 1 >>> def print_all(t):
 if t == None:
 return
 print_all(t.left)
 print(t.data)
 print_all(t.right)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

That example might lead us to write a generator that produces all of a tree's
contents in order in the same way:

 1 >>> def enumerate(t):
 if t == None:
 return
 enumerate(t.left)
 yield t.data
 enumerate(t.right)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

Unfortunately, that hasn't got a chance. Every recursive call to generate just
creates another generator, and those generators would only be able to yield their
results if their caller (the original instance of enumerate) executed a next to wait
for them. yield from provides a very tidy solution:

 1 >>> def enumerate(t):
 if t == None:
 return
 yield from enumerate(t.left)
 yield t.data
 yield from enumerate(t.right)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

Second order generators, that is generators that manipulate other generators, can
also be created. Think back to itertools.count, we could easily create a
generator that approximates its simplest form:

136

 1 >>> def intsfrom(n):
 while True:
 yield n
 n += 1

 2 ...
 3 ...
 4 ...

We are unlikely to want to make a list of all the ints, so perhaps we could produce
a generator that just gives the first few items yielded by some other generator:

 1 >>> def first(n, other):
 for i in range(n):
 yield next(other)

list(first(12, intsfrom(7)))
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

 2 ...
 3 ...
 4
 5 >>>
 6

27. Saving and restoring live data

What that title means is that our program has built up some data structures that
are not simple enough to be adequately stored in a text, csv, or binary file, but we
need to be able to save them anyway. There is one aspect of data structures that
must be understood before the problem can be addressed: are they cyclic. Any
data structure that goes beyond triviality will involve objects that contain (pointers
or references to) other objects. So long as those pointers all go the same way, every
pointer followed gets us further from our starting point, saving and restoring is
not very difficult. But if there is some path from one object back to itself, things
are different. If we have 13 objects named A to M, A refers to B and C and D, B
refers to E and F, C refers to G and H, D refers to I and J and K, H refers to L and
M, and L refers to F and C. That is cyclic because it is possible to get from H back
to H again by following the path H L C H.

i. JSON - not for cyclic structures

The Javascript Object Notation is so called because the way it describes data
structures looks like the way Javascript does. They are not really related. JSON
provides a notation for objects (which look just like Python dictionaries), Arrays
(which look just like Python lists), and basic data (string, number, true, false,
null). It is usually written properly indented and aligned, with everything on a line
of its own. That makes it quite good for debugging, you can see exactly what
you've got at a glance.

The json module provides four essential class methods and a few other things to
go with them. The four essential methods can take many parameters, only the
important ones are given here, we'll get to the others soon.

json.dumps(obj, indent = None): returns a string containing the JSON
representation of the given object. indent really should be a moderately small int.
The default value of None squeezes everything together in an unreadable way. A
value of n means that every time we get one step further into a data structure, n
extra spaces of indentation will be inserted.

137

json.dump(obj, file, indent = None): (no ‘s’ in the name) does the
same thing, but instead of returning a string it writes the whole things to the given
file. This must be an object similar to that returned by open, and of course must
not be read only. You are responsible for opening the file first and closing it
afterwards.

 1 >>> a = { "bat": 23, "cat": 48, "dog": 6 }
b = [True, 3.14159, "horse"]
c = { "first": a, "second": b, "third": 3 }
json.dumps(c, indent = 3)
'{\n "first": {\n "bat": 23, ... "third": 3\n}'
 # not good, we don't want the newlines to appear as \n.
print(json.dumps(c, indent = 3))
{
 "first": {
 "bat": 23,
 "cat": 48,
 "dog": 6
 },
 "second": [
 true,
 3.14159,
 "horse"
],
 "third": 3
}

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

20

json.loads(s): s must be a string following the format of the strings

produced by json.dumps. It returns the collections of nested objects that the
string represents.

json.load(file): the same, but reads a JSON string from the file instead.

 1 >>> J = json.dumps(c, indent = 3)
o = json.loads(J)
type(o)
<class 'dict'>
o["first"]
{'bat': 23, 'cat': 48, 'dog': 6}
o["second"]
[True, 3.14159, 'horse']
o["third"]
3

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10

Now for the bad news. JSON only allows dictionary keys to be strings, any other
type gets converted to a string. Even worse, “any other type” can only be int,
float, bool, or None, others produce an error. Also, JSON does not understand
tuples, they get converted to lists. And JSON does not understand functions or
objects produced from class definitions at all.

 1 >>> d = { 12: [3, 4, 5], "cat": 8, "dog": 6 }
s = json.dumps(d)
s

 2 >>>
 3 >>>
 4

138

 5 >>> '{"12": [3, 4, 5], "cat": 8, "dog": 6}'
json.loads(s)
{'12': [3, 4, 5], 'cat': 8, 'dog': 6}
json.loads(json.dumps((1, 2, 3)))
[1, 2, 3]

 6
 7 >>>

8

To make your own class JSON-able, create a special class that inherits from
json.JSONEncoder and replace its default method. When you use dump or
dumps, provide your class as the cls keyword parameter. JSONEncoders do they
hard work for dump and dumps, they help with converting different types to JSON
strings. Their default method is called when they encounter a type that they
don't know about. All it has to do is return an object that JSON does know about.
The simplest solution is just to encode your object as though it were a dictionary.
Every object has a __dict__ attribute which is a dictionary that contains all the
object's attribute names and values, so back to the fraction class example:

 1 >>> half = fraction(1, 2)
half.__dict__
{'top': 1, 'bot': 2}
import json
from json import JSONEncoder
class encode_as_dict(JSONEncoder):
 def default(self, obj):
 return obj.__dict__

print(json.dumps(half, indent = 3, cls = encode_as_dict))
{
 "top": 5,
 "bot": 2
}

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>
 7 ...
 8 ...
 9
 10 >>>
 11
 12
 13
 14

That of course will work with any kind of object that was defined by a class
definition. Built-in objects like tuples don't have a __dict__ attribute. But there
is a problem. Every class-defined object will be encoded in the same way. When
the decoder sees a dictionary, how is it going to know what kind of object to turn it
back into?

Part of the solution is to add an entry to the dictionary that you return, it should
have a name that is very unlikely to appear naturally, and its value should be
something, probably a string, that will tell you what it should be rebuilt as. Every
object has a __class__ attribute that tells you which class it came from, and a
class object has a __name__ attribute which the dir function mysteriously
doesn't show.

 1 >>> class encode_as_dict(JSONEncoder):
 def default(self, obj):
 name = obj.__class__.__name__
 extra = { "___type___": name }
 return obj.__dict__ | extra

print(json.dumps(half, indent = 3, cls = encode_as_dict))
{

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8
 9

139

 10 "top": 5,
 "bot": 2,
 "___type___": "fraction"
}

 11

12

Remember that what we're looking at there really is a string. It looks like a
dictionary because that is what JSON does, and print prints things nicely. It is
really just “{\n \"top\": 5,\n \"bot\": 2, \n ... tion\"\n}”.

We need to use the dictionary union operator | rather than its update method
because we don't want to change the object’s __dict__ permanently. If you have
classes defined inside other classes, use the __qualname__ attribute instead of
__name__, it will give you a unique name something like
“bigclass.littleclass”

Creating a JSONDecoder is a little more complex, and most programmers don’t go
that way. Our class that inherits from JSONDecoder must have a constructor, we
need to intercept the constructor’s parameters, change one of them, and then let
them continue to JSONDecoder’s own constructor. The parameter object_hook
needs to be a method that can take the dictionary that dumps would normally
produce and return the correct object instead, that is our decoder method. The
decoder method needs to make sure that it leaves the dictionary untouched if it
doesn't represent an object of a class that it knows how to handle. We'll use it on
the JSON string created in the previous example

 1 >>> class decode_from_dict(JSONDecoder):

 def __init__(self, ** parameters):
 parameters["object_hook"] = self.decoder
 super().__init__(** parameters)

 def decoder(self, dic):
 if "___type___" in dic:
 if dic["___type___"] == "fraction":
 return fraction(dic["top"], dic["bot"])
 return dic

s = json.dumps(half, indent = 3, cls = encode_as_dict)
o = json.loads(s, cls = decode_from_dict)
o
fraction(1, 2)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12
 13 >>>
 14 >>>
 15 >>>
 16

Those who don’t want to define a whole class can define an ordinary function
instead. Nothing is lost in doing this. The function does exactly what the decoder
method did, and is provided to loads or load as the object_hook keyword
parameter.

 1 >>> def decode_from_dict(dic):
 if "___type___" in dic:
 if dic["___type___"] == "fraction":
 return fraction(dic["top"], dic["bot"])
 return dic

 2 ...
 3 ...
 4 ...
 5 ...

140

 6
s = json.dumps(half, indent = 3, cls = encode_as_dict)
o = json.loads(s, object_hook = decode_from_dict)
o
fraction(1, 2)

 7 >>>
 8 >>>
 9 >>>
 10

All of this relies on the objects you are trying to reconstruct having a constructor
that just takes the values for all of the attributes. This is not usually the case. And
it isn't difficult to overcome. Just remember that noting is really protected in
Python. You can use the existing constructor with the parameters it does take,
then just assign to the other attributes. You can add any attributes you want.

 1 >>> seven_ninths = fra.fraction(7, 9)
seven_ninths.colour = "blue" 2 >>>

You don't need to worry about your decoder recursively checking for dictionaries
within dictionaries, load and loads take care of that for you. But you do have to
worry about incomplete information. Very often an object will not save everything
that was used to construct it in attributes, so you will not have the necessary
information to call the constructor. Suppose that the constructor for a fraction
took just a single string parameter, like “22/7”, and extracted the initial values for
top and bot from it. We would no longer be able to use the constructor to recreate
the fraction from the top and bot values in its JSON dictionary. Well of course
we could, quite easily, but this is just an example. We can get over this problem
by using the __new__ class method to bypass the constructor, and a loop to turn
everything from the dictionary except for __type__ into an attribute.

 1 >>> def decode_from_dict(dic):
 if "___type___" in dic:
 if dic["___type___"] == "fraction":
 f = fra.fraction.__new__(fra.fraction)
 for key in dic:
 if key != "___type___":
 setattr(f, key, dic[key])
 return f
 return dic

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

If the circumstances are right, we can generalise this even further, and won't even
need to know which class’ objects might have been JSONised. If you know where a
class has been imported from, and use that information when setting the
___type___ value in the JSONEncoder, the function locate can find a class
object just from the class name:

 1 >>> cla = locate("fra.fraction")
threeq = cla.__new__(cla)
threeq.top = 3
threeq.bot = 7
threeq
fraction(3, 7)
locate("complex")(4, 5)
(4+5j)

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8

141

Note that locate("fraction") wouldn't work. It isn't just going to search
through every .py file in the world looking for that class definition. If the class was
defined in the current module or is a built-in type, its name alone is enough, as
you see for complex above. Otherwise you need to know which import the class
came from. And you certainly can't locate a class from a module that you haven't
imported yet.

ii. Pickle - OK for cyclic structures

Pickle is a serialiser, it can convert any interconnected collection of objects into a
stream of bytes, and then convert back again later. It keeps a record of every
object it serialises in a single use, so that if the same object is encountered again
because we a serialising a cyclic structure it will just be able to insert a reference
to the part of the byte stream that already represents that object, and avoid the
infinite recursion. Pickle can not handle lambdas, or anything that in some way
represents a live connection to something, such as an open file or socket object,
but I haven't found anything else to be missing.

Pickle can be dangerous. It is not difficult to create a stream of bytes that would
result in any code you want being executed automatically in the unpickling
process. Don't unpickle anything you find on the web.

Just like JSON, pickle is driven by four class methods: dumps(obj), dump(obj,
file), loads(bytes), and load(file), and they work in the same way, just small
differences in special parameters that are not normally needed, and the fact that
they use bytes objects instead of strings.

 1 >>> import pickle
o = {"a": 345, "b": [4, 8, 2]}
s = pickle.dumps(o)
s
b'\x80\x04\x95\x1a\x00\x00\x00\x00 ... \x08K\x02eu.'
p = pickle.loads(s)
p
{'a': 345, 'b': [4, 8, 2]}
o == p
True
o is p
False

 2 >>>
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

With dump and load, the file must have already been opened with "wb" or "rb"
respectively, or an equivalent object, and you must close it afterwards. Pickle also
provides two error classes so you can catch problems with a try statement. They
are pickle.PicklingError for dumps and dump, and pickle.UnpicklingError
for loads and load. They are both subclasses of pickle.PickleError.

iii. Shelve - a dictionary on disc

142

A shelve object behaves just like a dictionary, except that it lives on disc, not in
memory, so its contents will survive from one run of a program to the next. There
are two restrictions: the keys to this dictionary may only be strings, and the
values have to be things that pickle can handle.

A shelve object is created or re-accessed through the class method open. It takes
two parameters: a string for the name, and another string (of length one) for the
mode. Don't provide an extension with the name. When a new shelve database is
created, it will usually consist of more than one file, they will all have the name
you provided, but different extensions. On this computer now, they are .bak,
.dir, and .dat. When you open an existing database, again just provide the same
base name, and the correct files will be found.

The second parameter to open can have one of four values:

"r": the file must already exist, and it will be read-only.
"w": the file must already exist, and it will be open for both reading and

writing.
"c": the file will be created if it doesn't already exist but reopened

unchanged if it does. It will be open for both reading and writing.
"n": the file will be created, if it already exists its contents will be lost. It

will be open for both reading and writing.
If you don't provide a second parameter, the default is "c".

You must remember to use the close method on a shelve object when you have
finished with it. Apart from that, just use it as a dictionary.

 1 >>> import shelve
sh = shelve.open("shdb", "n")
sh["ant"] = "hello"
sh["bat"] = [1, 2, 3]
sh["cat"] = { "z": 88, "y": "yak", "x": 6.41 }
sh["bat"]
[1, 2, 3]
del sh["bat"]
"bat" in sh
False
"cat" in sh
True
for key in sh:
 print(key, sh[key])
ant hello
cat {'z': 88, 'y': 'yak', 'x': 6.41}
list(sh.keys())
['ant', 'cat']
list(sh.values())
['hello', {'z': 88, 'y': 'yak', 'x': 6.41}]
list(sh.items())
[('ant', 'hello'), ('cat', {'z': 88 ... 'yak', 'x': 6.41})]
sh.close()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14 ...
 15
 16
 17 >>>
 18
 19 >>>
 20
 21 >>>
 22

23 >>>

then later

143

 1 >>> sh = shelve.open("shdb", "w")
sh["ant"]
'hello'
sh.close()

 2 >>>
 3
 4 >>>

All of the dictionary methods also work on shelve objects except for the | operator,
to recap, they are: % formatting, pop, get, popitem, len, and update. But one
piece of common coding practice must not be used, and that is an update in place
of a mutable object.

 1 >>> sh["horse"] = [2, 7, 4, 1]

Do not do this

>>>
 1 >>> sh["horse"].append(66)

Do it in three steps instead

 1 >>> x = sh["horse"]
x.append(66)
sh["horse"] = x

 2 >>>
 3 >>>

There is another alternative called dbm. It is used in exactly the same way as
shelve, but has some restrictions. Essentially dbm can only store basic built-in
Python types. Shelve is in fact dbm plus pickle, so there isn't much point in
using dbm alone.

28. Exceptions: detecting and handling errors

When you do something wrong, you will normally find that your program stops
and an error message is shown. The message includes a listing of all the currently
executing functions and at the very end a description of the error. Here are some
examples that you’ll already be familiar with. Except for the first one, I’ll only
show the last line of the message.

 1 >>> def f(x):

 if x == 1: return math.sqrt(-2)
 if x == 2: return 1 / 0
 if x == 3: return math.dennis()
 if x == 4: return 123
 print("No match")

f(1)
Traceback (most recent call last):
 File "<pyshell#36>", line 1, in <module>
 f(1)
 File "<pyshell#35>", line 2, in f
 if x == 1: return math.sqrt(-2)
ValueError: math domain error

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8 >>>
 9
 10
 11
 12
 13
 14

144

 15 >>> f(2)
ZeroDivisionError: division by zero
f(3)
AttributeError: module 'math' has no attribute 'dennis'

 16
 17 >>>
 18

The names ValueError, ZeroDivisionError, and AttributeError are called
exceptions.

Even control-Cs can be tamed this way. Control-C causes a KeyboardInterrupt
which can be handled in exactly the same ways as the errors we are working on
now. Capturing control-Cs can be dangerous. You don’t want to end up with a
program that you can’t stop if something goes wrong.

i. Catching exceptions

Any statement or group of statements in your program can be surrounded by an
exception handler that will detect any or all exceptions and let you deal with them
however you want. When something goes wrong, an exception is raised, and all
parts of your program are terminated as though the functions had hit a return
statement, until you get back to a matching exception handler. In the examples
the program stopped with an error message because it didn’t have any exception
handlers. But Idle itself has one, and all it does is print the information and
continue with Idle's interactive loop. Here is a simple exception handler:

 1 >>> def user(a):
 b = 9
 print("user has started")
 try:
 b = f(a)
 print("Received", b)
 except ValueError:
 print("You used an inappropriate value")
 except AttributeError:
 print("Bad name")
 b = -1
 print("user is ending")
 return b

user(1)
user has started
You used an inappropriate value
user is ending
9

user(2)
user has started
...
ZeroDivisionError: division by zero

user(3)
user has started
Bad name

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14
 15 >>>
 16
 17
 18
 19
 20
 21 >>>
 22
 23
 24
 25
 26 >>>
 27
 28
 29

145

 30 user is ending
-1

user(4)
user has started
Receieved 123
user is ending
123

 31
 32 >>>
 33
 34
 35

36

Exceptions and their handlers can be used to solve a sometimes annoying
problem. The break statement only breaks out of a single loop. What if you have
nested loops and want to break out of more than one of them?

 1 >>> class LoopBreaker(Exception):

 pass

for a in range(4):
 try:
 for b in range(4):
 for c in range(4):
 for d in range(4):
 print(a, b, c, d, sep = "", end = " ")
 if a + b + c + d > 4:
 raise LoopBreaker()
 except LoopBreaker:
 pass
 print(a)

0000 0001 0002 0003 0010 0011 0021 0022 0023 0
1000 1001 1002 1003 1010 1011 1012 1013 1
2000 2001 2002 2003 2
3000 3001 3002 3

 2 ...
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15
 16
 17
 18
 19

try and except may be followed by any number of statements, and each try may
have any number of excepts. The try statements are executed as normal. If an
exception occurs and we have provided an except for it, the statements of the
except are executed, and everything continues as normal. Notice that the
"Received" message only appeared in the case that had no exception. If an
exception occurs that we did not provide an except for, we will not catch it. Our
exception handler will exit just like any other piece of code, and the exception will
continue until something does catch it.

The names of exceptions that follow the except must all be classes that inherit
from BaseException. Inheritance is important with excepts. An exact match of
types is not required. except Super: will also catch exceptions of type Sub if Sub
is a subclass of Super.

If you want to handle a number of exceptions in exactly the same way, you can
write a single except that has all of their names in parentheses as in

 1 ... except (AttributeError, ValueError):

146

If you want something that will catch every possible exception, just say except:
on its own. You can think of the whole thing as being like an if statement. The
try is like if. The except xxxs are like elifs and the lone except: at the end is
the else. Just like with an if statement, the excepts are tried in turn until the
first match is found, so a lone except: should only be at the end of the list.

An exception handler may also have an else: clause and a finally: clause. The
else: statements are executed if no exceptions occurred in the try: statements.
The finally: statements are always executed no matter what, even if an
exception occurred and we failed to catch it. In that last case, the finally:
statements are executed before the exception continues to unwind all of our
function calls. Any else: must come after all of the except:s, and a finally:
must be last of all.

The following should be taken as an addition to the user function. The first and
last lines of this little snippet are statements that the function already includes, so
you can be sure you're putting these new statements in the right place.

 1 ... b = -1

 else:
 print("everything went well")
 finally:
 print("You can't keep me quiet")
 print("user is ending")

c.user(1) # an exception we caught
user has started
You used an inappropriate value
You can't keep me quiet # the finally
user is ending
9

c.user(2) # an uncaught exception
user has started
You can't keep me quiet # the finally
Traceback (most recent call last): # the usual fatal error
... ...
ZeroDivisionError: division by zero

c.user(4) # no exception at all
user has started
Receieved 123
Everything went well # the else
You can't keep me quiet # the finally
user is ending
123

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8 >>>
 9
 10
 11
 12
 13
 14
 15 >>>
 16
 17
 18
 19
 20
 21
 22 >>>
 23
 24
 25
 26
 27

28

ii. Getting information from an exception

Exceptions, like everything else, are objects. The names, such as ValueError, are
the names of the classes that the exceptions belong to. You can easily capture the

147

exception object and sometimes find extra useful information inside it. To capture
the exception object, just put as followed by a variable name just before the
except’s colon. The dir function is a good way to examine things. I'm going to use
a global variable, x, to bring the exception object outside the exception handler,
and we'll see just which non-existent attribute I tried to access. Many exceptions,
such as ZeroDivisionError, have no useful extra information to provide, but a
lot do.

 1 >>> x = 0

try:
 math.dennis()
except (AttributeError, ZeroDivisionError) as e:
 print(e)
 x = e

type(x) == AttributeError
True
x
AttributeError("module 'math' has no attribute 'dennis'")
dir(x)
[... ... 'args', 'name', 'obj',]
x.name
'dennis'

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15

If you have a general except: to catch all exceptions but still want to see what the
exception was, you need a little trick. You can’t say except as e:, but just
remember that superclasses catch subclasses and say except BaseException as
e: instead.

To really see everything that led up to the exception, the Exception object itself
contains everything you need. If ex is the Exception object:

ex.__class__.__name__

is the name of the kind of exception, such as "AttributeError".
ex.args

is a tuple of all of the information provided when ex was created, something
like ("module 'math' has no attribute 'dennis'",)

ex.__traceback__
is a traceback object that represents exactly where in your program the
exception occurred. Let’s suppose that the AttributeError occurred on
line 6 of D:\python\badprog.py in a function called third. third was
called from line 9 of that file, inside the function second. second was called
from line 14 in a function called first, and first was called from line 17,
not inside any function. Then:

ex.__traceback__.tb_frame.f_code.co_filename
will be "D:\python\badprog.py"

ex.__traceback__.tb_lineno
will be 17. Note that this is not necessarily what you might expect. Line 17
is the first call, not the place where the exception occurred.

ex.__traceback__.tb_frame.f_code.co_name
will be "<module>" to indicate that we were not in any function then,

148

ex.__traceback__.tb_next
will be another traceback object, this time representing the next call, from
first to second at line 15. So to keep the lines from getting too long, I’ll
save the next traceback as exn before we look at it. The file name remains
the same, so I’ll ignore it.

exn = ex.__traceback__.tb_next
exn.tb_lineno is 15
exn.tb_frame.f_code.co_name is "first".
exnn = exn.tb_next
exnn.tb_lineno is 11
exnn.tb_frame.f_code.co_name is "second".
exnnn = exnn.tb_next
exnnn.tb_lineno is 7
exnnn.tb_frame.f_code.co_name is "third", and finally
exnnn.tb_next is None, we have reached the point where the exception
happened.

After importing traceback, the class method traceback.print_tb(...) can be
given a traceback object such as ex.__traceback__ as its parameter and it will
print everything in human-readable form.

If you catch an exception but then discover that you can’t handle it after all, just
put a raise statement with no operand as one of the except: statements. The
exact same exception is re-raised, and will continue unwinding all the function
calls until it reaches a suitable exception handler.

 1 >>> try:

 print(math.herbert)
except AttributeError as e:
 if e.name == "dennis":
 raise
 else:
 # pretend to correct the problem
 print("Everything is OK now")

Traceback
... ...
AttributeError: module 'math' has no attribute 'herbert'

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9
 10
 11
 12

iii. Raising exceptions

If you want to cause an exception deliberately, you must create an object that
inherits from BaseException (or Exception if you want to save a bit of typing)
and put it as the operand of a raise statement. You can re-use existing exception
classes or create your own. Any parameters you give to the exception’s constructor
will be available as the object’s args attribute.

 1 >>> def f():

 for i in range(10):
 if i > 7:

 2 ...
 3 ...

149

 4 ... raise ValueError("It got too big")
 print("done")

try:
 a = f()
except Exception as e:
 print(type(e))
 print(e.args)

<class 'ValueError'>
('It got too big',)

class TooHotError(Exception):
 pass

try:
 raise TooHotError(95, "Fahrenheit")
except Exception as e:
 print(e.args)
(95, 'Fahrenheit')

 5 ...
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11 ...
 12
 13
 14
 15
 16 >>>
 17 ...
 18
 19 >>>
 20 ...
 21 ...
 22 ...
 23

The statement “assert condition, string” is really just a conditional exception
raiser, it is equivalent to

 if __debug__:
 if not condition:
 raise AssertionError(string)

iv. Making a class compatible with the with statement

We'll start with an example of something dangerous that needs to be handled
carefully. Suppose we are working in a laboratory that investigates giant deadly
laser beams. Software to control those things could be provided in the form of a
class whose methods do the work. Here it is, but only showing the declarations,
the real stuff has been left out.

 1 >>> class DeadlyLaserBeam:

 def __init__(self, unit_name):
 ...
 def turn_on(self):
 ...
 def turn_off(self):
 ...
 def aim(self, alt, az):
 ...

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

To control a laser, we create a DeadlyLaserBeam object, giving the constructor the
name of the particular laser machine we want. After that we have the option of
turning it on, turning it off, and changing the direction it is aimed in (alt and az
are short for altitude and azimuth, the coordinate system often used for aiming
telescopes).

150

But deadly laser beams are dangerous things. What if an error makes the program
crash while the laser is still turned on? Who knows what it might burn a hole
through. Being very careful to catch every possible exception would keep things
safe, and the with statement is just a convenient way of doing exactly that
automatically. It might be used like this:

 1 >>> with DeadlyLaserBeam("7G") as dlb:

 dlb.turn_on()
 (alt, az, duration) = calculate_target(1)
 dlb.aim(alt, az)
 time.sleep(duration)
 (alt, az, duration) = calculate_target(2)
 dlb.aim(alt, az)
 time.sleep(duration)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...

The problem is of course when calculate_target fails. time_sleep(n) just
makes a program pause, doing nothing, for n seconds. It gives the laser beam
enough time to do its thing. To make that with statement work, we need to add
two methods to the class. __enter__ which doesn't have to do anything more
than return self, and __exit__ which should do some work.

 1 ... def __enter__(self):

 return self

 def __exit__(self, etype, eval, etrace):
 self.turn_off()
 if etype != None:
 print("Warning, an", etype, "error occurred")
 return True

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...

This is what the little example does. with DeadlyLaserBeam("7G") as dlb:

First, it does this.
 obj = DeadlyLaserBeam("7G")
just evalulating the with expression and keeping the result, then
 obj = obj.__enter__()
so the __enter__ method gets a chance to perform any required set-up,
perhaps modify the object, or even replace it with a new one. Then
 dlb = obj
the as variable can now be used to access the object. And finally, the
statements following the with are executed.

While the statements are being executed, all possible errors and exceptions are
caught. If an exception occurs, the statements are immediately abandoned, and
the __exit__ method is called. __exit__’s parameter etype will be set to the
class object for the kind of exception that occurred, eval will be set to the actual
exception object, and etrace is a traceback object exactly as we saw a little
earlier, you can extract file names, line numbers, and function names from it in
exactly the same way.

151

In short, __exit__ will always be called no matter what happens. If __exit__
returns True, then the rest of the program after the with statements continues as
normal.

Many standard types implement __enter__ and __exit__ so that they can be
used with with. The file object returned by open is probably the best-known
example.

29. Dates and times

 1 >>> import time
time.strftime("%X")
14:47:21
time.strftime("%c") # other formats later in this section
Mon Jul 24 17:41:15 2023

import datetime
t = datetime.datetime.now()
t
datetime.datetime(2023, 3, 7, 19, 47, 8, 295091)
print(t)
2023-03-07 19:47:08.295091
t.month
3

 2 >>>
 3
 4 >>>
 5
 6
 7 >>>
 8 >>>
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14

The attributes of a datetime are year, month, day, hour, minute, second,
microsecond, and tzinfo (time-zone data, not shown because it wasn’t set), and
there is also a weekday method. microsecond and tzinfo can be ignored.

 1 >>> t = datetime.datetime(1896, 4, 19, 12, 0, 0)
names = ["Mon", "Tue", "Wed", "Thur", "Fri", "Sat", "Sun"]
names[t.weekday()]
'Sun'
datetime.datetime.now() - t
datetime.timedelta(days=46342, seconds=28028)
datetime.datetime.now() + datetime.timedelta(days = 365)
datetime.datetime(2024, 3, 7, 19, 47, 8, 295091)

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

Dates and times are available separately, but there is no equivalent of now() for
times.

 1 >>> t = datetime.date.today()
datetime.date(2023, 3, 7)
t = datetime.datetime(1896, 4, 19, 12, 45, 19)
t.date()
datetime.date(1896, 4, 19)
t.time()
datetime.time(12, 45, 19)
x = datetime.time(20, 29, 15)
x.hour
20

 2
 3 >>>
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9 >>>
 10

152

ii. Unix-style times

Times and dates are also available in a more primitive but computation-friendly
form, using almost the Unix standard of the number of seconds since 1st January
1970, midnight G.M.T. tm_wday = 0 for Sunday, tm_yday = 1 for 1st January.
Unlike in the original Unix version, tm_mon = 1 means January and you don’t add
1900 to tm_year.

 1 >>> import time
t = time.time()
t
1687906859.8652923
time.localtime(t)
time.struct_time(tm_year=2023, tm_mon=6, tm_mday=27,
 tm_hour=19, tm_min=0, tm_sec=59,
 tm_wday=1, tm_yday=178, tm_isdst=1)
time.gmtime(t)
the same, except tm_hour=23
time.gmtime(0)
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1,
 tm_hour=0, tm_min=0, tm_sec=0,
 tm_wday=3, tm_yday=1, tm_isdst=0)

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7
 8
 9 >>>
 10
 11 >>>
 12
 13
 14

And there are a lot of other methods too. In particular,

 1 >>> time.sleep(3.61)

will make the program pause its execution, leaving the CPU idle, for 3.61 seconds.

Beware: Control-Cs are not noticed during a sleep under Windows.

iii. Formatting

The special string formatting operation f has codes for extracting information from
a datetime.

 1 >>> t = datetime.datetime.now()
f"it is {t:%A} {t:%d} {t:%B} {t:%Y}"
'it is Tuesday 07 March 2023'
"it is {0:%A} {0:%d} {0:%B} {0:%Y}".format(t)
'it is Tuesday 07 March 2023'

 2 >>>
 3
 4 >>>
 5

The strftime function uses exactly the same format strings. Its first parameter is
a format string, and its optional second parameter is a time as returned by
localtime. If the second parameter is missing, the current local time will be
used.

the formats are

%a: abbreviated day of week,

153

%A: full day of week,
%b: abbreviated month,
%B: full month name,
%c: everything, format: Mon Jul 24 17:41:15 2023,
%d: zero padded day of month,
%-d: day of month, replace - with # under windows,
%f: six digit zero padded microsecond,
%H: zero padded hour (24-hour clock),
%I: zero padded hour (12-hour clock),
%-I: hour (12-hour clock), replace - with # under windows,
%j: three digit zero padded day of year,
%-j: day of year, replace - with # under windows,
%m: zero padded month number,
%-m: month, replace - with # under windows,
%M: zero padded minute,
%-M: minute, replace - with # under windows,
%p: AM or PM,
%S: zero padded second,
%-S: second, replace - with # under windows,
%U: zero padded week of year if weeks start on Sundays,
%w: day of week, 0 = Sunday,
%W: zero padded week of the year if weeks start on Mondays,
%x: date, format: 07/24/23,
%X: time, format: 14:47:21,
%y: last two digits of year,
%-y: year without century no padding, replace - with # under windows,
%Y: full year,

The documentation claims formats %z, %Z, but they just produce empty strings.

iv. CPU time

If you want to time a running program, time.process_time tells you how many
seconds of CPU time have been spent on this program (technically processes) only.

 1 >>> time.process_time()
2.859375
time.process_time()
2.859375

 2
 3 >>>
 4

You have probably noticed that the two times are exactly the same, down to the
microsecond, and I certainly didn’t type that second command in less than a
microsecond. That illustrates what CPU time really means: waiting doesn’t, only
work time is included. Plus the clock isn’t really that accurate.

30. Minor data structures

154

Python provides a number of modules that implement data structures beyond
those build into the language. They generally wouldn't be difficult to make for
yourself, but they do save a bit of effort and debugging.

i. Queues

The queue module provides three useful versions of queues, one of which isn't a
queue at all. They are list-like data structure with restricted access. The
implementation includes an automatic mutex. That means that if two threads of
your program try to update the queue at the same time (they do provide a good
means of communication between threads) nothing will go wrong.

The three classes are:

queue.Queue, which is a normal queue. You can only add items to the end,
and you can only remove items from the beginning.

queue.LifoQueue is in fact a stack. You can only add or removes items to
or from the end.

queue.PriorityQueue is what the name suggests, a priority queue. When
things are added, they don't go into any particular position at all. The
only thing you can remove is the item with smallest value. To make
this useful, remember that lists and tuples can be compared just as
easily as numbers, and so can your own objects if they have an
__lt__ method.

Whichever you want, you'll need to do the equivalent of this:
from queue import PriorityQueue

The constructors all take one optional parameter, and that is the maximum
number of items that the structure can contain. No parameter or parameter equal
to zero means there is no limit. If the limit is reached, then attempts to add more
items will block (not return) or raise an exception, depending on the context, until
an items has been removed.

The three types of queue have the same methods:

qsize(), empty(), and full(): return the number of stored items and True or
False depending on whether the queue is empty or not. They are only useful in a
non-threaded program. If you have threads, then full() returning False is not a
guarantee that the queue will still not be full when you execute the next
statement.

put(object, block, maxtime), only object is required. Adds the object to the
queue and that's that, except that if the queue is already full, the other
parameters come into play. If block is True (the default) this method call will wait
(i.e. not return) until the queue is not full. If maxtime is provided and not equal to
None, then it is the maximum number of seconds the wait will last. If the
maximum time expires or block was False, the queue.Full exception will be
raised. put_nowait(object) is equivalent to put(object, False, None).

155

get(block, maxtime), neither parameter is required. If the queue is not empty
the one eligible item is removed and returned as the result. If the queue is empty,
it is like put: if block is True (the default) then it will wait until the queue is no
longer empty. If maxtime is provided and not None, then it is the maximum
number of seconds the wait will last. If the maximum time expires or block is
False, the queue.Empty exception will be raised. get_nowait() is equivalent to
get(False, None).

BEWARE: if put or get is blocking, not even a control-C will stop your program
under Windows.

Python's priority queues are of limited use, because adjusting the priority of an
item after it has been added doesn't entirely work. It has some effect, but not
always the correct one.

ii. Double ended queues

A double ended queue, or deque, is an extension of an ordinary queue. You can
both add and remove items at either end. deque is part of the collections
package, so include from collections import deque.

The constructor can take no parameters, in which case it creates an empty deque,
or it can take an iterable, in which case all the objects in the iterable are added, in
order, to the end. If you provide an iterable, you may also provide a second
optional parameter to specify the maximum number of objects the deque can
store. The methods are:

append(object), add the object to the end (right) of the deque. Returns
nothing.

appendleft(object), add the object at the front (left) of the deque. Returns
nothing.

pop(), remove and return the last (rightmost) item.

popleft(), remove and return the first (leftmost) item.

extend(iterable) and extendleft(iterable), add all the objects from the
iterable, in order, at the given end of the deque.

clear(), remove all objects, make the deque empty.

indexing, deque[i], accesses the item at position i, leftmost is zero. can be used
to look at the item or to change it. Also del deque[i] removes an item.

index(object), returns the position of the object in the deque, leftmost is zero.
It uses ==, not is, to do the comparisons. Raises ValueError if not present.

156

insert(index, object), insert the object so that it appears at the given index.
The object that used to be at that position, and all following, move one position to
the right.

remove(object), remove the object, moving all later objects one position to the
left to fill the hole. ValueError if not present.

rotate(n), the last n items in the deque become the first n items, all other items
move n positions to the right.

The operator + concatenates two deques to create a new one, and * by a number
produces a new deque equal to that number of copies of the original concatenated
together.

iii. Counters

A Counter contains data items, but its primary purpose is to keep a count of the
number of times each item has been added. It presents this information in the
form of a dictionary. The constructor for a Counter takes any iterable the contents
of which are added, or nothing at all in which case it starts out empty. Once a
Counter exists, the update method also takes any iterable and adds its contents.
Beware, Counter is spelled with a capital C.

 1 >>> from collections import Counter
c = Counter()
f = open("/home/www/text/barrie/peterpan", "r")
for line in f.readlines():
 c.update(line.split())
f.close()
c["the"]
2169 # “the” is a very popular word
c["hippopotamus"]
0 # surprisingly no hippopotamusses in Peter Pan

c = Counter()
f = open("/home/www/text/barrie/peterpan", "r")
for line in f.readlines():
 for word in line.split():
 c.update(word)
f.close()
c["the"]
0 # a string is an iterable, so all of its characters were added
c["e"]
25213
c.most_common(4)
[('e', 25213), ('t', 17808), ('a', 14917), ('o', 14068)]
c
Counter({'e': 25213, 't': 17808, 'a': 14917, 'o': 14068,
 'h': 13992, 'n': 12762, 'i': 12182, ...
 ... '{': 2, '}': 2, 'Z': 1, '^': 1})
c.total()

 2 >>>
 3 >>>
 4 >>>
 5 ...
 6 >>>
 7 >>>
 8
 9 >>>
 10
 11
 12 >>>
 13 >>>
 14 >>>
 15 ...
 16 ...
 17 >>>
 18 >>>
 19
 20 >>>
 21
 22 >>>
 23
 24 >>>
 25
 26
 27
 28 >>>
 29

157

208527 # the sum of all the counts

There are four operators that produce new Counters:

a + b = everything from both, with their counts added
a | b = everything from both but with maximum count from either
a - b = subtract b's count from a's count, <= 0 means remove
a & b = everything from both but with minimum count from either

iv. Named tuples

The contents of a normal tuple are accessed with a numerical index. If the
position of something within a tuple has some significance, it is critical and
difficult to remember the correct indexes. A namedtuple replaces numeric indexes
with named fields, like attributes in a class. In fact, the constructor for a
namedtuple doesn't return an ordinary object, instead it returns a new class in
which the chosen names really are attributes. The constructor namedtuple is a
little odd. Its first parameter is the name you want the new class to have, and the
second parameter is a space-separated string giving the names of the positions or
attributes. The class returned by namedtuple is used as a constructor for these
new objects.

 1 >>> from collections import namedtuple
nation = namedtuple("nation", "name population area")
nepal = nation(area = 147516, name = "Nepal",
 population = 30666598)
spain = nation(name = "Spain", area = 195365,
 population = 48196693)
liechtenstein = nation(name = "Liechtenstein",
 population = 38387, area = 62)
spain
nation(name='Spain', population=48196693, area=195365)
nepal.population
30666598

 2 >>>
 3 >>>
 4 ...
 5 >>>
 6 ...
 7 >>>
 8 ...
 9 >>>
 10
 11 >>>
 12

It is an error if any of the attribute names would be unusable (perhaps something
like “while”, “96”, or “*”), but sometimes the attribute names can not be checked
by the programmer, they may have come from the first row of a CSV file for
example. In that case, give the keyword parameter rename = True to the
namedtuple constructor, then any bad names will be converted to something safe
but meaningless, like “_2”.

v. Chained dictionaries

A ChainMap allows you to bring multiple dictionary-like objects together, so that
they can all be searched in a single operation. You use a ChainMap exactly as you
use a dictionary. Searches are applied to each of the included dictionaries in turn,
in the order that they were given to the constructor, as soon as one results in a
successful search, that is the result. But changes to a value, additions of new

158

entries, and deletions of entries only happen to the first included dictionary. It is
an error (KeyError) if you try to delete an entry that isn't in the first dictionary.

 1 >>> from collections import ChainMap
d_one = { "a": 111, "b": 222, "c": 333 }
d_two = { "b": 444, "d": 555, "e": 666 }
d_three = { "a": 777, "b": 888, "c": 999, "f": "cat" }
d = ChainMap(d_one, d_two, d_three)
d["a"]
111
d["b"]
222
d["e"]
666
d["f"]
'cat'
d["b"] = "new b"
d["f"] = "new f"
d["x"] = 1234
del d["c"]
d_one
{'a': 111, 'b': 'new b', 'f': 'new f', 'x': 1234}
d_two
{'b': 444, 'd': 555, 'e': 666}
d_three
{'a': 777, 'b': 888, 'c': 999, 'f': 'cat'}

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15 >>>
 16 >>>
 17 >>>
 18 >>>
 19
 20 >>>
 21
 22 >>>

23

A ChainMap has an attribute named maps. Its value is a list containing all the
included dictionaries in their proper order. You can change the included
dictionaries by modifying this list.

The new_child(newdict) method adds another dictionary to the front of the list,
so that it becomes the first to be searched. If newdict is None or not provided, a
new empty dictionary will be added. This is useful if you want to protect the
included dictionaries from change. All changes will only happen to this new first
entry.

parents appears to be an attribute, but it is a property (a method that you access
as though it were an attribute). cm.parents is a new ChainMap the same as cm,
but with the first of the included dictionaries removed. It is the opposite of
new_child.

31. Access to operating system features

These things will of course behave differently depending on which operating
system your computer has. But as the only likely choices these days are Unix and
Windows, the differences should be manageable.

i. System-independent code

159

There are a number of standard Python things that don't work under Windows.
One way to handle this is to make your module detect what kind of system it is
running under and for the things that are system dependent, provide different
definitions. Often, on the Unix side, you can just provide a slightly differently
named function that directly calls the standard Python function. Then on the
Windows side define a function with that same name that performs whatever
work-around is needed. This is easy because in Python, imports and function
definitions and so on are just normal executable statements, so we can use an if.

What should the condition of the if be? If you have already found something that
behaves differently under the two systems, you could just test that effect. But
there are two better ways.

In the os module, os.name has one of three (currently) possible string values:
'nt' for Windows, 'posix' for Unix, and 'java'. I'm not quite sure why Java
would be considered an operating system, but it is possible to run Python from a
Java program.

In the platform module, there is something rather more specific.
platform.system() returns 'Windows', 'FreeBSD', or 'Linux'. The problem is
that those are almost certainly not the only possibilities, and there doesn't seem to
be any central place recording them.

So let’s suppose we have found two functions, first and second, that work under
Unix but not under Windows:

 1 >>> import os
if os.name == "posix":
 def x_first(a, b):
 return first(a, b)
 def x_second():
 second()
else:
 def x_first(a, b):
 # whatever is needed to make first work
 def x_second():
 # whatever is needed to make second work

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...

Now after that conditional part, just make sure you use x_first and x_second
wherever you would normally have used first and second.

ii. The os module

The os module contains a very large number of things indeed. I am only including
the few most useful here. If you feel the need for more, the Python documentation
is always there. Most of these things are clearly based on standard Unix system
calls, so how they behave under windows might be questionable. Generally, if
there is a Unix system call for something, it probably has an equivalent in os.

os.getlogin() returns your user name.

160

os.getcwd() returns as a string your current working directory or folder, and
os.chdir(s) lets you change it. This will change where python looks for files
when you use open without specifying an absolute path, but does not alter where
import looks for modules.

 1 >>> os.getcwd()
'D:\\python'
os.chdir("D:\\python\\mcpackage")
os.getcwd()
'D:\\python\\mcpackage'

 2
 3 >>>
 4 >>>
 5

There are five string values that tell you the way that certain string should be
constructed or separated.

 Unix Windows
os.pathsep ':' ';' separates directories listed in your PATH

variable
os.sep '/' '\\' separates files and directories in file names
os.pardir '..' '..' how to refer to the parent directory
os.curdir '.' '.' how to refer to the current directory
os.linesep '\n' '\r\n' what appears at the end of an official line of

text

These functions provide information about files, the parameter is a file name:

os.path.isfile(s) is the file an ordinary file that actually exists
os.path.isdir(s) is the file a directory that actually exists
os.path.exists(s) is it any sort of file and actually exists
os.path.getsize(s) what is the size of the file, in bytes
os.access(s, mode) am I allowed to access this file in this way

mode can be any bitwise-or (the | operator) of R_OK, W_OK, and
X_OK. R W X for read write execute. True if you can do all of the |’ed
together modes of access.

 1 >>> os.path.isfile("p7.py")
True
os.path.isdir("p7.py")
False
os.path.isdir("D:\\Python")
True
os.path.exists("p7.py")
True
os.path.getsize("p7.py")
2628
os.access("p7.py", os.R_OK | os.W_OK)
True

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12

These functions allow you to manipulate file names and paths:

os.path.split(s) separate into path and file - a tuple

161

os.path.splitext(s) separate into file and extension - a tuple
os.path.abspath(s) exactly where is this file?
os.path.join(s) connect components of a file's path

 1 >>> os.path.split("D:\\Python\\p7.py")

('D:\\Python', 'p7.py')
os.path.splitext("D:\\Python\\p7.py")
('D:\\Python\\p7', '.py')
os.path.abspath("p7.py")
'"D:\\Python\\p7.py'
os.path.join("D:", "Python", "subdir", "hen.py")
'D:Python\\subdir\\hen.py'

 2
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

That last one is odd. It never puts the \\ after a drive letter.

os.listdir(path = ".")

Returns a list of all the files in the given directory, except for "." and "..", and
in no particular order. The default value "." represents the current directory.

os.walk(path)

Much more helpful than listdir. It returns an iterable with one entry for
every directory that can be reached from the given path. The first entry will
always be for the given path itself. The entries are three-tuples, [0] is the
name of the directory itself, [1] is a list of the names of all subdirectories it
contains, and [2] is a list of all the other files it contains. For this example,
my current directory has a subdirectory called mcpackage. mcpackage has
two of its own subdirectories called __pycache__ and junior, and junior
has a subdirectory called littlebits.

 1 >>> x = list(os.walk("mcpackage"))

len(x)
5
x[0]
('mcpackage',
 ['junior', '__pycache__'],
 ['one.py', 'two.py', '__init__.py'])
x[1]
('mcpackage\\junior',
 ['littlebits', '__pycache__'],
 ['four.py', 'three.py', '__init__.py'])
x[2]
('mcpackage\\junior\\littlebits',
 [],
 ['first.txt', 'second.txt'])
x[3]
('mcpackage\\junior__pycache__',
 [],
 ['four.cpython-311.pyc', 'three.cpython-311.pyc',
 '__init__.cpython-311.pyc'])
x[4]
('mcpackage__pycache__',
 [],
 ['one.cpython-311.pyc', 'two.cpython-311.pyc',

 2 >>>
 3
 4 >>>
 5
 6
 7
 8 >>>
 9
 10
 11
 12 >>>
 13
 14
 15
 16 >>>
 17
 18
 19
 20
 21 >>>
 22
 23
 24

162

 25 '__init__.cpython-311.pyc'])

os.remove(filename)

Deletes an ordinary file.
os.rmdir(dirname)

Deletes a directory, error if it isn't empty.
os.mkdir(dirname)

Creates a directory, error if it already exists.

os.system("command")

Opens a new shell and runs the given command in it. Under windows you
probably won't see anything unless the command includes some way to
cause a pause. A new window will appear, the command will run in it, and it
will instantly disappear. Under Unix, the output from the command appears
as normal Python output does. In either case, the result returned is the
command's exit status.

os.popen("command", mode = "r")

Is a much better alternative to os.system, and almost as easy to use. It
runs the operating system command you provide, but returns as its result
an object that behaves exactly like a text file to allow interaction with the
command while it is running. But it has a serious defect. Unlike with real
files, the mode can only be "r" or "w". If it is "r", the command will be run
with no standard input. There is nothing that will let you achieve the effect
of typing in response to its prompts. Any input it needs will have to be taken
from the command line. But it does behave like an ordinary read-only text
file, read and readlines and so on all work as usual.

oprog is a program that prints its name then multiplies the two numbers
given on its command line.

 1 >>> f = os.popen("oprog 7 9")
f.readlines()
['oprog\n', '7 times 9 is 63\n']
f.close()

 2 >>>
 3
 4 >>>

If the mode is , you will be able to use the write method on it to respond to
prompts, but all the output it produces will just appear on your screen as
normal Python output, and input doesn't work the way you would expect,
and output appears in an order that you wouldn't expect either. iprog is a
program that prints its name then asks the user to type two numbers, then
prints their product, and finally exits with their product as its exit code.
Here is a session of me using it outside of Python. To make everything clear,
what the computer prints is in the typewriter-like font, what I type is in this
text font, italic, and underlined. The symbol ↙ shows exactly where I
pressed ENTER. This was done under Unix.

$ iprog ↙
iprog
Enter a number: 4 ↙

163

Enter another number: 5 ↙
The product is 20
$ echo $status ↙
20
$

Exactly as you would expect from the description. Now an attempt at the
same thing on Idle.

 1 >>> f = os.popen("iprog", "w") ↙
iprog
Enter a number: ↙
f.write("4\n") ↙
2
f.write("5\n") ↙
2
f.close() // 256 ↙
Enter another number: The product is 20
20

 2 >>>
 3
 4 >>>
 5
 6 >>>
 7
 8 >>>
 9

10

The first thing to note is that we got the Python prompt for the next
command >>> immediately after the call to popen, and that was followed by
output from the program, I didn't type the >>> iprog line. Then after the
program said enter a number, I had to press enter to get the Python
prompt back. Then, sending the two numbers, 4 and 5, to the program had
no immediate effect, all the remaining output came after the call to close.
This strange ordering is due to the buffering that operating systems apply to
data streams. The very last line just saying 20 is the exit code, the result of
the division f.close() // 256. close multiplies the program's real exit
code by 256 to produce its result.

os.environ contains all your environment variables as a dictionary. You need to
be careful in using this, the environment will have different keys depending on the
operating system. The first of these examples produces an error under Unix, the
second produces an error under Windows.

 1 >>> os.environ["OS"]
'Windows_NT' 2

or
 1 >>> os.environ["HOSTTYPE"]

'FreeBSD' 2

os.sys.argv is a list giving the strings on the command line that started this

program. If you are using Idle, it will just contain a single empty
string.

glob.glob(pattern, root_dir = ".")

Returns a list of all the files found starting from root_dir (keyword only)
whose names or paths match the pattern. pattern may contain any of the
standard Unix "glob" wild-cards for file name matching, such as * and ?,
etc.

164

 1 >>> glob.glob("b*.p?")

['bad.py', 'boolean.py', 'brain.py', 'brain2.py']
glob.glob("**.py")
['mcpackage\\one.py', 'mcpackage\\two.py',
 'mcpackage__init__.py']
glob.glob("*.doc*", root_dir = "D:\\computer")
['bcpl-description.doc', 'bcpl-syntax.doc',
 'bcpl.doc', 'emulator.doc', 'hardware.docx']

 2
 3 >>>
 4
 5
 6 >>>
 7
 8

If you know about Unix systems programming, os.fork(), os.wait(),
os.kill(), and os.execlp() and all it's cousins do exactly what you would
expect.

32. Multiple streams of execution - Threads

Most programs, even today, run in a completely linear way. They start at the
beginning, run through their code instruction by instruction, and stop at the end.
That is the way programming is taught after all. But there are alternatives. If at
some point, a program has three tasks to perform, and they are at least mostly
independent, why just do them one at a time? Why not speed things up and
perform all three tasks at the same time?

That is what threading is all about. A thread is a single linear stream of code
execution, and programs can have a lot of threads. Modern computer CPUs are
multi-core, which means that they really can be doing many totally different
things at the same time. But that isn't necessary. If you have a single core CPU, it
can only really be doing one thing at a time, but even then software can make that
irrelevant. Time sharing is where one thread of execution is allowed to run for a
fraction of a second, then it is suspended and another thread gets a turn. This
technique has been around since long before anyone came up with the idea of a
thread.

But that is the point? If you're only timesharing, having multiple threads isn't
going to speed anything up. The fact is that it still can, but not by much. The
really important thing is that multiple threads can significantly simplify software
design. Think of a web server or a multi-play game server. It will be dealing with
quite a number of connected clients (people playing the game) at the same time,
and activity will come from those clients at totally unpredictable times. With
normal programming techniques it would have the complex job of repeatedly
checking on every connection to see if anything needs to be done yet, queueing up
those things that need to be done so they can be handled in a fair order, and
making sure that activity on one connection won't leak over and affect what is
happening on another. With multi-threading, you can have one thread for every
client. All it has to do is constantly wait for activity and immediately deal with it.
No chance of any confusion between clients. And it doesn't matter how many
cores your CPU has or hasn't got, it still provides a good solution to the problem
just by simplifying the design requirements.

165

Unfortunately, Python has a thing called the Global Interpreter Lock, which
means that even if you have multiple cores, only one thread can actually be
executing Python code at a time. All the others will be stuck waiting for their turn.
This doesn't diminish the design improvements, but it is not good for speed. If that
is a concern then you need true multi-processing, which will be covered soon.

Python provides two ways to make use of threads. One is the threading module,
which is more Python-like, and the other is the _thread module which sticks very
close to the way Unix systems handle threads.

i. Threading

Getting started is quite easy. You write functions to perform the tasks that you
want executed concurrently. There are no limits on those functions, they can do
anything you want. The threading module defines a class called Thread. The
constructor demands keyword parameters only. target should be the function
that you want to be run. name should just be a string, something you can use to
tell the threads apart (it is optional, a name will be made up if you don't provide
one), and args should be a tuple of all the parameters your function needs to be
given.

Once you have created all the Thread objects, just use each of their start
methods, no parameters, and it just happens. If you want your main program or
function to wait until all your threads have finished, then it should call each of
their join methods, also no necessary parameters.

The threading module provides a current_thread method. It returns the
Thread object for whichever thread is currently running, so when your thread
function uses it, it will receive its own thread object. Thread objects have a
property called name, so they can find out their own names in order to make
anything they print be attributable to them.

 1 >>> import threading
import time

def slow(delay, limit):
 me = threading.current_thread()
 for i in range(1, limit):
 print(me.name, i)
 time.sleep(delay)
 print(me.name, limit, "done")

 2
 3
 4
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>

We'll be using that thread function to drive each of three separate threads. They
will of course all have different names, delays and limits. If we just run the
thread function normally we would see this happening very slowly (depending on
the value of delay)

 1 >>> slow(1, 5)
MainThread 1
MainThread 2

 2
 3

166

 4 MainThread 3
MainThread 4
MainThread 5 done

 5
 6

But of course, we're going to run them as threads

 1 >>> def run():
 one = threading.Thread(target = slow,
 name = "one",
 args = (2, 20))
 two = threading.Thread(target = slow,
 name = "two",
 args = (1, 20))
 three = threading.Thread(target = slow,
 name = "three",
 args = (5, 10))
 one.start()
 two.start()
 three.start()
 one.join()
 two.join()
 three.join()
 print("It's all over")

run()
onetwothree 111

two 2
one 2
... ...

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18
 19 >>>
 20
 21
 22
 23
 24
 25

The jumble at the beginning is because all of the threads started at once, there
haven't been any time.sleeps yet. Once print gets started on an object, it can
get it printed quite quickly, but the slices of time each thread is given are very
short, so print just has enough time to print the first thread's name, one, before
the second thread gets its first turn, so we see onetwothree all run together. The
print gets enough time to print the spaces that separate me.name and i, then we
see all of their first i values, 1, then we get the three newlines all at once too. After
that, the time.sleep delays usually stop the threads from talking over the top of
each other, but it still can happen. Timing for sleeps isn’t very accurate. This
carries on for a while until the end when we see

 1
one 18
three 10 done
one 19
one 20 done
It's all over

 2
 3
 4
 5
 6

Beware of two important and closely related problems.

1. There is no way to kill a thread. Even the thread that created it has no
power over it. The only way a thread will stop is if its function voluntarily
finishes or if an unhandled exception occurs.

167

2. Control-C has no effect on any but the main thread. An uncaught Control-C
will kill the main thread, but will not touch the others. When the main
thread is killed, its mainness is not inherited by any other thread.

This means that you have to be vary careful. If you need to stop a program that
has threads, all you can do is close the window that it is running in. If you're
using Idle that means you lose everything you have built up. On a Unix system,
and this includes Mac, you can send a -KILL or -HUP signal from another process,
but you will still lose everything.

If I remove all three calls to join, things would be different:

 1 >>> run()

onetwothreeIt's all over
111

two 2
one 2
... ...
... ...
one 18
three 10 done
one 19
one 20 done

 2
 3
 4 >>>
 5
 6
 7
 8
 9
 10
 11
 12
 13

Here, there are four threads competing for CPU time, the original thread that run
is running in is now one of them, it is no longer waiting in the background. That's
why we see It's all over right up against the onetwothree. Then run is
finished, so it exits and we get Python's prompt again. I could type more Python
expressions and commands while the three remaining threads are still running,
and they would be obeyed and have their results displayed immediately. At the
end of the sample, we do not see a Python >>> prompt because we've already had
it. There is nothing special about a thread finishing. If this were a whole
“program”, run because of a double-click on its icon, then the program would not
finish until every one of its threads has finished.

There is a slight variation on this behaviour when you create a dæmon thread.
This is not the normal meaning of dæmon in computing, but at least Python spells
it correctly. A dæmon thread is a minor thread, only there to serve. When the
main thread terminates, all dæmon threads will also be terminated, the program
will not wait for them. A thread is made dæmonic in one of three ways:

1. Give the constructor a keyword parameter called daemon. True means it will
be, False means it won't be, and None means it will be the same as the
parent (current running) thread is. threading.Thread(target = Slow, ...,
daemon = True)

2. Once you have a Thread object (returned by the constructor or obtained
from threading.current_thread()), use its setDaemon method, in the
current example, that would be me.setDaemon(True). For some reason this
second method is now frowned upon by the Python community.

3. Assign to the Thread object's daemon property: me.daemon = True. Or of
course me.daemon = False to set it back to normal.

168

You can find out whether a thread is dæmonic or not either by using its isDaemon
method (also disapproved of) or by looking at the value of its daemon property.

Unfortunately, this does not help with the Control-C problem. An uncaught
exception will kill any thread except the main one, and it is only the main one that
Control-Cs are delivered to. When the main thread has an uncaught exception,
any program or function or whatever that it is running does get stopped, but the
thread itself stays alive. If it didn't stay alive, there would be nothing left to >>>
prompt for the next command or obey it.

All threads share the same global variables, along with all local variables that
existed before the thread was created. That means programmers need to very
carefully consider whether a global variable really should be global or not. If more
than one thread is modifying it at different times, who knows what the result
might be? It would be nice if each thread had its own namespace, so that
everything it uses can access variables that are global within the thread, but
invisible outside.

threading provides a special class, threading.local, for that. Just create an
instance, the constructor has no parameters, L = threading.local(), and make
it available to all of your threads, perhaps as a global variable, perhaps as a
parameter. Every time you look at that object from the same thread, you will see
the same thing, but when you look at it from another thread you see something
different. L is an object that gives direct access to another object which is selected
based on which thread is current.

You can create what are called thread local variables just by adding attributes to
L. L has no attributes of its own with names that don't begin with an underline, so
you can call those variables anything you want. Unfortunately you can't prime it
in advance. You can not create L, give it some useful attributes, and then give it to
your threads. They will be different threads, so they won't see the same object that
you initialised.

A less mysterious method is also available. You can add attributes to any object
you like. Each thread has its own Thread object, so you could use that as the
object that gets your thread local variables as attributes. But that is dangerous. If
you choose to give a thread local variable the same name as an existing Thread
attribute, everything will go wrong.

More threading class methods:

enumerate()

Returns a list of all the currently active Thread objects. Active and alive
mean the same thing. A thread is alive from the moment you create it until
its function finally exits. It makes no difference whether it is asleep, waiting,
or actively doing something. So I'll stick with “alive” rather than “active”.
There will always be a main thread from which you created all the others,
and if you are using Idle there is a surprise extra called SockThread which
allows communications between Idle's components.

169

active_count()

Returns the number of alive threads, this is the same as the length of
enumerate's result.

main_thread()

The same as current_thread except of course it only gives you access to
the main thread's Thread object.

stack_size()

You need to be careful with this. All programs use a large stack to store
local variable and parameter values and other essential information for all
currently active function calls. Each thread has its own independent
sequence of function calls, so it must have its own stack to keep them in.
When called with no parameters, stack_size returns the currently selected
size for every newly created thread. This is automatically set for every run of
Python, you don't have to do it. If stack_size is given a parameter, that is
used to set the stack size that will be used for all newly created threads. The
parameter may be zero, to say “go back to the original default”, or any
number >= 32768 for a specific size.

Thread objects have a few more features too:

native_id

Once a thread has been started, this property will deliver an int value that
uniquely identifies this thread. It is supposed to let you create some kind of
dictionary of all of your threads, you would obviously need a unique key for
something like that. Unfortunately, native_id is only guaranteed to be
unique while the thread is alive. After that, native_ids can be re-used for
other threads.

is_alive()

What the name suggests. When a thread exits, the Thread object that
represents it isn't going to just disappear. is_alive lets you validate a
Thread object. It only becomes True when the start method is called.

join(timeout)

We have already seen the join method, but this is a variation. If provided,
the timeout parameter should be a float, and will be the maximum time
that will be waited. If the thread being joined is still alive after this period of
time, join will exit anyway. join always returns None, you need to call
is_alive after a join with a timeout to find out whether the thread really
did exit or not.

More about the stopping problem. The problem of not being able to stop a thread
can be relieved, but at quite a cost. The idea behind it is very simple. You create a
global variable must_stop, set to False every time the program starts. Then you
design all of your thread functions so that they frequently check this variable and
stop themselves by raising an uncaught exception if it is True. Finally, you modify

170

your main thread to catch Control-C exceptions and set must_stop to True when
they happen.

One problem here is that Control-C's are not noticed during a time.sleep() or a
join() under Windows, so you must call your joins with a reasonably small
time-out, and put them in a loop for as long as there are no new threads left alive.
What if you wanted your main program to do something useful while the threads
are running? Either you can surround the entire remainder of your program with
a try to catch Control-C, or you just create another thread to do whatever it was
that you wanted the main program to do.

The really big problem is that this approach is not compatible with a lot of
programming paradigms. Threads don't usually just run in simple loops. For this
to work, everything that can cause repetition must include a check on must_stop.
And there is nothing you can do about functions that you didn't write yourself
taking a long time to complete, you can't make them look at must_stop.

But here it is anyway. First the modified thread function:

 1 >>> def slow(delay, limit):

 global must_stop
 me = threading.current_thread()
 name = me.name
 for i in range(1, limit):
 print(name, i)
 time.sleep(delay)
 if must_stop:
 raise SystemExit()
 print(name, limit, "done")

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...

Now the trivial stop function:

 11 >>> must_stop = False

def stop():
 global must_stop
 must_stop = True

 12
 13 >>>
 14 ...
 15 ...

And finally the modified main program:

 16 >>> def run():

 global must_stop
 must_stop = False
 one = threading.Thread(target = slow, ...
 two = threading.Thread(target = slow, ...
 three = threading.Thread(target = slow, ...
 original_count = threading.active_count()
 one.start()
 two.start()
 three.start()
 try:
 while threading.active_count() > original_count:

 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...
 26 ...
 27 ...
 28 ...

171

 29 ... one.join(0.1)
 two.join(0.1)
 three.join(0.1)
 except KeyboardInterrupt:
 stop()
 print("It's all over")

 30 ...
 31 ...
 32 ...

33
...

ii. Timers

The class threading.Timer simplifies a common thread task, making something
happen at some point in the future. The constructor takes a few parameters, the
first is the delay in seconds, the second is the thread function, and after that you
can provide a tuple of the parameters that your thread function will need, just like
when creating a Thread. Then you call the Timer object’s start() method, and
you're done. A Timer can be cancelled, by calling its cancel() method, but only
while it is still waiting for the delay to expire.

Sadly, there is no variation on Timer that makes a task happen repeatedly with a
given delay between calls. Getting over that deficiency is quite ugly, there is
nothing you can do to re-trigger a Timer object once it has done its thing. You
would have to make your own subclass of Thread, and if you take into account
the need to be able to stop it eventually, that will not be trivial.

In fact, this is what it takes. Warning: it is not a pretty sight.

 1 >>> import threading
import time
import math

class repeater(threading.Thread):

 class stopper:

 def __init__(self):
 self.must_stop = False

 def stop(self):
 self.must_stop = True

 def can_run(self):
 return not self.must_stop

 sleep_unit = 0.1

 @staticmethod
 def pause(how_long, signal):
 (part, wholes) = math.modf(how_long / repeater.sleep_unit)
 for i in range(int(wholes)):
 if signal.must_stop:
 raise SystemExit()
 time.sleep(repeater.sleep_unit)
 if signal.must_stop:
 raise SystemExit()

 2 >>>
 3 >>>
 4
 5 >>>
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...
 26 ...
 27 ...
 28 ...

172

 29 ... time.sleep(part)
 if signal.must_stop:
 raise SystemExit()

 @staticmethod
 def threadfunc(func, init_delay, each_delay,
 times, signal, * params):
 repeater.pause(init_delay, signal)
 if times == None:
 while True:
 func(* params)
 repeater.pause(each_delay, signal)
 else:
 for i in range(times - 1):
 func(* params)
 repeater.pause(each_delay, signal)
 func(* params)

 def __init__(self, func, init_delay, each_delay,
 * params, times = None):
 self.signal = self.stopper()
 all = (func, init_delay, each_delay, times, self.signal) +
 params
 super().__init__(target = repeater.threadfunc,
 name = "repeater",
 args = all)
 super().start()

 def join(self):
 while True:
 super().join(0.1)
 if not super().is_alive():
 break

 def stop(self):
 self.signal.stop()

def thing_to_do(s):
 print(s)

def run():
 r = repeater(thing_to_do, 0.5, 3.45, "Boo!", times = 4)
 try:
 r.join()
 except KeyboardInterrupt:
 r.stop()
 print("It's all over")

 30 ...
 31 ...
 32 ...
 33 ...
 34 ...
 35 ...
 36 ...
 37 ...
 38 ...
 39 ...
 40 ...
 41 >>>
 42 >>>
 43 >>>
 44 >>>
 45
 46 ...
 47 ...

48

...

The parameters to repeater's constructor are:

1: The function to repeatedly call
2: The number of seconds to wait before the first call
3: The number of seconds to wait between subsequent calls
4 and later: The parameters to give to the repeated function each time
keyword times: The number of times to repeat. None means for ever.

173

Control-C will stop everything. In many cases it will be preferrable in run to just
say except: without naming a particular exception. This is because if something
goes wrong while the program is running, and an unexpected exception is raised,
you probably still want the thread to stop. If you don't do that, all is not lost. say x
= threading.enumerate() and print x. Identify the one called “repeater”, and say
x[i].stop() with its index.

iii. Race conditions

Most things a Python program does are not just single actions. Consider a simple
update like x += y * 7.3. It will happen in three steps, more if you really want to
be picky. First, the value of x needs to be retrieved from memory. Second, that
value has y * 7.3 added to it. Third, the result gets stored back in memory as the
new value for x. In normal programming, that doesn't matter at all. With threads,
it becomes as serious problem.

Suppose two threads are updating the same variable at almost the same time, lets
say thread A is about to do x += 6 and thread B is about to do x += 3, and the
initial value of x is 10. One possible ordering is that A retrieves the value 10 from
x, then B retrieves the value 10 from x, then A adds 6 to its internal 10 getting 16,
then thread B adds 3 to its internal 10 getting 13. Then A stores its 16 as the new
value of x, and finally B stores its 13 as the new value of x, making the final value
of x be 13. x += 6 and x += 3 have both been done, but x only increased by 3. With
large data structures there are even larger opportunities for disaster. This is called
a race condition.

There are a number of ways of avoiding this sort of problem, and all of them are
based on the same thing, a mutex. A mutex is just a specially managed flag that
says whether it is safe to proceed or not. A thread that is about to change a
shared resource (it isn't just simple variables that suffer from this problem, the
word resource is usually used to be more encompassing) will wait until its
associated mutex says safe, then set it to unsafe. It can then change the resource
comfortable in the knowledge that no other thread that is following the rules can
get in. When the operation is complete, the thread sets the mutex back to safe.
The mutex can not be a simple True/False variable because that act of waiting for
safe then setting to unsafe has its own race condition, so mutexes are special
objects that can only be accessed through methods carefully designed to avoid all
such problems.

Python calls its mutexes Locks, Lock is a class imported from threading. Locks
are created in the safe or unlocked position, the constructor has no parameters.
There are only two useful methods. acquire() means wait until the lock is safe
then set it to unsafe and continue. release() means set it back to safe. A
thread must not call release on a lock that it didn't successfully acquire,
although Python does not check this. Calling acquire on a lock that you have
already acquired is a disaster, Python does not detect that you have already got
the lock, so the second acquire’s wait never ends. acquire is one of the things
that Control-C's can't penetrate under Windows.

174

After this setup

 1 >>> shared_global = 10

from threading import Lock
shared_globals_mutex = Lock()

 2 >>>
 3 >>>

this is all it takes to do a safe update inside a thread:

 4 >>> shared_globals_mutex.acquire()

shared_global = math.log(shared_global) + math.pi
shared_globals_mutex.release()

 5 >>>
 6 >>>

In fact, it's even easier than that. Locks support the __enter__ and __exit__
methods that make with statements work:

 7 >>> with shared_globals_mutex:

 shared_global = math.log(shared_global) + math.pi 8 ...

This is by far the best way to do it. It makes it impossible to forget to do the
release operation, which would be a disaster for the whole program.

You do not always have a mutex for every single shared resource, they are usually
grouped together with one mutex for a whole group of related resources.

Sometimes you will have a very busy thread, it won’t want to just sit around
waiting to acquire a Lock. If the Lock is unsafe the thread would prefer to get on
with something else and try again later. Lock has a useless method called locked,
it returns True if the mutex is unsafe. Do not use it. There is a race condition
between finding that locked() returned False and calling the acquire method.
Instead, make use of acquire’s two optional parameters, blocking and timeout.
timeout specifies the maximum amount of time, in seconds, that the thread is
willing to wait. If the timeout expires, acquire just gives up and returns. The
default value of -1 means you can wait for ever. blocking, default True, means
that you are willing to wait at all. setting blocking to False is the same as setting
timeout to 0, it will never wait. Of course, if you are using either of these options,
you won’t know if you have successfully acquired the mutex when acquire
returns. Fortunately acquire tells you. It returns True if you were successful and
now control the mutex, and False if you need to do something else and try again
later.

There are a number of other mechanisms that build on the idea of a mutex.

An RLock is exactly the same as a Lock except that multiple acquires when you
already control the Lock are not a problem. But still, acquires and releases
must come in pairs. If you do three acquires on an RLock, it will not be safe
again until you have done three releases. This is useful because part of
operating on a shared resource might involve another operation on another shared
resource. If both of those operations were protected by the same mutex, nothing
would ever work.

175

A Semaphore is like a non-binary Lock. Instead of just being safe or unsafe, it has
a counter. So long as the counter is greater than zero it is considered safe. Equal
to zero means it is unsafe. It should not be able to ever become negative.
Semaphore is also imported from threading.

Semaphore’s constructor has one optional parameter, default 1, it specifies the
initial value of the counter.

The acquire method, with the same blocking and timeout parameters as a
Lock, waits until the counter is greater than zero, then decrements that counter
and continues.

The release method also has an optional parameter, default 1. It just increments
the counter by the value of the parameter and continues.

There is also a BoundedSemaphore, which is exactly the same as a Semaphore,
except that the initial value given to the constructor is also the maximum value. If
a release ever results in the counter exceeding that initial value, a ValueError
exception is raised.

It should be remembered that the queue.Queue class uses a mutex. That makes it
into a very useful thing for communications between threads. If two threads need
to communicate, make a Queue for them. Whatever one thread puts to the Queue,
the other can get. The put and get do not require the threads to synchronise,
Queues hold their contents as long as necessary. The mutex means that even if
the two threads do by chance use the Queue at the same time, it will still work
properly.

An Event, also imported from threading, represents something that can happen
that a thread might want to wait for. It is much less satisfactory than a Queue, but
does have its benefits. An Event object includes a bool variable which is initially
False. Any thread that notices that something interesting has happened can use
the set method to make it True, or if the condition goes away, use the clear
method to set it back to False. Any number of threads can call the Event's wait
method. They will all wait until the Event is set, at which point they will all wake
up and continue. wait also has an optional timeout parameter exactly the same
as a Lock, but no blocking parameter. If you specify a timeout, you can still tell
what happened. wait returns True if the Event became (or was already) set, or
False if the timeout expired.

Seemingly the least useful of these things is the Barrier, also imported from
threading. A Barrier is a way to delay a number of threads until they are all
ready at the same time, then let them all continue simultaneously so they can
work on something that needs them to be synchronised. Barrier’s constructor
has at least one and up to three parameters. The first is the number of threads
that need to be synchronised. The second, called action with default None,

176

should be a parameterless function. The third, called timeout with default None,
is as its name suggests.

Whenever one of the threads involved is ready to synchronise with the others, it
should call the Barrier’s wait method. That will make it wait until the entire
expected number of threads (from the constructor) are also waiting. Once they are
all waiting, the action will be called, and all of the waiting threads will be allowed
to continue. Each thread receives a guaranteed-to-be-different int in the range 0
to number-of-threads-minus-one as the result of wait. That means that if you
need say three of them to do one thing, and three of them to do another, you can
just have an if r < 3: based on the result from wait.

The wait method has an optional parameter also called timeout. If the Barrier’s
constructor and the wait method both receive a timeout parameter, then the one
given to wait will be used in preference. If any timeout is provided and any
thread is left waiting longer that that timeout, everything fails. All the waiting
threads are woken up and given a BrokenBarrierError exception, and the
Barrier itself is said to be broken. If a Barrier is broken, any future wait on it
will get an immediate BrokenBarrierError. Barriers may be used any number
of times unless they are broken.

A Barrier’s reset method will set it back to unbroken with a count of zero
waiting threads. The abort method can be used to deliberately make the Barrier
broken. If any threads were waiting when either of these methods is called, they
will all receive a BrokenBarrierError exception. The Barrier’s broken attribute
tells you True or False whether or not the Barrier is broken. The parties
attribute returns the number of threads that need to be waiting before they can
proceed, and the n_waiting attribute returns the number that are currently
waiting.

There is an older, much more primitive module called _thread. There isn't much
point to it any more, so that is all I will say about it.

33. Multiple streams of execution - Processes

This is a much more heavyweight approach to multiple streams of execution. A
thread doesn't take up very much in the way of resources, so you can have a very
large number of them. A process is a much bigger thing, it is how the operating
system keeps together everything required for a whole running program. A process
may have a large number of threads, but a thread can't have any processes of its
own. Threads can create processes, but they are subprocesses of the whole calling
process, they do not belong to the creating thread in any way. Operating systems
limit the total number of processes that can be in existence at any time, as well as
the maximum number of processes any one user can have. The limits are not
usually low these days, but you won't be able to have as many processes as you
could have threads.

177

Having said that, processes are much more capable things, and unlike threads,
you can always kill them if you want them to stop. Processes take longer to start,
find it harder to communicate with each other, and consume more resources. The
Global Interpreter Lock which prevents more than one thread from really
executing Python code at the same time does not apply across real processes.
Processes do not share any memory (unless you make that happen deliberately),
so normal things like global variables and queue.Queues can not be used for
communications.

Big Thing: Everything to do with Processes works perfectly and exactly as
expected under Unix. Windows is different. The only way I have found to make
anything to do with Process work requires that the whole “program” be put in a
.py file and imported. Then you can run its functions or do whatever you want. If
you type the exact same thing into Idle, it will not work, and you will get no error
messages.

This is all because Windows processes are strange and complicated things. Under
Unix, a new process inherits access to just about everything its parent has,
including memory. So whatever functions and things you had set up in Python
before creating the new process was still there for the new process to use. The
same applies to standard input and standard output. Under Windows, new
processes are given a program to run, and they run it from scratch. The program
it is given is of course the Python interpreter, but it is started again from nothing.
There is nothing practical that can be done about this problem.

The multiprocessing module provides a class called Process. Its constructor is
the same as that of Thread, and Process objects' start, join, and is_alive
methods and the name and daemon attributes are almost identical too. But a
daemon process is not the same as a daemon thread. When a daemon process
terminates, it does its best to terminate any and all daemon subprocesses that it
created, and daemon processes can not create other processes themselves.

A trivial example:

 1 >>> import multiprocessing as m

import time

def sleepy():
 print("start")
 time.sleep(4)
 print("stop")

def run():
 p = m.Process(target = sleepy)
 p.start()
 print("Wait")
 p.join()
 return p

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8
 9 >>>
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...

If all that is in a file called mp.py, this happens under Windows:

178

 1 >>> import mp
x = mp.run()
Wait
x.exitcode # there is a four second wait for this prompt.
0

 2 >>>
 3
 4 >>>

5

We didn't see start and stop because they were printed by a different process
which wasn’t connected to our standard output.

The exitcode attribute is None if the process hasn't been started yet or is still
running. It is 0 is the process terminated naturally. It is 1 if the process stopped
because of an uncaught exception. It is a positive > 0 number N if the program
terminated itself with a call to sys.exit(N) which is traditionally done to signal
some kind of failure. If it is the negative number N then the process was killed by
Unix-like signal number abs(N). So in summary, the little example above had a
successful exit.

On the other hand, if you type exactly the same thing into Idle under Windows, for
the reasons given above this happens:

 1 >>> a = run()

Wait
a.exitcode # there was no wait at all for this prompt
1

 2
 3 >>>

4

And under Unix, exactly the same thing has this as its result.

 1 >>> a = run()
Wait
start
stop
a.exitcode # there is a four second wait again for this prompt.
0

 2
 3
 4
 5 >>>

6

There is also a pid attribute which is the process' unique identification number
assigned by the operating system. It is only valid while the process is running.
There are two methods for stopping a process. terminate and kill, neither have
any parameters. They do their best to behave as though a Unix kill -TERM or
kill -KILL command sent a signal to the process. TERM (terminate) will
normally stop a process instantly, but processes that are doing something critical
are capable of ignoring it. KILL (kill) always stops a process instantly and can
not be ignored. If the killed or terminated process had control of a mutex or
semaphore or anything of that kind, it will never be released. Some resources,
such as open files are properly closed. When you have completely finished with a
Process object and it has stopped, its close method will release all remaining
resources associated with it.

multiprocessing.active_children() produces a list of the Process objects for
all of the current process’ started and not yet ended sub-processes.
current_process() and parent_process() return the expected Process

179

objects, but parent_process does not look at the whole Unix process tree,
parent_process called from the main Python thread will return None.

The multiprocessing module provides two classes that enable processes to
communicate with each other. multiprocessing.Queue behaves exactly like
queue.Queue apart from its ability to connect two processes. Any process that has
access to a queue can put things into it and get things out of it. This is a very
general approach, a multiprocessing.Queue can transmit anything that can be
pickled.

A multiprocessing.Pipe is intended to be used just by a single pair of processes
for private communications. A Pipe has two “ends”, one for each process. If two
processes use the same end at the same time, the whole thing can end up
corrupted.
Pipes are made by calls to the multiprocessing.Pipe function (it isn’t really a
constructor). It returns a tuple of two things which are the connection objects that
represent each of its ends. Normally Pipes are bidirectional, you can read and
write at both ends. If Pipe’s optional parameter is False it will be unidirectional.
(end0, end1) = Pipe(False) results in end0 being read only and end1 being
write only.

Whether using Queues or Pipes, the best way to make them available to a process
is to add them to the process function's parameter list when calling the
constructor for Process.

multiprocessing.connection.Connection is the class for the communication
objects returned by Pipe. Their important methods are:

send(obj) - send the object to the other end of the pipe
obj = recv() - receive a previously sent object

Synchronisation is not needed, and pipes have some storage capacity. A few
objects can be sent before the first is received, and recv will wait if nothing
has been sent yet. If the pipe is closed, recv can still receive any objects still
in it, but a recv on an empty closed pipe raises EOFError. send and recv
use the Pickle module to make objects transferrable, only picklable
objects may be sent.

send_bytes(obj) - send the object to the other end of the pipe
obj = recv_bytes() - receive a previously sent object and return it
obj = recv_bytes_into(b) - receive a previously sent object and store it in b

These methods do not use Pickle, but do require you to convert everything
to and from a stream of bytes yourself. send_bytes accepts bytes,
bytearrays, and other objects that behave like them. recv_bytes always
delivers bytes objects. Sending a really big object (many megabytes) can
make everything fail.

180

recv_bytes has an optional parameter, being the maximum number of
bytes it is willing to receive. If the sent object is longer than that, it will not
be split. OSError is raised and the pipe becomes irreparably broken.

send_bytes has two extra optional parameters. The first is called offset,
and specifies where to start sending from. The first offset bytes of obj will
be skipped. The second, size, if the maximum number of bytes to be sent.

For recv_bytes_into, b must be something like a bytearray. Instead of
returning the received object, it is stored in b. There is an optional second
offset parameter which says where in b to start storing it. This allows
multiple objects to be appended into the same buffer. It returns the number
of bytes received.

close() - close the pipe

poll() - return True is there is any data ready to be received. It has an optional

timeout parameter: if there is no data ready, it will wait for up to that many
seconds before returning.

multiprocessing provides its own versions of Lock, RLock, Semaphore,
BoundedSemaphore, Event, and Barrier. They work in the same ways as the
threading versions, but they are less frequently used. The things most commonly
used for inter-process communications have their own built-in mutexes.

If you really want to go down to the lowest levels, you can always use the
os.fork(), os.execlp(), and related functions.

v. Shared Memory

Shared memory is only relevant to multiprocessing. Threads share memory
already, so have no need of it.

Memory shared between two processes uses the multithreading Value or Array
classes, and they completely depend on types understood by the C language.
Other Python objects can not be shared. There is no inescapable reason for that
not being possible, but it seems as though no module supporting it is available.
These are the accepted ctypes.

letter ctypes Python type usual size
 c_bool bool 1
b c_byte int 1
 c_char bytes, len = 1 4
 c_char_p bytes, N.T.
d c_double float 8
f c_float float 4
i c_int int 4
l c_long int 4
 c_longdouble float 8

181

q c_longlong int 8
h c_short (signed) int 2
H c_short (unsigned) int 2
 c_short int 2
 c_size_t int 8
 c_ssize_t int 8
B c_ubyte int 1
I c_uint int 4
L c_ulong int 4
Q c_ulonglong int 8
 c_ushort int 2
u c_wchar str, len = 1 4
 c_wchar_p str
 c_void_p int 8

In that table, names like c_int and c_short refer to the plain signed C types int
and short int. Those with the letter u after the underline, like c_uint and
c_ushort refer to the unsigned versions unsigned int and unsigned short int.

Value(type, initv, lock = True)
 Creates a shared variable object of the given type and with the given initial

value.

type may be a single character string equal to one of the letters in the above
table, or one of the ctypes names. Unlike with normal Python variables, the
type is enforced: if you use 'i', you can only store an int. floats and
strings will cause TypeError exceptions.

lock may only be provided as a keyword parameter. If lock is False, no
mutex will be used for accesses to this object, it will be unprotected against
race conditions. If lock is True, a new RLock object will be created just for
this shared variable. If lock is a Lock or RLock object, it will be used for all
accesses to this shared variable.

Value objects have a value attribute which may be used to see or to change the
value they store. They also have a get_lock() method to access their mutexes.

The description of the lock parameter is likely to lead to unsafe code. A Value’s
mutex is only acquired for the duration of a single Python operation. Something
like v.value *= 6 is not a single operation. Remember that even when an object
has an __imul__ method, the obj *= 6 operation takes two steps. First __imul__
is called on obj and 6, and it usually modifies obj in place, which would be good,
but then it returns obj (or possibly even a totally new object) as its result, and as
a second step, that result is assigned as the new value for obj. For updates, you
must explicitly deal with the mutex yourself, preferably with a with statement.

 1 >>> v = multiprocessing.Value('i', 44)

... ...
with v.get_lock():
 v.value *= 6

 2
 3 >>>

4 ...

182

Array(type, vors, lock = True)
 Creates a shared Array, which is used just like a fixed-size list, of objects of

the given type. The lock parameter is the same as for Value.

vors, values or size, may be one of two things. If it is an int, it is taken as the size
of the Array, and all the elements of the array are initialised to whatever counts
as a zero for that type. Otherwise it must be a sequence, a list or tuple or
something like that. Then it provides both the length and the initial contents of
the Array.

34. WWW services

Python provides modules that automate web access, constructing web servers,
and sending email. You don't need to know anything about network programming
to use them. For anything that Python hasn’t automated, you can program it
yourself. That is covered in the network clients and servers section.

i. Web services at their simplest.

If all you want is to get hold of a web page, things couldn't be easier. The package
urllib provides a module called request. I've abbreviated the URL and the
response to make things fit.

 1 >>> import urllib.request as ur

with ur.urlopen("http://rabbit ... /findme.html") as r:
 result = r.read()
print(result.decode())
<html><head><title>How to find Me</title></head>
<body><h2>How to find Me, Autumn 2023</h2>
<table border=0>
... ...
<tr><td><td><td>Monday<td>
<tr><td><td><td><td> 5:05 to 6:20<td> ECE 318 in MCA 202 A
<tr><td><td><td>Tuesday<td>
... ...
</table>
</body></html>

 2 >>>
 3 ...
 4 >>>
 5
 6
 7
 8
 9
 10
 11
 12
 13

14

read produces a bytes object. Hardly any internet protocols use Unicode, the
character set that Python strings use. decode converts a bytes to a string. print
shows things as they are intended to be seen. If I had just looked at result we
would have seen all the \ns in one big string:

 15 >>> result

b"<html><head><title>How to find Me</title></head>\n<body><h2>
How to find Me, Autumn 2023</h2>\n<table border=0>\n<tr><td>Of
fice:<td> <td colspan=3>516 Engineering (McAr

 16
 17
 18
 19

183

20

 thur) Building\n<tr><tdcolspan=5> \n<tr><td>E-mail:<td><t
... ...

If you need more information, the along with (or instead of) the r.read(), you can
look at r.status and r.getheaders():

 21 >>> r.status

200
r.getheaders()
[('Date', 'Sun, 30 Jul 2023 23:14:25 GMT'),
 ('Server', 'Apache/2.4.56 (FreeBSD)'),

 22
 23 >>>
 24
 25

26

The status is an indicator of success or failure, always an int. Anything between
200 and 299 indicates success. Everybody knows about the 404 Not Found
response. The headers are the extra bits of information provided by the web server
to tell you more about the file you received. They nearly always include a Last-
Modified telling you the age of the file and a Content-Length telling you its size in
bytes.

The value returned by urlopen is an http.client.HTTPResponse object, which
is covered more fully in the clients for the HTTP protocol subsection.

If you get involved in this sort of thing, urllib has a lot more to it. It would be
worth leafing through the documentation, I can't put everything here.

ii. Clients for the HTTP protocol

The http package provides classes and methods specific to the www protocol
HTTP. They automate the creation of web servers and clients. It has two essential
packages called client and server, and another two called cookies and
cookiejar for handling those things. I will say nothing more about cookie or
cookiejar.

http.client defines an HTTPConnection class. This automates getting
information from a web server in just a few steps. Create an HTTPConnection
object to connect to the server. The constructor accepts a single string in the
format "hostname" or "hostname:port", or a separate "hostname" string and
port int, and an optional keyword timeout parameter. The port number defaults
to 80. There is also an HTTPSConnection class, note the extra S. It is used in
exactly the same way, but uses a secure connection with SSL.

Next, use that object's request method. That takes three or four important
parameters.

1. The first is the method, a string. "GET" is the most common, it results in
you being sent an entire file, with headers that describe it coming first.
"HEAD" is the same but you don't get the content, just the headers. "POST"
is used when you need to send some data to the server. "GET" and "POST"
can both deliver data to the server. With "GET", it is added to the URL most

184

often after a "?". You often see that when doing a search. "GET" only allows
a little bit of data to be sent because there is a maximum length for URLs.
"POST" does not modify the URL. Instead, you provide the data to be sent as
the body of the request. There are other methods too.

2. The next parameter, also a string, is the URL, the path and name for the file
you want. Something like "broccoli/prices.html".

3. The next parameter, body, is optional and defaults to None. It is the body of
the request, the data supplied with a "POST" request. It may be a string, a
bytes, or even an open file object.

4. The next parameter, headers, is also optional, it is a dictionary, default
empty. It specifies extra information to give more detail about the request. It
might say who you are, or the type of file you would like to receive. The
parameter is not usually provided, but it would look something like
 "Accept": "text/*", "Accept-Language": "en-US"

Once the request has been made, the getresponse parameterless method will
return an HTTPResponse object. Only a few of HTTPResponse’s methods and
attributes are particularly useful:

r.status

The status of the request, as delivered on the first line of the response, 200
means good.

r.reason

The string associated with the status, "OK" for 200.

r.closed

True or False, has the connection been closed by the server? False should
mean that you can send another request on the same HTTPConnection,
but you can't rely on that. A server can close the connection whenever it
wants, and they are never willing to wait a long time.

r.getheaders()

A list of two-tuples giving all the metadata that was provided. It usually
contains things like the time and what kind of server it is, but also more
useful information, like the type of information and its exact length.

r.getheader(name, default)

The value of the one header with the given name. If there is no such header,
then default is returned. default defaults to None. The header name is
not case sensitive.

r.read(N)

A bytes object containing the next N bytes of the real (data only) response.
The empty object b"" is returned if there is no more data to come.

r.readinto(buffer)

buffer should be something very much like a bytesarray. It is like
read(N) where N is len(buffer) except of course the data goes into the

185

buffer rather than being returned. It returns the number of bytes actually
read. readinto will not change the size of the bytearray, so when the last
readinto doesn't manage to fill the bytearray you will need to be careful
not to process the left-over bytes from the previous readinto.

 1 >>> import http

import http.client
conn = http.client.HTTPConnection("rabbit.eng.miami.edu")
conn.request("GET", "/findme.html")
r = conn.getresponse()
r.status
200
r.reason
'OK'
r.closed
False
int(r.getheader("content-length"))
1264
r.getheaders()
[('Date', 'Sat, 15 Jul 2023 20:18:03 GMT'),
 ('Server', 'Apache/2.4.56 (FreeBSD)'),
 ('Last-Modified', 'Fri, 09 Jun 2023 19:23:22 GMT'),

 ('Content-Length', '1264'),
 ('Content-Type', 'text/html')]
r.read(512)
b"<html><head><title>How to find ... by emai"
r.read(512)
b"l first.
\n Don't waste time ... MCA 202 A\n<tr"
r.read(512)
b'><td><td><td>Thursday<td> ... </body></html>\n\n'
r.read(512)
b''
conn.close()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7
 8 >>>
 9
 10 >>>
 11
 12 >>>
 13
 14 >>>
 15
 16
 17
 18
 19
 20
 21 >>>
 22
 23 >>>
 24
 25 >>>
 26
 27 >>>
 28

29

>>>

If the file you asked for is not too long, and remember you can look at the
Content-Length header to find out, you can read it all at once. As soon as the r =
conn.getresponse() is done, r.readlines() will give you the entire contents of
the file as an array of bytes objects, one per line. Or r.read() will give you the
entire contents of the file as a single bytes object. Either way, the bytes objects
will include \n characters to mark the ends of lines.

Alternatively, you can take more control and send the request and the headers
individually:

After creating the connection you can use the putrequest method to say which
resource you want and what you want to do with it. It takes two string
parameters: the HTTP operation, "GET", or "POST", or whatever, and the file or
resource name.

186

Then you use the putheader method as many times as necessary for all the
headers you want. The call again takes two string parameters: header name and
value, e.g.
 conn.putheader("Accept", "text/*")

Then the endheaders method triggers the server to do what you asked. In the
most common case, "GET", you will be sent the contents of the requested file
along with the usual metadata. endheaders has an optional message_body
parameter, which is used to supply the data needed for the "POST" method.

You then use getresponse as above to handle the reply.

iii. Servers for the HTTP protocol

The http package also provides a server module. It contains two classes for
implementing web servers. HTTPServer does the basic business of setting up
sockets and sending and receiving. BaseHTTPRequestHandler actually deals with
the GET, PUT and whatever other requests may be received. Except that it doesn't.
It provides the basic machinery to enable that, but you have to subclass it to
provide the necessary methods.

You would probably be better off using the newer ThreadingHTTPServer instead
of HTTPServer. It can handle the strange way some clients deal with their sockets.

We will create a server that pays almost no attention to what the client requests,
but just replies with proper HTML saying what the time is. If the request is for
"/index.html", that is exactly what it does. Any other request is rejected.

We need to Create a server class as a subclass of BaseHTTPRequestHandler. In
order to handle GET requests, it needs to be given a do_GET method. You would
need a do_POST method to deal with POST requests, and so on for all the other
kinds of request.

We have inherited some useful methods and attributes:

client_address

a tuple indicating who sent the request, (IP address, port number)
requestline

the entire first line of the request, starting with the GET
command

the request type "GET", this lets you have a single method to handle
multiple types.

path
the middle part of requestline, the resource/filename that was requested

headers
an object that contains all of the headers that were sent with the request. It
has a keys() method that returns a list of all the header names, and a

187

get(key, default) method that retrieves the value part of a particular
header.

send_response(N)
generates the first line of the reply, N is the status, e.g. 200 for OK.

send_header(name, value)
used as many times as needed to produce all the metadata headers.

end_headers()
when all the headers have been sent and we're ready to make the real reply.

wfile
acts like a file open for binary and write only. Whatever you write to it gets
sent to the client. When everything is done, just let do_GET exit.

rfile
will similarly give you the request body for POST requests etc.

send_error(code, message, expl)
produces the whole reply when there is something wrong with the request.
You don't have to use send_response or wfile or anything else. code is
the official response like 200 for good, 400 for bad request, 404 for not
found, etc. message is the text version of that, "not found", etc., and expl
is any extra text you want to provide. A browser should show the user all
three of these things.

log_request(), log_error(), and log_message()
The default set up is that every request and every use of send_error will
result in a log message being displayed on your screen. Override these
methods to change the format or prevent anything from being printed at all.

The following example reports everything about every request to the user. If the
request is for "/index.html" the response will tell the time. Any other request is
rejected. It will override log_request, so that normal requests are not logged at
all, and log_error so that more of a fuss is displayed. You generally don't
override log_message, that is just the generic method that the other two call to do
the work.

 1 >>> import http
import http.server
from http.server import HTTPServer
from http.server import BaseHTTPRequestHandler
import datetime as dt

class serverclass(BaseHTTPRequestHandler):

reply() is just a utility to save typing later.
 def reply(self, s):
 self.wfile.write(bytes(s, "utf8"))

change the way things are logged.
 def log_request(self, * all):
 pass

 def log_error(self, * all):
 print("-------------------\nan error was logged\n- ...

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...

188

 21 ... super().log_error(* all)

report every detail of the request.
 def say_everything(self):
 print("connection from", self.client_address)
 print("requestline is", self.requestline)
 print("command", self.command)
 print("path", self.path)
 hds = self.headers
 for k in hds.keys():
 print("header", k, hds.get(k))

do_GET is called separately for every single GET request.
 def do_GET(self):
 self.say_everything()
 if self.path != "/index.html":
 self.send_error(400,
 "not allowed",
 "you requested " + self.path)
 return
the preparation for a good response
 self.send_response(200)
 self.send_header("Server", "LittlePythonServer0.1")
 self.send_header("Content-Type", "text/html")
 self.end_headers()
and finally the HTML is sent
 self.reply("<html><head><title>The Time</title></head>")
 self.reply("<body><h1>The Time</h1>")
 now = dt.datetime.now()
 self.reply("is {0:%H}:{0:%M} now".format(now))

 22 ...
 23 ...
 24 ...
 25 ...
 26 ...
 27 ...
 28 ...
 29 ...
 30 ...
 31 ...
 32 ...
 33 ...
 34 ...
 35 ...
 36 ...
 37 ...
 38 ...
 39 ...
 40 ...
 41 ...
 42 ...
 43 ...
 44 ...
 45 ...
 46 ...
 47 ...

48

...

 49 ... self.reply("

You requested " + self.path)
 self.reply("
</body></html>")

the try is so that a Control-C will shut the server down properly
def run(port):
 svr = HTTPServer(('', port), serverclass)
 try:
 svr.serve_forever()
 except:
 svr.server_close()

run(2345)

 50 ...
 51
 52 >>>
 53 >>>
 54 ...
 55 ...
 56 ...
 57 ...
 58 ...
 59

60
...

The serve_forever and server_close methods of HTTPServer do what their
names suggest. serve_forever will carry on accepting requests and passing
them to the appropriate do_... method until everything is stopped.

189

I then enter the URL 127.0.0.1:2345/index.html in my web browser, and this
(cut down a bit) is what appears in the python session:

connection from ('127.0.0.1', 55674)
requestline is GET /index.html HTTP/1.1
command GET
path /index.html
header Host 127.0.0.1:2345
header Connection keep-alive
... ...
header Sec-Fetch-Dest document
header Accept-Encoding gzip, deflate, br
header Accept-Language en-GB,en-US;q=0.9,en;q=0.8

 And the web browser shows

But then immediately the Python session records a second request, this one
resulting in an error message because it was for GET /favicon.ico HTTP/1.1.
This is because a lot of web browsers, when they first contact a server, ask for a
little image (favourite icon) to be shown in the tabs at the top of their window. As
long as they don't get one, they will ask again with every subsequent request.

iv. HTML processing

There are some complexities involved in dealing with HTML documents, and there
are Python modules to help out. The most basic are to do with special characters.
HTML documents do not contain Unicode characters, they are limited to ASCII,
but you can represent Unicode characters in HTML and have them displayed
correctly in web browsers. Example, a capital Greek Sigma is supposed to look
like this: Σ, it is not an ASCII character. This sequence: Σ represents it in
HTML, the ampersand and semicolon are both part of it. Sigma's Unicode position
(code point) is 931, so Σ would do the same thing. There are also characters
that mean something special in HTML and have to be represented differently if
they are to appear in a document, such as < becoming < and & becoming
&. The html5 dictionary does the reverse mapping, but for some reason you
must not include the initial &.

 1 >>> import html.entities as hen
hen.entitydefs["Sigma"]
'Σ'
hen.name2codepoint["Sigma"]

 2 >>>
 3
 4 >>>
 5

190

 6 >>> 931
hen.codepoint2name[931]
'Sigma'
hen.html5["lt;"]
'<'
hen.html5["Sigma;"]
'Σ'

 7
 8 >>>
 9
 10 >>>

11

Those four things are all ordinary dictionaries, so you can use .keys() and so on
to find out what's there. It would be nice if there were an inverse for entitydefs,
so that we could look up any Unicode character we’re interested in and get its
HTML version. Of course, most Unicode characters don't have an HTML
representation beyond the numeric forms like 水 and it is not at all hard to
turn a dictionary inside out, switching around keys and values.

Whole strings can be processed in one go. html.escape is an ordinary function
that takes and returns a string. All characters that could cause misunderstanding
in HTML when you want them to appear in text are converted to their safe form,
e.g. < turns into <. If you set the optional second parameter to False, quotes
will be left alone. Non-ASCII characters are generally left alone. A browser might
not display them as intended, but they do not cause any misunderstanding of the
structure of the document.

html.unescape does a bit more than the opposite of that. All special character
forms like <, σ, and Σ are converted into the characters they
represent.

 1 >>> html.escape("123<345>> &6 \"or then' Σ!")
'123<345>> &6 "or then' Σ!'
html.escape("123<345>> &6 \"or then' Σ!", False)
'123<345>> &6 "or then\' Σ!'
html.unescape("123<456 && σ>Σ")
'123<456 && σ>Σ'

 2
 3 >>>
 4
 5 >>>

6

The html.parser.HTMLParser class reveals the structure of any string of HTML.
Once you have created an instance, you feed it HTML strings. It reads whatever
you give it, and calls special methods for everything it encounters. In order to do
anything useful, you need to override those methods with versions that do
whatever processing you need.

The constructor has one optional keyword parameter convert_charrefs (default
True). If true then whenever a character entity such as < or a character
numeric reference such as Σ is seen, it is automatically converted to the
appropriate Unicode character and delivered as any other character would be. If
false then special handler methods will be called for them instead.

The methods are:

handle_decl(self, s)

191

Called when a declaration is encountered. For example, when <!doctype =
html> is seen there would be a call to handle_decl("doctype html").

handle_comment(self, s)

Called when a comment is encountered. For example, when <!--I wrote
this on Monday afternoon--> is seen there would be a call to
handle_comment("I wrote this on Monday afternoon").

handle_starttag(self, name, atts)

Called whenever a beginning tag like <tr> or <div id="inset" kind=six>
is encountered. The name parameter will be the name of the tag, "div". The
atts parameter will be a list of two-tuples containing the names and values
of all of the attributes: [("id", "inset"), ("kind", "six")]. Note that
the unnecessary quotes have been removed from inset.

handle_endtag(self, name)

Called whenever an ending tag like <tr> or </div> is encountered. The
name parameter will be the name of the tag, "div".

handle_startendtag(self, name, atts)

Called whenever a tag ends with />, which acts as an automatic ending, is
encountered. The parameters are exactly the same as for handle_starttag.

handle_data(self, s)

Called for all the ordinary words and characters and symbols and things
that appear between tags.

handle_entityref(self, name)

Only called if convert_charrefs was False. Called when a character
reference like < or Σ appears. For those examples, name would be
"lt" or "Sigma". Note that the & and ; are both removed.

handle_charref(self, form)

Only called if convert_charrefs was False. Called when a numeric
character reference like &931; or &x3A3; appears. For those examples, name
would be "931" or "x3A3".

close()

Normally you wouldn't override this method, but if you need some extra
processing to be performed when the end of the document is reached, put it
in here. It is important to remember to call HTMLParser.close()
afterwards.

After creating an HTMLParser object, you feed fragments of HTML into it using the
feed(s) method. s must be a string. It doesn't matter if the string ends
awkwardly, perhaps in the middle of a tag. It will save the unfinished item until
more text is fed in. You don't have to feed it small fragments, it can take a whole
file at once. Call the .close() method when everything is done.

192

 1 >>> class hparse(HTMLParser):

 def handle_starttag(self, name, atts):
 print("start", name)
 print(" ", atts)

 def handle_endtag(self, name):
 print("end", name)

 def handle_startendtag(self, name, atts):
 print("start and end", name)
 print(" ", atts)

 def handle_data(self, s):
 print("data")
 print(" ", s)

 def handle_entityref(self, s):
 print("character entity", s, hen.entitydefs[s])

 def handle_charref(self, s):
 if s[0] == "x" or s[0] == "X":
 ch = chr(int(s[1 :], 16))
 else:
 ch = chr(int(s, 10))
 print("character reference", s, ch)

p = hparse()
p.feed("<html><div id=\"small\" type=six>hello cat</div>")
start html
 []
start div
 [('id', 'small'), ('type', 'six')]
data
 hello cat
end div
p.feed("""also and & < Σ
 Σ </html>""")
data
 also
start and end img
 [('src', 'abc.jpg')]
data
 and & < Σ
 Σ
end html
p.close()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...
 26 ...
 27
 28 >>>
 29 >>>
 30
 31
 32
 33
 34
 35
 36
 37 >>>
 38 ...
 39
 40
 41
 42
 43
 44
 45
 46

47

>>>

But

 1 >>> p = hparse(convert_charrefs = False)
 2 >>>

193

 3 ... p.feed("""also and & < Σ
 Σ </html>""")
data
 also
start and end img
 [('src', 'abc.jpg')]
data
 and
character entity amp &
data

character entity lt <
data

character reference 931 Σ
data

character entity Sigma Σ
data

end html

 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

23

Notice that you are given the spaces between special symbols as data because in
HTML it is important to know whether things were separated or not. But also
notice that the multi-line string, in both examples, resulted in all the spaces and
newlines being included, even though the amount of white space is meaningless in
HTML, only its presence or absence matters.

v. Recognising URLs

URLs can have quite a few (six) of components:

First the scheme, such as HTTP, followed by ://
Second the net location, such as www.abc.com or xyz.org:88 followed by /
Third the path such as library/four/index.html followed by ;
Fourth the parameters, just about anything, followed by ?
Fifth a query, like uvw=12;xyz=cat+food, followed by #
Sixth a fragment, also just about anything.

urllib.parse’s urlparser function will split them up as a named tuple for you.
For each of the six components above, anything that is absent results in an empty
string. Net location is also split into hostname and port, where absence results in
None.

 1 >>> from urllib.parse import urlparse

x = urlparse("http://abc.com:456/idx.html?abc=2;xyz=cat+food")
x.scheme
'http'
x.netloc
'abc.com:45'
x.hostname

 2 >>>
 3 >>>
 4
 5 >>>
 6
 7 >>>
 8

194

 9 >>> 'abc.com'
x.port
456
x.path
'/idx.html'
x.params
''
x.query
'uvw=2;xyz=cat+food'
x.fragment
''

 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>

18

Unfortunately this is of very limited use because it doesn't understand URLs in
quite the way web browsers and people do. That means that you can't give it a
URL as entered by a user or found in text. If you enter abc.com/index.html into
a web browser, we all know what will happen: host name (or net location) is
abc.com and file (or path) is index.html. But ...

 1 >>> urlparse("abc.com/index.html")

ParseResult(scheme='',
 netloc='',
 path='abc.com/index.html',
 ...

 2
 3
 4

5

urllib.parse.parse_qs will split a query into its component name, value parts.
The result is presented as a dictionary where the keys are the names and the
values are the values. Values are always presented as a list of strings, which
strongly suggests that multiple values for one name are possible, but there is no
character which when used as a separator produces a list of length more than
one.

parse_qs understands the % encoding used to allow troublesome characters, such
as #, to safely appear. urlparser does not. The % sign is followed by the
character’s two digit hexadecimal ASCII code, so space becomes %20 and #
becomes %23.

 1 >>> parse_qs("uvw=2,13&xyz=cat+food")

{'uvw': ['2,13'], 'xyz': ['cat food']}
parse_qs("uvw=2,13&xyz=cat%20fo%23od")
{'uvw': ['2,13'], 'xyz': ['cat fo#od']}

 2
 3 >>>

4

When you are creating a query as part of a URL, urllib.parse.quote does that
encoding for you. All characters apart from letters, digits, ., ~, -, and _ are
converted to their % form. quote_plus converts spaces into + rather than %20.
unquote and unquote_plus do the opposite.

 1 >>> quote("abc=12;xyz=cat food#175*x")

'abc%3D12%3Bxyz%3Dcat%20food%23175%2Ax'
quote("abc=12;xyz=cat food#175*x")
'abc%3D12%3Bxyz%3Dcat+food%23175%2Ax'

 2
 3 >>>
 4
 5 >>>

195

6
 unquote("abc%3D12%3Bxyz%3Dcat%20food%23175%2Ax")

'abc=12;xyz=cat food#175*x'

35. Network clients and servers

For the most general-purpose package, import socket. That gives you the same
sort of interface as you get when programming in C under Unix. Some kinds of
servers and clients have already been implemented as Python modules. If you
want web access, import http instead, and you'll find that just about everything
has been done for you.

If you are already familiar with network programming, Python provides a lot of
minor constants and methods that I won't describe here. They allow you to do all
the operations that you already know about.

To communicate over the internet, you need at least two pieces of information to
describe the thing you want to communicate with. The first is a host name or IP
address, and the second is a port number. All internet accessible computers have
an IP address, it is usually four smallish numbers separated by dots (IPv6 is
different, but still isn't seen so very much) something like "129.171.33.6". The
host name is something more user friendly, like "rabbit.eng.miami.edu". There
is a sort-of one-to-one mapping between host names and IP addresses, and
Python automates the conversion. An IP address identifies a particular computer,
but each computer could be running a large number of different services. The port
number identifies which one you want, they range from very small numbers to
just above 65000.

Some network services require even more. The biggest example is the web server.
To tell your browser what you want to see, you provide a URL which consists of six
items: protocol, host name, port number, path, resource, and application data.
protocol is optional and defaults to HTTP. port number is optional and defaults to
80, path is optional and defaults to "/", it is really just a path as is always used
to explicitly address a particular file, like "directory/subdirectory", resource
is also optional, defaulting to "index.html", and application data is also optional.
Path and resource are almost always considered together as a single thing.
Protocol is separated from hostname by "://", host name is separated from port
number by ":", port number is separated from path by "/", path is separated
from resource by "/" again, and resource is usually separated from application
data by "?". URLs can be as simple as

amazon.com
or as complex as
https://abc.def.org:1293/products/ink/pricing.cgi?query=indian+ink

If you are trying network programming out on your own, you do not need two
computers, or even a real IP address. Just start up two Python sessions, and they
will be able to communicate with each other exactly as though they were
thousands of miles apart. When you start a server, you can either specify as

196

desired number, or be given one automatically. If two sessions are on the same
computer, just use “127.0.0.1” as the host name or IP address.

i. Sockets

A socket is the basic object for network connections. Just like a file object (or more
accurately, an _io.TextIOWrapper object) it represents the ability to create a
connection, or to represent the state of a connection if it is already open.

To create a socket, you must decide on the kind of connection you want. This is
called the address family. The most common ones are AF_INET for most internet
connections (it uses IPv4, where IP addresses are four numbers with dots between
them), or AF_INET6 (for the still not very common IPv6, where addresses are eight
groups of four hexadecimal digits with colon between them). If you know more
about networking, there are others that may be of interest, like AF_BLUETOOTH,
AF_UNIX, and AF_PACKET. I'll assume AF_INET here.

Assuming we’re working with AF_INET, you next need to decide on how
communications should proceed. This is called the protocol, but does not mean
quite the same is it does in a URL. There are five protocols to choose from, but
we’ll only look at the two most useful of them, SOCK_STREAM (for TCP) and
SOCK_DGRAM (for UDP). SOCK_STREAM is for real connections that work as streams
of bytes flowing in both directions, it refers to the TCP protocol. There are also a
lot of differences between Windows and Unix based systems. In most cases I will
only cover things that seem to work everywhere.

socket is a class from the socket module. As expected we create a socket object by
using its constructor. The two important parameters are the address family, AF_...
and the protocol, SOCK_..., e.g. sock = s.socket(s.AF_INET, s.SOCK_STREAM).

To communicate using TCP, you first establish a connection between server and
client. That takes a bit of work, but it is all done automatically for you. Once the
connection is made you can send messages back and forth, knowing that any
errors will be detected, if a transmission fails to get through, it will automatically
try again for a while, but if the failure is persistent you will know about it. When
communications are over, you must deliberately close the connection. One pair of
sockets connects a client with a server (usually) for a single session, and can't do
anything else.

Communication with UDP is much more basic. Once you have opened your socket
you can use it to communicate with anyone else on the internet. Each message
you send has its own specific destination attached to it, so one socket is all you
really need. UDP is not designed to be reliable. It is a bit like sending a telegram or
a message in a bottle. You have no way of knowing whether a message was
received or not, unless the recipient successfully sends something back. This is
not a bad thing. It makes high-bandwidth communications like video streaming
practical. All the checking and resending done by TCP would make everything too
slow.

197

After creating a socket, things are different depending on whether you are
programming the client or the server. With TCP that is, with UDP there is no
major difference between clients and servers. The usual pattern is that a server
will just sit and wait for clients to connect to it. The client will send a series of
requests, and the server will send back its responses. The server's behaviour is
called passive. The client it the opposite, its behaviour is active. It initiates
connections with a server when it wants to. It requests what it wants, and most
frequently it closes the connection when it has had enough.

ii. TCP clients

Once a socket is created, a client uses the connect method to open
communications with a server. connect needs two things, but strangely insists on
them both being provided in a single tuple. The first is the host name for the
server, that will be a well known string like "www.google.com" or an IP address
like "137.212.33.91". The second is a port number, just an int. These are the
first three steps:

 1 >>> import socket as s

conn = s.socket(s.AF_INET, s.SOCK_STREAM)
conn.connect(("rabbit.eng.miami.edu", 80))

 2 >>>
 3 >>>

s.socket will only fail under extreme and unusual circumstances, but there are a
whole lot of possible reasons for connect failing, each will produce a usually
helpful exception. If connect succeeds, you are connected to the server.

Under Unix, you get two more options. The second parameter to socket may be
bitwise orred (the | operator) with one or both of socket.SOCK_NONBLOCK and
socket.SOCK_CLOEXEC. NONBLOCK means that if you try to do something that
can't be done yet (that is most usually reading data that hasn't been sent yet),
instead of waiting, it will immediately return. CLOEXEC is unlikely to be very useful
in Python programming, it just means that the socket will be closed automatically
if one of the exec system calls is used.

To transmit, you use the socket's send method. It takes a bytes object as the
message to be sent, and returns the number of bytes that were successfully sent.
To receive, you use the socket's recv method. The parameter is the maximum
number of bytes you are willing to take, and the returned result is a bytes object.
When you have finished communicating, both server and client should call the
socket's close method.

Here is a short example of a client interacting with a web server. I have cut down
the output to make it readable.

 1 >>> import socket as s

def ask():
 conn = s.socket(s.AF_INET, s.SOCK_STREAM)

 2
 3 >>>
 4 ...
 5 ...

198

 6 ... conn.connect(("rabbit.eng.miami.edu", 80))
 conn.send(b"GET /findme.html HTTP/1.0\r\n")
 conn.send(b"\r\n")
 while True:
 bs = conn.recv(1024)
 print("--------------------------------")
 print(bs)
 if len(bs) == 0:
 break
 conn.close()

ask()
--
b'HTTP/1.1 200 OK\r\nDate: Fri, 14 Jul 2023 22:17:11
Connection: close\r\nContent-Type: text/html\r\n\r\n
<html><head><title>How to find Me</title></head>\n<body>
 ...
A\n<tr><td><'
--
b'td><td>Tuesday<td>\n<tr><td><td><td><td> 2:00 to 3:15
 ...
colspan=5> \n</table>\n</body></html>\n\n'
--
b''

 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15
 16 >>>
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

28

A few things to observe. First, it is using HTTP version 1.0 which is completely
outdated. The reason for using it is that it has minimal requirements. Just a GET
command. Second, the HTTP protocol demands that lines end with the two
character sequence \r\n (ASCII 13, 10). The second send is also a requirement.
Until you send a blank line, the server will think you are just sending more details
of your request. Fourth, I didn't ask the server to keep this connection alive, so it
closed the socket after its reply. Fifth, when a socket is closed, a recv will give you
an empty bytes object rather than raising an exception.

To cut through the ugliness of the bytes objects, I'll replace the printing of the
dashes and print(bs) with print(bs.decode(), end = ""). Now we can see
what the response really looked like:

 1 >>> ask()
HTTP/1.1 200 OK
Date: Sat, 15 Jul 2023 00:13:04 GMT
Server: Apache/2.4.56 (FreeBSD)
 ...
Content-Type: text/html

<html><head><title>How to find Me</title></head>
<body><h2>How to find Me, Autumn 2023</h2>
<table border=0>
 ...
</table>
</body></html>

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

13

199

That allows one final observation. The HTTP protocol is a bit noisy. Web servers do
not just provide the information you request, they precede it with some headers
that provide metadata, extra information about it. The first line is the most
important and always begins with HTTP/ followed by the version, a code number
and a bit of text giving a hint at what the code means. 200 represents success,
most other numbers indicate a failure of some kind. After that you get bits of
detail that might be of help. The last one, Content-Type lets you know how the
response should be interpreted. Then there is always a blank line, after which the
real data follows.

To save one line of code, socket has a slightly convenient class method equivalent
to socket() followed by connect(). It is create_connection((host, port)).

iii. TCP servers

The setup for a server is only slightly more complex. Usually you will have chosen
the port number you want for your service in advance, but you can just let the
system find you any free port. The next step after creating the socket is to use the
bind method to attach your socket to that port. bind has one parameter which is
a tuple (host, port), host should almost certainly be an empty string because
it's pretty obvious that the service is going to run on this exact computer. port is
the desired port number or zero if you don't care. After using bind with port = 0,
you can use the parameterless getsockname method. It returns a tuple (host,
port), with port being the port number you were assigned.

The next step is to turn the port on and get it ready to accept requests. Use the
listen method for this. Its parameter should be a small but definitely not zero
int. 3 is traditionally used. It is a queue size for as-yet unserviced incoming
requests.

Next, assuming that your server is to be able to respond to more than one request,
you would have a loop. Each time round the loop, use the accept method to
accept a connection. It just waits until a client tries to connect, and accepts that
connection. accept returns a tuple as its result. [1] identifies the client that has
made the connection, [0] is a new socket. That is the socket that you recv and
send with to communicate with the client. The original socket is left alone so that
it can continue to accept more client connections.

Any serious server is going to want to be able to handle multiple requests at the
same time, so a loop on its own isn't very good. If one request requires a long time
to be answered, other clients may time-out waiting for the server to get back to the
accept. To handle this, servers traditionally use subprocesses to deal with each
request. But for most uses, a thread will do perfectly well, and be more efficient.

When the client session is over, close the new socket. Only close the original
socket when you want to shut down the server.

200

This example implements a very basic server. Once it has started, it accepts
connections and waits for them to send a string. It doesn't care what the string is.
It then sends a reply that includes the time, and closes the connection. Remember
that a string's encode method gives the bytes version of it. For the sample run,
two clients connected, both asked “time please”.

 1 >>> import socket as s

import datetime as dt

def serve():
 conn = s.socket(s.AF_INET, s.SOCK_STREAM)
 conn.bind(("", 0))
 print("I am on port", conn.getsockname()[1])
 conn.listen(3)
 while True:
 (clisock, cliaddr) = conn.accept()
 print("new connection from", cliaddr)
 bs = clisock.recv(1024)
 print("they said", bs)
 now = dt.datetime.now()
 reply = "Hello, it is {0:%H}:{0:%M}\r\n".format(now)
 clisock.send(reply.encode())
 clisock.close()

serve()
I am on port 12225
new connection from ('129.171.33.6', 30513)
they said b'time please\r\n'
new connection from ('129.171.33.6', 27487)
they said b'time please\r\n'

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18
 19 >>>
 20
 21
 22
 23

24

Beware that under Windows, Control-C does not interrupt an accept. This is
what the clients saw:

 1 >>> cl.ask(12225)

b'Hello, it is 19:28\r\n'
cl.ask(12225)
b'Hello, it is 19:31\r\n'

 2
 3 >>>

4

To save two lines of code, there is a very slightly convenient method of the socket
class: create_server((host, port)) it is equivalent to socket() followed by
bind() followed by listen().

iv. UDP agents

UDP agents (for want of a better word) are simpler because they don't make
connections and only need a single socket for everything.

201

Essentially you just create a SOCK_DGRAM socket and use its bind method to
attach it to a port number. Then start using its sendto method to transmit things
and its recvfrom method to receive things.

bind is the same as it is for TCP, give it a tuple of "" and a port number. Set the
port number to 0 if you don't care what number you get. After binding, the
socket's getsockname method will deliver the familiar tuple whose [1] is the port
number.

I need two Python sessions so that there is something to talk and something to
listen. recvfrom takes a maximum number of bytes as its parameter and returns
a (message, sender) tuple. sendto takes a bytes object for the message to be sent,
and an (IP address, portnumber) tuple for the destination. It returns the number
of bytes successfully sent.

Session one:

 1 >>> import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("", 0))
s.getsockname()[1]
53201 # that's my port number
(msg, sender) = s.recvfrom(1024)

 2 >>>
 3 >>>
 4 >>>
 5

6 >>>

and it sits waiting there. Session two:

 1 >>> import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(b"Hello!\n", ("127.0.0.1", 53201))

 2 >>>
 3 >>>

Notice that because I'm not receiving, I don't even need to use bind. If bind isn't
used, the first sendto will do an automatic bind with a port number of zero.
getsockname will not work until a bind has been done.

Back to session one, which is no-longer waiting:

 1 >>> msg
b'Hello!\n'
sender
('127.0.0.1', 65162)

 2
 3 >>>
 4

36. Polling - asynchronous communication

There are many situations in which you want to be able to receive input, but do
not want to have to wait for it. A common example is a program that is involved in
a long computation but needs to be able to receive commands from the user from
time to time, or perhaps a network service in which a real person is monitoring
things, so that they can tell the system to cut off communications with an abusive
user.

202

In many cases, multi-threading provides a solution. This section is about other
options.

This is one of those areas where Windows gives a lot of trouble, so we'll start off
doing things the Unix way.

i. Unix

The sys module provides access to three already open files sys.stdin,
sys.stdout, and sys.stderr. They are exactly the stdin, stdout, and stderr
files that all Unix users are familiar with. stdin is by default your keyboard,
stdout and stderr are by default your screen, but all three can be redirected.
The Python input function always reads from whatever happens to be stdin at
the moment, and print always writes to stdout unless told otherwise.

The select module gives us a function called select. Its job is to tell us whether
input or output is possible without having to wait for it. It has four parameters,
the first three of them I'll call gr, gw, and gx, the g stands for given. They are
iterables of file-like objects. File-like objects include sys.stdin and its friends,
actual open files, and network sockets. If you know something's Unix fd (the int
that uniquely identifies any file-like object) you can just use that number instead.
stdin, stdout, and stderr are always 0, 1, and 2 respectively. The first
parameter is where you ask about the ability to read, the second is for writability,
and the third for finding out if something has gone wrong.

If you have a socket called sock, and you want to find out whether there is data
ready to be received either from that socket or the keyboard, then the first
parameter would be [sock, sys.stdin] or [sock, 0], the other two would be [].
select returns a three-tuple of lists (rr, rw, rx), the initial r stands for result.
rr will contain all the things from gr that you can now take input from without
having to wait. Similarly rw contains the writable things from gw, and rx contains
the things from gx that have failed in some way. Most uses of select only involve
gr and rr, input has to wait until something has sent something, but in most
cases output is always possible.

The fourth parameter to select is a timeout. If you don't provide it, select
becomes a blocking function, it will wait until something does become possible.
Even that is useful, because you would be waiting for a number of things, any one
of which would end the wait. If the timeout is 0, select will return immediately
with just the things that were already possible. Any other value for the timeout is
the maximum number of seconds to wait for something to happen. If nothing
happens before the timeout expires then all three of the returned lists will be
empty.

This is one of the things that just don't work under Windows. select will happily
take a number of sockets, but will not accept sys.stdin.

203

Here is a rather dull use of that.

 1 >>> import sys
import select

def kbwait():
 while True:
 (rr, rw, rx) = select.select([sys.stdin], [], [], 5)
 if sys.stdin in rr:
 s = input()
 print("you said", s)
 else:
 print(".")

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...

11
...

Running that, you would see a very slow progression of dots, one every five
seconds. When you press a keyboard key, nothing seems to happen. All systems
do buffering on keyboard input that makes it wait until you have pressed enter.
Without that, the backspace key would be useless. As soon as you do press enter,
the whole line you typed is reported and the function carries on waiting for more.

Here is a bigger example, a UDP service that will take a query of the form "A B"
from anyone, A and B are space separated decimal numbers. The service will
respond with whatever the value of A×B is. It will continue until you type stop.
We'll assume that sys, select, and socket have already been imported.

 1 >>> def run():
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.bind(("", 0))
 print("Tell our users to use port", s.getsockname()[1])
 while True:
 (r, w, x) = select.select([sys.stdin, s], [], [], 0.1)
 if sys.stdin in r:
 cmd = input()
 if cmd == "stop":
 break
 elif s in r:
 (msg, sender) = s.recvfrom(1024)
 qparts = msg.decode().split()
 reply = str(int(qparts[0]) * int(qparts[1]))
 s.sendto(bytes(reply, "utf8"), sender)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...

15
...

When this is running, you won't see any output until you type stop. Annoyingly,
when you type stop, it will appear twice. I don't really know what causes that.

Keep in mind that you are not limited to waiting for just one or two things. Thos
lists of file-like objects can be quite long. Unix itself imposes a limit.

To ask this service a question, these four lines will do the trick. 45266 is of course
the port number that the service reported when it started.

 1 >>> import socket

204

 2 >>> s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(b"12 240\n", ("127.0.0.1", 45266))
s.recvfrom(1024)[0]
b'2880'

 3 >>>
 4 >>>

5

If you don't even want to wait for the user to press enter, but just take whatever is
pressed as soon as it is pressed, there doesn't seem to be any official Python
module, but based on some web searches, I managed to make one. If you are
using rabbit, you just have to import specialkbd. If you are not using rabbit, I
have pasted in the entire file just below the next bit.

specialkbd defines a kbd class. You should not use its constructor, but call the
module’s ordinary get_kbd() function instead. get_kbd() does return an
instance of the kbd class, but ensures that no more than one instance is created,
which would be bad.

The kbd object has four methods. Before trying to catch any keyboard characters
without waiting for an enter, you must call special_mode(), and when you have
finished, you must call normal_mode(). If you forget normal_mode your terminal
will not behave properly. Of course, you can always use the Idle prompt and call
normal_mode by hand. Exiting from Idle should restore everything to normal too.

kbd has __enter__ and __exit__ methods, so you can use it in a with statement
and forget about normal_mode. See the example coming soon.

Once your terminal is in special mode, you have two methods to choose from:
get_key() and get_key_no_wait(). get_key() waits until any key is pressed, it
doesn't matter whether it is enter or not. Normally it will just return that character
as a string of length one. But some keys, such as the arrow keys, produce a small
sequence of characters which you need to see all at the same time, in that case it
returns a list of characters.

Putting your terminal in special mode also turns off the automatic echo
mechanism. Normally, when you press a keyboard key, the character appears on
your screen right away. With echo off that doesn't happen. You don't see anything
unless you print it. If you don't want this behaviour, special_mode has an
optional doecho parameter. If you set it to True, echoing will happen as normal.

If you do a normal input() while in special mode, it will still work as usual except
that echoing will be turned off (unless you set doecho to True).

Note from the example below that it even captures Control-C, so you need to be
careful. Note also that I am using repr() inside print to make everything visible.
without repr, enter and Control-C would be invisible.

 1 >>> import specialkbd as spk

def run():
 with spk.get_kbd() as k:

 2
 3 >>>
 4 ...
 5 ...

205

 6 ... k.special_mode()
 while True:
 c = k.get_key()
 print(repr(c))
 if c == "x":
 break
run()
'W' # I pressed W
'7' # I pressed 7
'\r' # I pressed enter. '\r' was returned, not '\n'
['\x1b', '[', 'A'] # I pressed the up-arrow
'\x03' # I pressed Control-C, that is ASCII 3
x # I pressed x

 7 ...
 8 ...
 9 ...
 10 ...
 11 >>>
 12
 13
 14
 15
 16

17

get_key_no_wait() is exactly the same as get_key(), except for one thing, it
doesn't wait for anything at all. If a key hasn't been pressed already, it
immediately returns None.

This is not compatible with the select method. If you want to wait for input from
either of two sockets or the keyboard, without needing enter to be pressed, you
would need to combine them in a loop. First try get_key_no_wait, if that doesn't
give you anything try select with a zero timeout, if that doesn't give you
anything, take a little sleep and go round the loop again. The little sleep is
important, without it, you will just consume all the CPU’s computational power
getting nowhere.

 1 >>> while True:

 ch = k.get_key_no_wait()
 if ch != None:
 ... # got something from the keyboard, deal with it.
 else:
 (rr, rw, rx) = select.select([sock1, sock2], [], [], 0)
 if rr != []:
 ... # a socket is ready, deal with it.
 else:
 time.sleep(0.05)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...

10
...

This is the code for specialkbd.py. I expect it to work on any version of Unix, but
have only had a chance to test it on FreeBSD.

import termios
import fcntl
import sys
import os
import queue
import sys

class kbd:

 the_one = None

 def __init__(self):
 if kbd.the_one != None:

206

 raise Exception("you must not create two kbd objects")
 self.stin = sys.stdin.fileno()
 self.saved_flags = fcntl.fcntl(self.stin, fcntl.F_GETFL)
 self.saved_tatrs = termios.tcgetattr(self.stin)
 self.echobits = termios.ECHO | termios.ECHONL
 self.backed_up = queue.Queue()
 self.started = False
 kbd.the_one = self

 @classmethod
 def get_kbd(thisclass):
 if kbd.the_one == None:
 kbd()
 return kbd.the_one

 def __enter__(self):
 return self

 def __exit__(self, etype, eval, etrace):
 self.normal_mode()
 return etype == None

 def special_mode(self, doecho = False):
 tatrs = list(self.saved_tatrs)
 tatrs[0] &= ~ (termios.IGNBRK | termios.BRKINT | termios.PARMRK
 | termios.ISTRIP | termios.INLCR | termios.IGNCR
 | termios.ICRNL | termios.IXON)
 tatrs[1] |= termios.OPOST | termios.ONLCR | termios.ONLRET
 tatrs[2] &= ~ (termios.CSIZE | termios.PARENB)
 tatrs[2] |= termios.CS8
 tatrs[3] &= ~ (termios.ICANON | termios.ISIG | termios.IEXTEN)
 if doecho:
 tatrs[3] |= self.echobits
 else:
 tatrs[3] &= ~ self.echobits
 termios.tcsetattr(self.stin, termios.TCSANOW, tatrs)
 self.started = True

 def normal_mode(self):
 if not self.started:
 return
 termios.tcsetattr(self.stin, termios.TCSAFLUSH, self.saved_tatrs)
 fcntl.fcntl(self.stin, fcntl.F_SETFL, self.saved_flags)
 self.started = False

 def correct(self, c):
 if c == "\x03":
 raise KeyboardInterrupt
 if c == "\r":
 return "\n"
 return c

 def deal_with(self, cs):
 if len(cs) == 0:
 return None
 if len(cs) == 1:
 if cs[0] == "":
 return None
 return self.correct(cs[0])
 if cs[0] == "\x1B":
 return cs
 for c in cs[1:]:

207

 self.backed_up.put(self.correct(c))
 return self.correct(cs[0])

 def get_key_gen(self, block):
 if not self.backed_up.empty():
 return self.backed_up.get()
 if block:
 fcntl.fcntl(self.stin, fcntl.F_SETFL, self.saved_flags & ~ os.O_NONBLOCK)
 else:
 fcntl.fcntl(self.stin, fcntl.F_SETFL, self.saved_flags | os.O_NONBLOCK)
 keys = []
 try:
 keys.append(sys.stdin.read(1))
 if block:
 fcntl.fcntl(self.stin, fcntl.F_SETFL, self.saved_flags | os.O_NONBLOCK)
 c = sys.stdin.read(1)
 while len(c) > 0:
 keys.append(c)
 c = sys.stdin.read(1)
 finally:
 fcntl.fcntl(self.stin, fcntl.F_SETFL, self.saved_flags)
 return self.deal_with(keys)

 def get_key(self):
 return self.get_key_gen(True)

 def get_key_no_wait(self):
 return self.get_key_gen(False)

def get_kbd():
 return kbd.get_kbd()

def stringy(s):
 r = "\""
 for c in s:
 if c.isalnum():
 r += c
 else:
 r += "[" + str(ord(c)) + "]"
 r += "\""
 return r

def getstring(echo):
 kb = get_kbd()
 s = ""
 while True:
 c = kb.get_key()
 if c == "\n":
 return s
 if c == "\x08":
 if s != "":
 if echo:
 print(" \x08", end = "")
 sys.stdout.flush()
 s = s[0 : -1]
 elif type(c) == str:
 s += c

def run(echo = True):
 k = get_kbd()
 k.special_mode(echo)
 try:

208

 while True:
 s = getstring(echo)
 print("it was:", stringy(s))
 if s == "stop":
 break
 except KeyboardInterrupt:
 print()
 pass
 except:
 raise
 finally:
 k.normal_mode()

ii. Windows, the pynput module

Under Windows, the select module’s select function tries to work like the Unix
version in the subsection above, but unfortunately it only works on sockets and is
unable to detect keyboard input being ready.

There is a module called msvcrt, but I have not found any circumstances under
which it works at all. Web searches reveal that it is known not to work with Idle,
but it doesn't seem to work with anything else either.

There is another module called pynput which does provide the necessary
functionality. Sadly it doesn’t come with the Python distribution, so you need to
install it yourself. See the earlier section on modules and packages, it has a
subsection for installing extras.

This will get us started:

 1 >>> from pynput import keyboard as kb

import time

def down(key):
 print("press", repr(key))

def up(key):
 print("release", repr(key))

def run():
 L = kb.Listener(on_press = down, on_release = up)
 L.start()
 time.sleep(15)
 L.stop()

 2 >>>
 3
 4 >>>
 5 ...
 6
 7 >>>
 8 ...
 9
 10 >>>
 11 ...
 12 ...
 13 ...

14
...

The Listener class is a subclass of Thread, so nothing happens until its start
method is called. The parameters are two functions which will be called
automatically so long as the Listener is running whenever a keyboard key is
pressed or released. This thread is able to have a stop method because it was
programmed to keep listening for a command to stop. The Listener’s functions
continue to be called for every keyboard event even when another application has

209

focus. As I'm typing into Word now, my key-presses are being reported in the Idle
window. Here is a run:

 1 >>> run()

release <Key.enter: <13>>
press 'n'
release 'n'
press '5'
release '5'
press 'p'
release 'p'
press ','
release ','
press <Key.up: <38>>
release <Key.up: <38>>
press <Key.shift: <160>>
press 'A'
release 'A'
release <Key.shift: <160>>
press <Key.ctrl_l: <162>>
press '\x01'
release '\x01'
press '\x02'
release '\x02'
release <Key.ctrl_l: <162>>
press <Key.esc: <27>>
release <Key.esc: <27>>

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

24

What I typed was exactly little n, digit 5, little p, comma, up-arrow, capital A,
control-A, control-B, esc. As you can see, sometimes it also captures the enter key
being released after the command to run was typed, but that doesn't happen very
often. You will also notice that even though the control and shift buttons have
their usual effect on the characters returned ('\x01' means the character code
with ASCII code 1, which is control-A), we also get up and down events for the
shift and control keys. Even control-C gets captured and converted to '\x03', but
once the sleep expires an exception is raised for it.

It is not difficult to stop receiving other applications’ key presses in the Idle or
other Python window. You need to install another non-standard package called
pywin32. Just follow the instructions from just over a page ago for installing
pynput but say pywin32 instead of pynput. We don't want pywin32 itself, but the
win32 package that comes with it, and specifically the win32gui module within
that.

There is a function called GetForegroundWindow, it just returns an int, but that
int uniquely identifies the window that currently has focus to the Windows
system. It is probably safe to assume that when your own module is being loaded,
it is in the window that has focus. Record the window identification when the
module is loaded, and make the up and down functions make sure it hasn't
changed.

210

 1 >>> mywin = wg.GetForegroundWindow()
 ...
def down(key):
 if mywin == wg.GetForegroundWindow():
 print("press", repr(key))

 2
 3 >>>
 4 ...

5 ...

The up and down methods receive a single object for every keypress. For a normal
key it seems to be a string, but isn't. It is a keyboard._win32.KeyCode object.
For a special key (enter, arrows, esc, shift, page down and so on) it is a member of
an enum called Key. You can see all the different enum values you might get if you
add

print(dir(key))
to either the up or down function. The KeyCode objects for normal keys look like
strings even when you print them with repr, but if they are from the numeric
keypad while num lock is on, they look like <100>, where 100 is a unique scan
code for the key, in this case the 4 key.

This function will take any key value as passed to up or down, and if it
corresponds to a proper typable key it will return the character that it represents.
If the repr of the key is of length 3, it will be like 'X', and we just want that X
from the middle. If it is longer, it will be like '\x05' (for control-e) where the 05 is
the hexadecimal version of its ASCII code. Under windows, pressing enter delivers
ASCII code 13, which is not '\n', so that needs converting too.

 1 >>> def decode(key):

 if type(key) == KeyCode:
 r = repr(key)
 if len(r) == 3:
 return r[1]
 return chr(int(r[3:5], 16))
 vk = key.value.vk
 if vk == 13:
 return "\n"
 elif vk in [32, 27, 9, 8]: # space, esc, tab, backspace
 return chr(vk)
 return ""

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...

12
...

If either the up or down function returns False, it will immediately stop the
listener and return things to normal. With that, a common technique is to
designate a special key to be the stop command, perhaps esc:

 1 >>> def up(key):

 print("release", repr(key))
 if key == kb.Key.esc:
 return False

 2 ...
 3 ...

4 ...

The way the run function is written in the example isn't very good. If anything
goes wrong with the program, there is no way you can return the keyboard to
normal operations, and how long should the sleep be? The Listener object

211

implements the __enter__ and __exit__ methods, so we can do much better
using a with statement.

 1 >>> def run():

 with kb.Listener(on_press = down, on_release = up) as L:
 L.join()

 2 ...
 3 ...

join() just waits for the thread to finish, which happens when the designated
key, esc, is typed.

Now we can get back to the idea of a controllable network service. As keyboard
events always come in press-release pairs, we'll ignore the releases, and we’ll use a
queue.Queue to deliver things from the down function to the server. I've put it
together as a class. Just the outline first:

 1 >>> class server:

 def __init__(self):
 self.eventq = queue.Queue()

 def accept_key(self, key):
 self.eventq.put(key)

 def run(self):
 with kb.Listener(on_press = down,
 on_release = up) as L:
 self.serve()

service = server()

def down(key):
 service.accept_key(key)

def up(key):
 pass

service.run()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13
 14 >>>
 15
 16 >>>
 17 ...
 18
 19 >>>
 20 ...
 21

22

>>>

The part left out of the class definition is the serve method. It is quite large, but it
uses things we have seen before, so we don't need everything here. It creates two
TCP sockets to provide two different services at the same time.

 1 ... conn1 = s.socket(s.AF_INET, s.SOCK_STREAM)
 conn1.bind(("", 0))
 print("conn1 is on port", conn1.getsockname()[1])
 conn1.listen(3)

 2 ...
 3 ...

4 ...

and exactly the same for conn2.

Then we have a string that builds up all the keyboard characters received, an
infinite loop for the services, and a variable to note whether anything has
happened or not.

212

 5 ... typed = ""

 while True:
 acted = False

 6 ...
 7 ...

Next a sequence of just a few things. select followed by a for loop to deal with
any new server requests, then look to see if any characters are in the queue, that
needs to be in a try: because an empty queue causes an exception, and finally a
little sleep before going round the loop again if nothing has happened.

 1 ... (r, w, x) = se.select([conn1, conn2], [], [], 0)
 for conn in r:
 # handle request on conn

 2 ...

3 ...
 4 ... acted = True

 try:
 key = self.eventq.get_nowait()
 # deal with the keypress in key
 acted = True
 except queue.Empty:
 pass
 if not acted:
 time.sleep(0.05)

 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...

12
...

Handling the request on conn is the usual thing

 1 ... (clisock, cliaddr) = conn.accept()
 # print which server it is and cliaddr
 bs = clisock.recv(1024)

 2 ...

3 ...
 4 ... # compose reply

 clisock.send(reply.encode())
 clisock.close()

 5 ...

6 ...

Finally, dealing with the keypress is a bit complicated. Every normal character is
added to the string typed that we are building up. When enter is received, we look
at that string, and if it is the command "stop" we stop. Otherwise enter makes us
start again with a new string. For a normal keypress, we receive a KeyCode object,
and they do not provide a helpful method for finding out which key was pressed.
So we'll rely on the fact that their __str__ and __repr__ methods just return the
key’s symbol surrounded by single quotes.

 1 ... if key == kb.Key.enter:
 if typed == "stop":
 return

 2 ...
 3 ...
 4 ... typed = ""

 elif type(key) == kb._win32.KeyCode:
 thekey = str(key)
 if thekey[0] == "'" and thekey[-1] == "'":
 typed += thekey[1:-1]

 5 ...
 6 ...
 7 ...

8 ...

And keep in mind that this server will also receive keystrokes intended for other
applications.

213

pynput.keyboard can also control the keyboard, or more exactly it can fool the
software that responds to the keyboard. You can simulate keys being pressed and
released. You need to create a Controller object and use its methods. The most
basic are press and release. Both take a Key value (Key.up, Key.space, etc) or
a one character string to specify the key whose action is to be simulated. tap(k)
is equivalent to press(k) immediately followed by release(k).

 1 >>> from pynput import keyboard as kb
c.press("A")
A
c.release("A")
c.press(kb.Key.up)
c.release(kb.Key.up)
c.tap(kb.Key.enter)

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>

7 >>>

Much more convenient is type. It just takes a string and creates all the presses
and releases required to type it. The following gives me enough time to move the
mouse from Idle back to my Word document and click to select it. The string
hello followed by a newline does get typed into the document. But strangely, if I
leave the mouse in the Idle window, the string does appear, but it has absolutely
no effect, Idle is unaware of it.

 1 >>> time.sleep(5); c.type("hello\n")

The pynput module can also has a mouse class, which can control or read the
mouse in the same way as the keyboard. To control the mouse, you need to create
a Controller object, which has an attribute called position (an x, y tuple) that
can be both read and written, and methods press, release, and click. The
methods all take a mouse.Button object to indicate which mouse button is
wanted. click also takes as int, 1 for single click, and 2 for double click.

On this computer the recycling bin icon is at the top left of the screen. These five
statements report where the mouse was to start with, then move it on top of that
icon, then double click, so my recycling bin is opened.

 1 >>> from pynput import mouse
ctrl = mouse.Controller()
print("mouse was at", ctrl.position)
mouse was at (1330, 664)
ctrl.position = (35, 35)
ctrl.click(mouse.Button.left, 2)

 2 >>>
 3
 4 >>>
 5 >>>

6 >>>

To listen to the mouse, other than just asking its position, you need to create a
Listener object. The constructor has three parameters. on_move is the function
to be called every time any mouse movement is detected, on_click is badly
named, it is called whenever a mouse button is pressed or released, there is no
separate reporting of clicks, and on_scroll is called when you use the scrolling
wheel.

214

The on_move function has two parameters, x and y, that report the position the
mouse has moved to. The on_click function has four: x, y for the position the
click happened at, button for which button was clicked (mouse.Button.left,
right, etc), and pressed: True if pressed, False if released. The on_scroll
function has four parameters, x and y for where the mouse is, and dx and dy for
the direction of scrolling. dx and dy are not well documented. On my computer dx
is always 0 (do mice ever have horizontal scroll wheels?) and dy is 1 for down and
-1 for up. So this bit of code tells you everything that ever happens to the mouse.

 1 >>> def moved(x, y):
 print("moved to", x, y)

def clicked(x, y, button, pressed):
 act = "press" if pressed else "released"
 print(button, act, "at", x, y)

def scrolled(x, y, dx, dy):
 direc = "up" if dy > 0 else "down"
 print("scrolled", dir, "from", x, y)

L = mouse.listener(moved, clicked, scrolled)
L.start()
moved to 1104 703
moved to 1104 704
moved to 1104 705
moved to 1104 705
Button.left press at 1104 705
Button.left released at 1104 705
scrolled up from 1104 705
scrolled up from 1104 705
moved to 1104 705
moved to 1103 706
L.stop()

 2 ...
 3
 4 >>>
 5 ...
 6 ...
 7
 8 >>>
 9 ...
 10 ...
 11
 12 >>>
 13 >>>
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

24

iii. Windows, the dysfunctional keyboard module

There is another module called keyboard, which has very serious defects and also
does not come with the Python installation. If you want to get it, you must first
make sure pip is installed as for pynput, and navigate to that same folder. This
time the command is:

Scripts\pip install keyboard

The read_key function is moderately useful, but it has incurable defects:

 1 >>> import keyboard

while True:
 k = keyboard.read_key()
 print("It was \"", k, "\"", sep = "")
 if k == "x":

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...

215

 7 break
It was "enter"
It was "n"
It was "n"
It was "5"
It was "5"
It was "p"
It was ","
It was ","
It was "up"
It was "up"
It was "shift"
It was "A"
It was "shift"
It was "ctrl"
It was "a"
It was "a"
It was "b"
It was "b"
It was "ctrl"

 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

25

The extra parts in the print are there to make it absolutely clear exactly what we
are seeing. What I typed was exactly: little n, digit 5, little p, comma, up arrow,
capital A, control-A, control-B. I didn't repeat anything.

There are some immediately apparent oddities:

1. It even picks up the pressing of enter from the end of the command before it
was even running.

2. Nearly every keypress is duplicated but sometimes it misses (we only saw
one "p", on line 12), the duplication is because it reports two events, one
when the key is first pressed, and the other is when it is released. If you
hold a key down for more than a second or so, you get repeated reports of
that key. Not surprising, holding a key down is what we always do for
repetition.

3. But it gives no indication of whether it is reporting a press or a release.
Doesn’t sound like a problem until you combine the effect of holding a key
down with the fact that it sometimes misses an action. When we see the
same key repeated, we can't really tell what happened.

4. For a capital letter we see three reports: shift being pressed, the capital
letter, and shift being released. It turns out that the non-repeated A was
just an instance of item 2, they usually are repeated.

5. A capital letter is reported as a capital letter, "A" rather than "a", but a
control-letter is left alone, for these you have to pay attention to the "ctrl"
presses and releases, some of which might be missed.

6. While you’re actually typing control or capital letters quickly enough, it
doesn’t give repeated reports for the control or shift keys even though they
are being held down. But if you hold down control or shift but pause for a
little while before typing anything, you do get repeated control or shift
reports, and they can happen an odd number of times, so there really is no
way of telling “a” and “control-a” apart.

216

7. You can’t see it in the example, but it even reports keyboard events from
other programs. I've left it running and it is still reporting the events for me
typing this in to Word.

8. Control-C does actually stop this loop, even though sometimes it seems that
it has failed to. Control-N means something to Idle, so when you type
control-N that gets reported in the usual way, but also a little dialogue box
appears and takes keyboard focus. Control-C only stops Idle when it is in
command of the keyboard.

9. It does not have a time-out. If you call read_key your program is going to be
blocked until a key is pressed.

There is a solution for one of the problems. There is another function called
is_pressed. It tells you whether or not a particular key is currently being
pressed. So we can completely ignore and "ctrl" or "shift" events and explicitly
ask about those keys for every report:

 1 ... k = keyboard.read_key()

 if k == "ctrl" or k == "shift":
 continue
 s = ""
 if keyboard.is_pressed("ctrl"):
 s += "ctrl "
 if keyboard.is_pressed("shift"):
 s += "shift "
 s += k

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...

9
...

There is an alternative way of doing things that you might find with a search. It is
more complex, but also more flexible. It uses functions with names like on_press,
on_release, hook, and unhook. But it has one serious disadvantage, it just plain
doesn't work. With some effort you can get something out of it, but it can't be
stopped. You will not be able to use the keyboard for anything else, all you can do
is exit from Idle and start again. But in case you don't mind about that, here is a
brief description.

keyboard.hook(fn)

Every time any key is pressed or released, fn will be called. It will be given
one parameter of type keyboard.KeyboardEvent, which has five useful
attributes:

event_type: a string, "up" or "down"
is_keypad: True if the key is on the numeric keypad at the right
name: the string for the key, "y", "shift", "7", "up", "enter", etc.
scan_code: an int that is unique to the key, regardless of shift, ctrl, etc.
time: a float, exactly when the event occurred.

hook also has an optional keyword parameter on_remove. on_remove
should be a parameterless function, and it will be called automatically when
this hook is removed, or at least it is supposed to be.

keyboard.on_press(fn)
Exactly the same as hook except it is only called for "down" events.

217

keyboard.on_release(fn)
Exactly the same as hook except it is only called for "up" events,
but the system can't take two hooks at once.

keyboard.unhook_all(fn) and
keyboard.unhook(fn)

Are where it all fails. They are supposed to undo everything and return your
keyboard to normal use, but they don't.

If you go ahead with this, the best way to handle things is probably to make your
hook function add all the events to a queue.Queue, perhaps after pairing presses
and releases to make a single something_typed event and filtering out shift and
ctrl events, and the rest of the program can get its input in a relatively normal way
from that queue.

The keyboard module does allow significant mischief to be performed. A program
running in the background and using read_key could record every keypress,
capturing passwords and everything. There is also the send function. It, and a few
other related functions, makes the system think that a particular key has been
pressed:

 1 >>> for i in range(15):

 time.sleep(1)
 keyboard.send("x")

 2 ...
 3 ...

that just results in xs appearing in my Idle window. Until I switch back to Word.
Then it starts inserting xs into this document.

37. asyncio - more asynchronous communication

The asyncio package provides another workable way of dealing with
unpredictable events. It only works well when you need to set a few tasks in
motion, then do nothing until they have finished, then gather in their results. This
is the situation with both web servers and web spiders (sometimes called
crawlers). Most search engines rely on web spiders, they explore a vast number of
web sites, downloading all their pages and indexing their key words. That is the
sort of thing asyncio is good at. Once a spider has sent out a request for a web
page, it has absolutely nothing to do until the results come back. Somebody else
is doing all the work, the internet is transmitting things and the web servers are
handling its requests. A web spider could send out a vast number of URL requests
before getting responses from any, it just needs a way of keeping track of
everything and watching for the results.

That is the key thing: doing nothing while waiting for results. If you have to work
to produce those results, this isn't going to help.

The key concept is that of the coroutine. A coroutine is like a normal function but
it is capable of just going to sleep to wait for something to happen. All systems

218

provide a way for functions to sleep, but the difference here is that when one
coroutine goes to sleep, another can do some work. A bit like threading really, but
it all happens in one thread and puts a lot less strain on your computer's
resources.

Beware: sometimes generators are called coroutines. They are similar ideas but
definitely not the same thing in Python.

i. Coroutines

The whole system employs a manager that starts coroutines as requested. The
first runs until it goes to sleep, at which point the manager regains control. It
keeps a note of what event the coroutine is waiting for, then starts another. Every
time a coroutine goes to sleep, the manager looks at all the events that have
happened, pairs them with the sleeping coroutines, and puts those that can now
wake up on the list of coroutines that are waiting their turn. The "co" in coroutine
is because they are cooperating. Things only work if all of them voluntarily go to
sleep after doing a little work.

We are about to explore an asyncio-based web spider. At the beginning, it won't
really touch the internet. Instead we'll have our own special function to fake
everything. It will receive a URL, sleep a while to simulate network delays, then
return some mostly random response.

 1 >>> import asyncio as a

alphabet = "abcdefghijklmnopqrstuvwxyz "

async def get_web_pg(URL):
 print("requesting", URL)
 await a.sleep(random.randint(10, 50) / 13)
 doc = "".join(random.choices(alphabet, k = 140))
 return URL + "=>" + doc

print(a.run(get_web_pg("www.abc.com/def.html")))
requesting www.abc.com/def.html
www.abc.com/def.html=>p bovaexlfzgzjckn ozta vl f j

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9
 10 >>>
 11

12

First notice that the definition begins with async def instead of the usual def.
That is what tells Python to treat it as a coroutine. Next notice that instead of the
usual time.sleep(...), we have await a.sleep(...). time’s sleep function knows
nothing about coroutines, so calling it would not cause a suspension and allow
other things to happen. asyncio’s sleep is a bit like a coroutine itself. When
started it immediately puts itself to sleep, telling the manager that the passage of
... seconds is the event that should wake it up. When it does wake up, it just exits.
await is how a coroutine says “put me to sleep until this happens”. Third, notice
that we don't just call a coroutine in the normal way for functions, a call to a.run
has slipped in there.

219

A technicality: an await statement can only appear inside a coroutine, i.e. after an
async def. If you use one elsewhere then, at least at the moment, you get a very
poorly chosen error of “incomplete input”. Also a.sleep has an optional second
parameter result. x = await a.sleep(3, 999) will set x to 999 after a three
second wait.

The async def and a.run are central to what is going on here. async def
changes a function into a coroutine. When you call a coroutine in the normal way,
it doesn't run at all. Instead it returns, as though it were its own return value, an
object that refers to the coroutine. Technically speaking it is this object that I
should be calling the coroutine, not the function-like thing at all. When this object
is given to asyncio.run, the system creates the “event loop”. The event loop is the
thing that I referred to as a manager earlier. It keeps track of all the coroutines,
gives them their turns at running, and monitors the real world activities that they
care about. The coroutine is given to the event loop, and it will start to run just
about immediately.

The event loop controls everything, you only want to have one of them. That
means that a program should only use asyncio.run once, and only one coroutine
can be started that way. That one coroutine is called the main coroutine, like the
function called main in C++, C, and Java. The main coroutine controls everything,
and it creates whatever other coroutines that might be wanted by using the
asyncio.create_task method.

The asyncio system deals with both tasks and coroutines, and the distinction can
be confusing. That is partly because there isn't much of a distinction to be made.
The only things that can go on the event loop and be run are tasks, but a task is
just an object that contains a single coroutine and some information about it.
Many functions and methods will accept both coroutines and tasks as parameters,
and if you give them a coroutine they will just automatically create a task around
it. a.run and a.create_task are both like that. a.run starts the main task, waits
for it co complete, then returns its result as its own. If the main coroutine starts
any other coroutines, it must wait for them to complete. When the main task exits,
the event loop is over.

Back to the example. So far we are not making good use of coroutines, we only
create one, and it doesn't do very much. The basis of the example was a web
spider that wants to get a number of URLs at once, so that's what we'll do now.

Coroutines are cheap and light-weight, there is nothing wrong with having a lot of
them. We will have a main coroutine that creates as many coroutines as there are
URLs that it needs to fetch. get_web_pg will remain exactly as it is, but we'll use
something else as the main coroutine. To keep things clear, I'll call it main. Its one
parameter will be a list or the URLs that are wanted. Instead of returning the
(simulated) contents of the web page, it will print them as they become available.

 1 >>> async def main(URL_list):

 tasks = [a.create_task(get_web_pg(u)) for u in URL_list]
 for t in tasks:

 2 ...
 3 ...
 4 ...

220

 5 ... data = await t
 print(data)

URLs = ["www.abc.com", "xyz.com/data", "cde.org/x.html"]
a.run(main(URLs))
requesting www.abc.com
requesting xyz.com/data
requesting cde.org/x.html
www.abc.com=>byu yn c gxkr h es of bvoyy
xyz.com/data=>fd rwzrcdk rv prsxbswkjlv fk j
cde.org/x.html=>fmamyfvb dvk lolcy nnasvwwds

 6
 7 >>>
 8 >>>
 9
 10
 11
 12
 13

14

main uses a list comprehension to build a list of all the needed tasks. For every
value in URL_list, it uses get_web_pg to create a coroutine to fetch it, then
creates a task around it. The task is able to run as soon as a.create_task
returns, but it won't get a chance to until main awaits something. The next part
is a bit clumsy, but it's good enough for a start. main just waits for each task in
turn. If the thing you await is a task, await returns the task's coroutine's return
result. Once main does its first await, all the other tasks will run in quick
succession, when one reaches its await, the next in line gets its turn. The tasks
will all finish in random order, but because of the for loop, we won’t see any of
that until tasks[0] has finished. It would be nice to avoid all that dead time and
see results as soon as they arrive.

The function a.wait takes a list, set, or dictionary of tasks and waits until all of
them have finished. Almost. a.wait could take a long time, and coroutines with
time consuming operations block all other coroutines from running. What a.wait
really returns is a task-like object (called an awaitable), and you have to await it
to get the result. In this form, a.wait would be no better for us than the for loop
we've already got. Fortunately it takes an optional second parameter that modifies
its behaviour.

The second parameter to a.wait is surprisingly required to be a keyword
parameter, return_when. It can have one of three values: a.ALL_COMPLETED,
that's the default and it means wait until every task in the list is done.
a.FIRST_COMPLETED means stop waiting as soon as any task is done.
a.FIRST_EXCEPTION means wait until any task has an uncaught exception. A
task that has an uncaught exception is also considered to be done, so we don't
have to worry about the inability to combine the options.

The awaitable that a.wait returns eventually returns a two-tuple of sets. The first
is the set of tasks that are now done, and the second is the set of those that are
not done yet. That means that after a.wait it does make sense to go through the
first set with a for loop to print all their results, then just do another a.wait on
the second set. Repeat until the second list is empty. Here is the new main:

 1 >>> async def main(URL_list):

 tasks = [a.create_task(get_web_pg(u)) for u in URL_list]
 while tasks:

 2 ...
 3 ...
 4 ...

221

 5 ... (done, tasks) =
 await a.wait(tasks,
 return_when = a.FIRST_COMPLETED)
 for t in done:
 print(t.result())

 6 ...
 7 ...

8
...

As conditionals consider empty things to be false, the while tasks will catch both
an empty initial list and an empty set of remaining tasks. A task's result method
returns the task's coroutine's return result if it is done, and if the task is not done
it raises an InvalidStateError exception. Also result is a bit dangerous
because if a task was ended because of an uncaught exception, its result method
will re-raise that exception. Fortunately there is also an exception method that
returns (not re-raises) the exception that killed the task or None if that didn't
happen. So the loop really should be

 7 ... for t in done:
 if t.exception() == None:
 print(t.result())

 8 ...
 9 ...

Tasks also have a bool done method: is it done yet? and a get_coro method that
returns the coroutine that the task is built on. They also have a pair of methods
get_name and set_name that allow you to give important tasks names so that you
can recognise them. Names can be just about anything but None, not just strings.
You can also name a task with an optional keyword name parameter to
a.create_task.

a.wait has another keyword parameter called timeout. If provided, it must be a
number, and specifies the longest time, in seconds, that the wait should last. It is
not considered an error for the timeout to expire, the lists in the returned tuple
will just reflect the state of affairs at the time of the expiration.

Now a slightly different situation. What if our URL list is not a list of requirements
but a list of alternatives: successfully retrieving any one of the URLs is enough, we
don't need them all. a.wait would still be exactly what we want, but after we get
that first result, we need to stop all the other tasks. Unlike threads, tasks are very
easy to stop. Just call their cancel method.

The next time a task gets its turn to run after having its cancel method called, an
a.CancelledError exception will be raised. A task can capture CancelledError
with a try: statement and make itself uncancellable. Tasks have a bool
cancelled method, so you can tell what has happened. If a task that has created
other (sub-)tasks gets cancelled, it is not entirely clear what happens. It is
sometimes asserted that the sub-tasks get cancelled too, but experimentation
shows that to be untrue. As far as I can tell, if the task was awaiting one of its
sub-tasks at the time it got cancelled, that sub-task will also get cancelled,
otherwise they seem to survive.

222

The asyncio.shield function can protect any awaitable from calcellation. After
aw2 = a.shield(aw1), aw2 is an awaitable just like aw1 except that it can't be
cancelled. Not from outside anyway, a task can always cancel itself.

The asyncio.wait function is not the only way to wait until multiple tasks are
done. There are a few alternatives. The first is the gather function. It can take any
number of coroutines or tasks as parameters and returns a new awaitable.
Awaiting that will wait until all are done, then return a list of all the tasks’ final
results, in the same order as the parameters. In the following, remember that if
coll is some kind of collection object, and you pass * coll as a parameter, it gets
replaced by all of coll’s contents as separate parameters. This is another
alternative for main.

 1 >>> async def main(URL_list):

 tasks = [get_web_pg(u) for u in URL_list]
 all = a.gather(* tasks)
 for r in await all:
 print(r)

 2 ...
 3 ...
 4 ...

5 ...

The result of gather can itself be cancelled, and if it is, all of the things it is
gathering (that is, its parameters) are also cancelled. If one of the gathered tasks
has an uncaught exception then that exception will be raised by the await all. It
is usually best to set gather’s optional keyword parameter return_exceptions
to True. Then exceptions do not upset the await, they just appear in the list of
results. As part of the following, I added if random.random() < 0.5: raise
ValueError() to the get_web_pg coroutine in order to cause random exceptions,
then changed main as follows. repr is used in the print to make exceptions
visible.

 1 >>> async def main(URL_list):

 tasks = [get_web_pg(u) for u in URL_list]
 all = a.gather(* tasks, return_exceptions = True)
 for r in await all:
 print(repr(r))
requesting www.abc.com
requesting xyz.com/data
requesting cde.org/x.html
'www.abc.com=> gn tmzbxvh iqnjulxzlaa prv'
ValueError()
'cde.org/x.html=>ozvs utyxgjubtifzvkctwoejsuduz'

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7
 8
 9
 10

11

Another alternative is to use a task group. Task groups have their own
create_task method, so new tasks can be created within them. You can not
await a task group, but it does have an attribute called _tasks which is a set of
the still-undone tasks that it contains, so you can watch that set shrinking, or
give it to a.wait. Unfortunately task groups only work with a special form of the
with statement. The with automatically awaits all the tasks when it reaches its
end. As we need results from those tasks, we must clumsily create a list of all the
tasks so their results can be seen later. If our tasks were totally self-contained,

223

meaning that they don't just get the URLs, they actually deal with the results as
well, this would be much neater.

 1 >>> async def main(URL_list):

 tasks = []
 async with a.TaskGroup() as grp:
 for url in URL_list:
 task = grp.create_task(get_web_pg(url))
 tasks.append(task)
 for t in tasks:
 print(t.result())

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...

8 ...

An async with may only be used on objects that have __aenter__ and
__aexit__ methods, just like the __enter__ and __exit__ methods needed by a
normal with. But these methods must be defined with an async def inside the
class. A TaskGroup’s __aenter__ just creates an empty group, its __aexit__
awaits all of the tasks in the group. An async wait, and therefore a TaskGroup is
not nearly so helpful as an ordinary with.

If any task in a task group experiences an uncaught exception, all the other tasks
in that group get cancelled. This rule does not apply to CancelledError. If one of
the tasks is cancelled, the others continue happily, but you must be careful not to
try to look at anything from a task without first checking that its cancelled()
returns False.

Tasks may be given callback functions. A callback is a function that is
automatically called when some particular thing happens, and for tasks that thing
is ending. If you say t.add_done_callback(f) then when the task t is done,
f(t) will be called. You can also use t.remove_done_callback(f) if you change
your mind. A task may have any number of callback functions. It is not easy to do
very useful things this way, as tasks don't carry much usable data. You can
change that though. asyncio’s current_task function returns the currently
running task, and you can always use setattr to add new attributes to an object,
so long as you are careful to avoid any attributes that already exist. So a coroutine
could put something into its task object with setattr(a.current_task(),
"__data", x) then the callback function f(t) can retrieve that data with
getattr(t, "__data").

There is also an asyncio.all_tasks method which returns a copy of the list of
all currently un-done tasks. Being a copy, you can safely remove things from it
without doing any harm. This means that you can design your main coroutine to
reliably wait until all tasks are finished by getting all tasks, removing itself from
the list, and then awaiting it. main needs to remove its own task because if you
wait for yourself to finish, you are obviously never going to finish.

 1 ... all = a.all_tasks()

 all.remove(a.current_task())
 await a.wait(all)

 2 ...
 3 ...

224

Returning to the web spider, there is another tidy way of seeing all the results as
soon as they are ready. asyncio.as_completed takes a list, set, etc of tasks or
coroutines and returns an iterator. Tasks appear in the iterator only when they
are done, so if you print things from the iterator you will be seeing them in order
of their completion. The things in the iterator still have to be awaited. You can
use a for loop on the iterator or repeatedly use next.

 1 >>> async def main(URL_list):

 cos = [get_web_pg(url) for url in URL_list]
 iter = a.as_completed(cos)
 for r in iter:
 print(await r)

 2 ...
 3 ...
 4 ...

5 ...

Many asyncio functions accept a timeout parameter, and there are a few ways of
applying timeouts to other operations.

async with asyncio.timeout(5.1): await something

If the something takes more than 5.1 seconds it gets cancelled and a
TimeoutError is raised here

async with asyncio.Timeout(t): await something

Note the capital T this time. This isn't particularly useful, the time specified
(t) is not a duration, but an absolute time. It is like saying “time out at two
o’clock” instead of “time out after two hours”. The problem with this
function is that its idea of the time doesn’t correspond with anything much
at all. It is still counted in seconds, but nobody knows what time
corresponds with zero.
The only way to get a handle on it is to get hold of the event loop and ask it
what it thinks the time is, but if you're going to do that, you might as well
use the version with a little t instead. This gets the event loop’s current
time:

a.get_event_loop().time()
This function's one advantage is that you can change the timeout value. If
you don't know what the timeout should be when you are setting it up, you
can use None as the value, that means never time out. Later when you do
know the time, you can use the Timeout’s reschedule method:

 1 ... async with asyncio.Timeout(None) as timo:
 ...
 timo.reschedule(whatever)

 2 ...
 3 ...

You can also use bool timo.expired() to see if it has already expired, and
timo.when() to see the current timeout value.

aw2 = asyncio.wait_for(aw1, seconds)

The awaitable aw2 is exactly the same as the awaitable aw1, except that it
has a built-in self-destruct method. After the given number of seconds has
expired, a TimeoutError is raised. The timeout is relative to when the
await starts, not when wait_for was called.

225

The event loop can also be used to arrange for ordinary functions to be called,
usually with a delay. This can only be done from within a task because elsewhere
there is no event loop. After el = a.get_event_loop(),

el.call_soon_threadsafe(f, a, b, c)

f will be called with parameters (a, b, c) as soon as possible. There may
be any number including zero of parameters. As soon as possible means as
soon as the current task awaits something and gives the event loop a
chance to do its job.

el.call_at(t, f, a, b, c)

f will be called with parameters (a, b, c) as soon as possible after absolute
time t has been reached. Absolute time means the same as for the capital T
Timeout.

Back to the web spider example again. Our get_web_pg coroutine fakes the
network activity by sleeping for a little while. If we were doing it properly, we
would face the fact that the nice simple way to use the network involves blocking
calls, something like recv, that will wait until something arrives. Real blocking
calls and coroutines just don't mix. In an earlier section we saw a lot of ways to
make network activities and keyboard waits non-blocking, but they were all quite
complex. asyncio gives us two more alternatives. The first is very simple, but also
very unsatisfactory.

asyncio.to_thread(f, a, b, c) calls the function f with parameters (a, b,
c) in a new thread and creates an awaitable around that. Being in a separate
thread means that it doesn’t matter that it blocks, all our coroutines are in our
own thread so they won’t be affected. to_thread returns a coroutine, not a task.
Awaiting a coroutine builds a task around it, so you can do that, but if instead
you give it to a.create_task, it can start work as soon as possible, and by the
time you get around to awaiting that task, it might be done already.

 1 ... tsk = a.create_task(s.to_thread(slow, url))
 # do something else coroutiney for a while
 answer = await tsk

 2 ...

3 ...

The bad thing is that threads are much heavier and more expensive that
coroutines, so we wouldn't be able to use this trick many times.

ii. Blocking functions as coroutines

If you have an ordinary function that blocks for a while (that is, it takes a long
time to finish), you can still make it into a properly awaitable coroutine. It requires
some work at a quite low level, but works quite easily.

There is a module called concurrent.futures.thread that defines a class called
ThreadPoolExecutor. A ThreadPoolExecutor controls a number (max_workers)
of threads that are set aside for running ordinary blocking functions as

226

coroutines. It doesn't matter that the functions block because they are in a
different thread from all of the coroutines. concurrent.futures has a
ThreadPoolExecutor function that calls the constructor without you having to
type the .thread. part.

We also need to get hold of the event loop and tell it to run our blocking function
in this Executor. The result is an ordinary task.

In this very basic example, the function slow represents our blocking function. It
doesn't really do anything, it just simulates a long computation with a sleep.
Notice that it uses time.sleep, not asyncio.sleep, so it really is not compatible
with coroutines. We also have an ordinary coroutine called dotty. It just prints a
series of dots with one second delays. The point of dotty is that its trail of dots
shows that coroutines can run along with our blocking function.

 1 >>> import asyncio as a

import concurrent.futures as cf
import time

def slow():
 time.sleep(10)
 return "done"

async def dotty():
 while True:
 print(".", end = "")
 await a.sleep(1)

 2 >>>
 3 >>>
 4
 5 >>>
 6 ...
 7 ...
 8
 9 >>>
 10 ...
 11 ...

12
...

Now for the main coroutine. Just six lines. The first creates and starts an ordinary
task based on dotty, td = task dotty. The second gets hold of the event loop. The
third creates the ThreadPoolExecutor, The fourth tells the event loop to make
slow into a task using that executor, ts = task slow. Finally we await task slow
and show its result. What we see is a trail of ten dots (slow sleeps ten seconds)
slowly appearing across the screen until suddenly everything is over. There is no
await on task dotty, so it doesn't keep the main coroutine alive.

 1 >>> async def main():

 td = a.create_task(dotty())
 loop = a.get_event_loop()
 exec = cf.ThreadPoolExecutor(max_workers = 3)
 ts = loop.run_in_executor(exec, slow)
 await ts
 print("the result was", repr(ts.result()))

a.run(main())
..........the result was 'done'

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9 >>>

10

asyncio provides a nice simple way of making a coroutine wait until keyboard
input is ready. Unfortunately, as always, it doesn't work under Windows. But we
can combine this new technique with the pynput module covered in the section on

227

polling. This makes use of the keystroke decoding function decode from that
section, so I won't show it again here, and also an ordinary queue.Queue.

The run function sets up a pynput keyboard listener with a function down that
adds keystrokes to a queue as they are received, and starts the main coroutine.
The call to a.run(main()) really should be in a try: so we can be sure the
Listener will be stopped properly.

 1 >>> def down(key):

 global q
 q.put(key)

def up(key):
 pass

def run():
 L = kb.Listener(on_press = down, on_release = up)
 L.start()
 a.run(main())
 L.stop()

 2 ...
 3 ...
 4
 5 >>>
 6 ...
 7
 8 >>>
 9 ...
 10 ...
 11 ...

12
...

We also use the dotty coroutine from above, and another, sleepy, just for a bit of
variety. The main coroutine starts sleepy and dotty tasks, and a special task for
the blocking function getstring. We wait for both sleepy and getstring to
finish.

 1 >>> async def sleepy():

 await a.sleep(7)

async def main():
 ts = a.create_task(sleepy())
 td = a.create_task(dotty())
 loop = a.get_event_loop()
 exec = cf.ThreadPoolExecutor(max_workers = 3)
 tg = loop.run_in_executor(exec, getstring)
 await a.wait([ts, tg])
 print("it was", repr(tg.result()))

 2 ...
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...

11
...

getstring just absorbs the keystrokes that down puts into the queue, decodes
them into proper characters and builds up a string from them. As soon as enter is
pressed, it returns the string that was typed.

 1 >>> def getstring():

 global q
 s = ""
 while True:
 c = q.get()
 if c == kb.Key.enter and s != "":
 print("the string is", repr(s))
 return s
 s += decode(c)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10

228

 11 >>>
run()
...............the string is 'hello'
it was 'hello'
run()
..the string is 'hello'
.....it was 'hello'

 12
 13
 14 >>>
 15

16

In the first run I typed hello very slowly, and as soon as I pressed enter both
replies appeared and the run was over. In the second run I typed quickly. When I
pressed enter we immediately saw the message from getstring, the string is
'hello'. Then there was a wait of five more seconds because sleepy hadn't finished
yet. As soon as sleepy's seven seconds were up, main’s await ended and we saw
the second message.

iii. TCP clients

A TCP client takes no more effort than it does with normal functions. asyncio
provides a coroutine for the purpose:

a.open_connection(host, port) - an awaitable coroutine

As with the normal networking function connect, host is a host name or IP
address, and port is the desired port number. await returns a two-tuple
containing a StreamReader object and a StreamWriter object. Those
objects behave mostly as files, and they are how you communicated with the
server.

Optional parameters include limit (default 65536) the maximum buffer size used
by the StreamReader, and ssl (default False): should this be a secure
connection or an ordinary one. For example, if you are using HTTP then ssl
should be False and port should be 80. If you are using HTTPS then ssl should
be True and port should be 443.

StreamReaders provide

readline() - an awaitable coroutine

Read exactly one line and return it as a bytes object. The \n or \r\n that
ended the line will be part of the result. A zero-length bytes object will be
returned if the connection has been closed and nothing remains to be
received.

read(n) - an awaitable coroutine

Read n bytes and return them as a bytes object. You may receive fewer
than n bytes. A zero-length bytes object will be returned when the
connection has been closed and nothing remains to be received.

readuntil(sep) - an awaitable coroutine

229

The same as readline except that sep, a bytes object, will be used as the
end-of-line character instead of the usual \n. Actually there is another
difference. If there is no more input, instead of returning an empty object it
will raise an IncompleteReadError exception.

readexactly(n) - an awaitable coroutine

Exactly the same as read, except that an IncompleteReadError exception
will be raised if fewer than n bytes are available. The exception’s partial
attribute is a bytes object that will contain those bytes that were received.

StreamWriters provide

write(bts) - an ordinary function, do not await it

bts, a bytes object is prepared for transmission. If it can be sent
immediately without blocking it will be. If it can’t, it will be kept safe until it
can be sent.

writelines(it) - an ordinary function, do not await it

it, an iterable of bytes objects, are all prepared for transmission as for
write.

drain() - an awaitable coroutine

await w.drain() waits until all data previously prepared for transmission
has been sent.

close() - an ordinary function, do not await it

Starts the procedure closing both Stream objects and the connection itself.
Should be followed by wait_closed()

wait_closed() - an awaitable coroutine

await w.wait_closed() waits until the connection is fully closed.

Here is the simple web client from the networking section converted to work as a
coroutine:

 1 >>> import asyncio as a

async def ask():
 host = "rabbit.eng.miami.edu"
 (rdr, wrtr) = await a.open_connection(host, 80)
 wrtr.write(b"GET /findme.html HTTP/1.0\r\n")
 wrtr.write(b"\r\n")
 await wrtr.drain()
 while True:
 bts = await rdr.readline()
 if len(bts) == 0:
 break
 print(bts.decode())
 wrtr.close()
 await wrtr.wait_closed()
a.run(ask())

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 >>>

16

230

...

iv. TCP servers

Servers are naturally a little more complex. We'll go back to the very basic time
server from the networking section. It will wait for a connection, read one line from
it, ignore that line, and send back the current time.

When a server is started, it must be provided with a callback coroutine. Every time
a connection is accepted, that coroutine will be run with the StreamReader and
StreamWriter for the connection as parameters.

It makes sense, but is certainly not required, to implement a server as a class.
We'll start off with just the callback coroutine.

 1 >>> import asyncio as a

import time

class timeserver:

 async def handle_connection(self, rdr, wrtr):
 print("from", wrtr.get_extra_info("peername"))
 bts = await rdr.readline()
 print("received", bts.decode())
 wrtr.write(time.strftime("%c").encode())
 wrtr.write(b"\r\n\r\n")
 await wrtr.drain()
 wrtr.close()
 await wrtr.wait_closed()

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...

14
...

There is only one new thing here, the first line. After that, the callback coroutine
for a server does exactly what a client does. Without the open_connection of
course.

get_extra_info is only available for StreamWriters, and it is not very well
documented at all. "peername" is a request for information on the client that
connected, it is a tuple of IP address and port number.

Now we can safely move on to the main coroutine. It just starts a server and tells
us which port number to use to connect to it.

 1 ... async def main(self):

 s = await a.start_server(self.handle_connection, "", 0)
 print("port", s.sockets[0].getsockname()[1])
 async with s:
 await s.serve_forever()

 2 ...
 3 ...
 4 ...

5 ...

The start_server method does all the socket and bind and listen business
automatically. Its second and third parameters are our IP address where the

231

empty string is taken to mean the local host "127.0.0.1", and the desired port
number with zero meaning “just pick one for me”.

The next line looks a bit unpleasant, but is the only way I could find for
discovering a randomly assigned port number. While the server is running, its
sockets attribute is a list of all the sockets it is using. Before accepting any
connections there will only be one. Its getsockname method returns a list of IP
address and port number.

The async with ensures that the server will be correctly shut down even if an
exception occurs. serve_forever just means carry on until you are stopped. It
contains the loop with the accept call and calls the callback coroutine every time
accept yields a result. All we need now is a constructor to start it all.

 1 ... def __init__(self):

 a.run(self.start())

timeserver()
...

 2 ...
 3
 4 >>>

5

v. UDP agents

There is of course also support for UDP within asyncio. It seems to be less
evolved, we have to use lower level objects like the event loop directly. But it isn't
too bad.

First we have to get hold of the event loop, then ask it to create the UDP socket,
which it calls a datagram endpoint. The create_datagram_endpoint method
must be given two parameters, a zero-parameter function that returns an object to
handle communications, and a local_addr which is a tuple containing the usual
IP address (local host) and desired port number. You then wait for as long as you
want the agent to run, and then close the port.

The object provided to handle communications should have these four methods.
You can get away without the last two, but it is fairly important to be able to
detect errors at least. These methods are not coroutines, just ordinary defs:

connection_made(self, transp):

This is called just once, when the port is first set up. It makes the handler
object aware of the transport to be used. A transport is just an object with
useful methods such as sendto and close for communicating with another
agent.

Remember that UDP does not deal with connections. This, and its friend
connection_lost, are rather badly named. They are only to do with setting
up and closing the socket.

datagram_received(self, message, sender):

232

This is called every time anything is received. message will be a bytes
object, the data that was received, and sender will be a tuple of IP address
and port number.

connection_lost(self, x):

This is called just once when the UDP port is shut down. It must have one
parameter, but it never seems to be used.

error_received(self, x):

This is called when the system detects that a send operation failed. This
very rarely happens.

Here is something very minimal:

 1 >>> class udp_controller:

 def connection_made(self, transp):
 self.transp = transp

 def datagram_received(self, message, sender):
 print("From", sender, message)

 def error_received(self, x):
 print("error received", type(x), x)

 def connection_lost(self, x):
 pass

 def send(self, message, where):
 self.transp.sendto(message.encode(), where)

def maker():
 return udp_controller()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17
 18 >>>

19

...

The last function, maker, is the one we will give to create_datagram_endpoint
for obtaining the handler object. When the socket is created, the
connection_made method is called with a transport parameter set to that object.

To illustrate all of this, we'll make a program that creates a UDP port and makes
its number known. Then it just waits. If a datagram is received it, along with its
sender, is displayed. If a whole line is typed at the keyboard, it is expected to have
this format: host:port message. host:port would be something like
127.0.0.1:5642, and message is obvious. To make testing easier, we’ll make the
hostname optional, defaulting to 127.0.0.1, which refers to the computer’s
“loopback” interface, it just means “this computer”. Dealing with the keyboard is
very system dependent, I'll go with a Windows version, using things we developed
in the pynput subsection of the section on polling, and I won't repeat that stuff
here. Under Unix, the standard Python function input() can be made into a task.
Under Windows, no surprise, it can’t.

233

There is quite a large preamble:

 1 >>> import asyncio as a
import concurrent.futures as cf
from pynput.keyboard._win32 import KeyCode
from pynput import keyboard as kb
from queue import Queue
import win32.win32gui as wg
import socket

kbq = Queue()
hname = None
realip = None
mywin = wg.GetForegroundWindow()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8
 9 >>>
 10 >>>
 11 >>>

12
>>>

The queue is there so that the keyboard handling down function can send the
keypresses wherever they are needed. hname and realip are to store this
computer’s real name and IP address.

To make this illustrate all the possibilities, there will be three extra features: If the
user types just stop at the keyboard, the system will close down. If the message
received over UDP is reply, we'll automatically send back a reply. If you send
another agent a stop message, it will close down.

The datagram_received method from above gets a bit bigger. message will be a
bytes object (remember that .decode() turns it into a string), and sender will be
the usual (host, port) tuple.

 1 ... def datagram_received(self, message, sender):

 message = message.decode()
 self.queue.put((sender, message))

 2 ...
 3 ...

The controller object will have its own queue, just like kbq from above, that will
store all received messages until they are dealt with. That means we need a
constructor to create that queue and a get method to give access to it.

 1 ... def __init__():

 self.queue = Queue()

 def get(self):
 return self.queue.get()

 2 ...
 3 ...
 4 ...

5 ...

We will also need a function that accumulates a whole line of keypresses into a
string. A bit larger than our earlier getstring so that it can at least handle
backspaces.

 1 >>> def getstring():

 global kbq
 s = ""
 while True:

 2 ...
 3 ...
 4 ...
 5 ...

234

 6 ... c = decode(kbq.get())
 if c == "\n":
 return s
 if c == "\x08" and s != "":
 s = s[: -1]
 else:
 s += c

 7 ...
 8 ...
 9 ...
 10 ...

11
...

The get method and the getstring function are blocking functions that will be
turned into tasks by the run_in_executor function. So our main coroutine will
be like this.

 1 >>> async def main():

 global hname, realip
 eloop = a.get_event_loop()
 transp, ctrl = await eloop.create_datagram_endpoint(
 maker,
 local_addr = ("127.0.0.1", 0))
 print("waiting on port"
 transp.get_extra_info("sockname")[1])
 loop = a.get_event_loop()
 exec = cf.ThreadPoolExecutor(max_workers = 6)
 tkb = loop.run_in_executor(exec, getstring)
 tnet = loop.run_in_executor(exec, ctrl.get)
 while True:
 ...
 transp.close()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...

15
...

create_datagram_endpoint is given, as well as the handler making function, a
local address of ("127.0.0.1", 0). This can be used to request a specific port,
but as before, zero asks the system to just find a free one. It returns a tuple of a
transport and a protocol. The protocol is exactly the controller object that maker
created for it, we need that for sending messages.

On entering the while loop then, we have two tasks already running. We need to
wait until either one of them delivers a result. If it was tkb, the keyboard task, we
need to process what was typed and deal with it. If it was tnet, the network task,
we need to process the message and continue.

 13 ... while True:

 (done, undone) = await a.wait([tkb, tnet],
 return_when = a.FIRST_COMPLETED)

 if tkb in done:
 ok = handle_keyboard(tkb, ctrl)
 if not ok:
 break
 tkb = loop.run_in_executor(exec, getstring)

 if tnet in done:

 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25 ...

235

 26 ... ok = handle_network(tnet, ctrl)
 if not ok:
 break
 tnet = loop.run_in_executor(exec, ctrl.get)
 transp.close()

 27 ...

28

...

The ok variable is because a stop message from either source needs to be able to
stop the loop. Notice that after each section, we have to recreate the task that gave
its result. Once a task has delivered its result to an await, it is done. A finished
task can’t be restarted, so we need to create a new one. Each time round the loop,
the await a.wait will have one old task and one new one to wait for.

The keyboard event processing that was elided in that isn’t very complicated.
Check for "stop". Split what was typed into host, port, and message. Send the
message. The splitting function won’t be shown, it is just basic string processing.
A try is needed so that the parsing function can conveniently signal format
errors.

 1 >>> def handle_keyboard(tkb, ctrl):

 msg = tkb.result()
 print("from keyboard: \"", msg, "\"", sep = "")
 if msg == "stop":
 return False
 try:
 (host, port, msg) = parse_msg(msg)
 except:
 print("bad format")
 else:
 ctrl.send(msg, (host, port))
 return True

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...

12
...

And the handler for a network message isn’t much different:

 13 >>> def handle_network(tnet, ctrl):

 (sender, msg) = tnet.result()
 if msg == "reply":
 ctrl.send(b"Here I am.\n", sender)
 else:
 if msg == "stop":
 return False
 print("from ", sender, ": ", msg, sep = "")
 return True

 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...

21
...

To bring everything together we need a few more things. Under Unix, the sendto
method accepts host names in both numeric "129.171.33.6" and human
"acme.com" formats. Under Windows it only accepts the numeric format. To fix
that, we'll have the following little function. It isn't perfect, it assumes that
anything that begins with a digit will be in the numeric format, which is not
correct.

 1 >>> def getip(s):

236

 2 ... if s != "" and s[0].isdecimal():
 return s
 try:
 return socket.gethostbyname(s)
 except:
 return ""

 3 ...
 4 ...
 5 ...
 6 ...

7 ...

And to find our own host name and IP address, this is all that’s needed.

 1 >>> def findself():

 global hname, realip
 hname = socket.gethostname()
 realip = socket.gethostbyname(hname)

 2 ...
 3 ...

4 ...

Now for the function that starts everything. Find our address, set up the keyboard
listener, and start the main coroutine.

 1 >>> def run():

 L = kb.Listener(on_press = down, on_release = up)
 L.start()
 try:
 a.run(main())
 except:
 pass
 L.stop()

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...

8 ...

The try is needed to ensure that the keyboard listener is stopped even if
something goes wrong. That isn’t really satisfactory. If something does go wrong,
your program will just stop silently and you will have no idea why. It would be
better to see the exception and the usual trace-back information. Just import
traceback and replace the try: pass with this:

 6 ... except BaseException as e:

 print("Exception in run():")
 traceback.print_exception(e)
 L.stop()

 7 ...
 8 ...

9 ...

There is one further concern. When you are experimenting on a single computer, it
makes sense to use the loopback interface 127.0.0.1, but for real life use, you
would want to use real IP addresses. Even though they are sockets on the same
computer, a socket that was given one of those as its local address will not be able
to communicate with any sockets on the other. To make this work, you would
need two controller objects and two tasks:

 1 ... transpl, ctrll = await eloop.create_datagram_endpoint(

 maker,
 local_addr = ("127.0.0.1", 0))
print("waiting on localhost/127.0.0.1:",
 transpl.get_extra_info("sockname")[1], sep = "")
transpp, ctrlp = await eloop.create_datagram_endpoint(
 maker,

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...

237

 9 ... local_addr = (realip, 0))
print("waiting on ", hname, "/", realip, ":",
 transpp.get_extra_info("sockname")[1], sep = "")

tnetl = loop.run_in_executor(exec, ctrll.get)
tnetp = loop.run_in_executor(exec, ctrlp.get)

 10 ...
 11
 12 ...

13
...

The names that end in “l” are for loopback addresses, and those that end in “p”
are for public addresses. And of course a.wait would need to be given all three
tasks [tkb, tnetl, tnetp]. It also means that there needs to be a separate if
for the two tnet tasks. The incompatibility between the two types of sockets
means that handle_keyboard needs to be careful to transmit messages through
the correct controller:

 1 >>> def handle_keyboard(tkb, ctrl):

 ...
 try:
 (host, port, msg) = parse_msg(msg)
 except:
 print("bad format")
 elif host == "127.0.0.1":
 ctrll.send(msg, (host, port))
 else:
 ctrlp.send(msg, (host, port))
 return True

 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...

14
...

This large example encountered many ways in which Unix and Windows
behaviours are completely incompatible. To get around that, just remember what
we did in the system independence subsection of the operating system features
section.

vi. Other protocols

Unfortunately asyncio hasn’t gone very far with the more user-oriented protocols.
There is no built-in support for web services, HTTP, of the sort we saw in the
network clients and servers section. There are some third party packages
available, but I haven’t seen enough about then to be able to trust them to be safe.

You will probably just have to implement any protocol you need by yourself.

238

Part Two: Graphics and User Interfaces

If all you need is to produce a graphical display, perhaps to show a picture or a
graph, the task is exceptionally easy. Things only get complicated if you want the
user to be able to interact in some way. There are two approaches:

Turtle is the simplest, it allows you to control an imaginary pen moving across
an imaginary piece of paper. The paper isn’t entirely imaginary, it is in fact a
window that automatically appears on the screen. The pen can change its colour
and width and move in all sorts of ways. The idea of the turtle as a driver of
graphics is quite old, from the early 1960’s, and was aimed entirely at children. It
was thought that a turtle moving around would be more child-friendly, and at the
beginning it really did have a robot turtle with a real pen attached to it.

The other approach, tkinter, allows the creation of complete graphical user
interfaces with buttons, text entries, graphical displays, and all of the other things
that we are used to. With tkinter, simple things are indeed quite simple to do.
The programming only gets complicated when you need to do complicated things.

38. Turtle

First, BEWARE: The error messages, or exceptions, produced by turtle are
appallingly bad. They provide no clue about what went wrong.

To make a quick start, just issue one of the turtle commands and a window
pops up instantly, showing the results. The default window size is quite big, which
is usually good, but here it is bad for including screenshots so I’ll start by setting
the pen colour. That counts as a turtle command, so a window springs into
existence. Then the setup method can be used to set the width and height. The
turtle itself appears as an arrowhead.

Using Idle on my Windows PC, the first time I enter a command to make the
window appear, it works. If I close the window and try to create a new one, it
always fails. But if I do the same thing for a third time, it works again. It
alternates between failing and succeeding with each attempt. Sometimes, at
seemingly random points, turtle just goes mad and crashes my Idle session.
Occasionally the turtle doesn’t initially appear. tu.st() will fix that.

 1 >>> import turtle as tu

tu.color("red")
tu.setup(300, 200)
tu.forward(100)
tu.left(90)
tu.width(5)
tu.forward(40)
tu.color("darkturquoise")
tu.left(90)

 2
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 >>>

239

 11 >>> tu.forward(150)

setup(width, height, x, y) changes the size of the visible window, not the size of
the underlying imaginary sheet of paper. x and y are optional, they set the
position of the window’s top left corner relative to the screen’s top left corner.
Scrollbars automatically appear if the window is not at least a little bit bigger than
the paper. screensize(width, height) sets the size of the imaginary piece of
paper, but it is not very useful. If you draw off the edge of the paper, the drawing
still happens and is revealed if the window is stretched or the scrollbars are
moved. The only real use for screensize is that it is used to determine the size of
the scroll bars. If you draw over the edge, the scroll bars might not be able to
reveal everything. The current dimensions of the window are returned by
window_width() and window_height(). title(string) changes the text in the
window’s title bar.

forward(n) means move in the current direction by n pixels. At startup, the
turtle is always at the centre of the window, pointing East. The turtle maintains
knowledge of its current direction as it moves and turns.

left(n) and right(n) mean change direction by n degrees. heading() returns
the current direction. backward(n) makes the turtle move in the opposite
direction from the way that forward would have moved it, but it does not change
the turtle’s idea of its current direction. The degrees(d) method changes the way
directions and angles are measured. The default value is 360 meaning things are
measured in degrees. If d is given as 2× measurements will be in radians. But d
can be any value, it specifies how a turn by a full circle would be represented, so if
d is 1, 0.25 would mean a right angle. The radians() method is equivalent to
degrees(2 * math.pi).

forward, backward, left, and right may be abbreviated to fd, bk, lt, and rt.

width(sz) sets the width of the line that the pen draws, in pixels. It may also be
written as pensize(sz).

color() sets the colour of the line that is drawn when the pen is down. Python
knows an enormous number of colour names, but there doesn’t seem to be any

240

Python way of finding out what they are. A web search easily finds a long list of
names and samples of what they look like. Alternatively you can use a three-tuple
(R, G, B) to specify a colour. R, G, and B are the red, green, and blue colour
components in the range 0 to 1 (floats are obviously allowed), but you may change
the range, colormode(255) will change it to 0 to 255, and colormode(1) will
change it back again. colormode() with no parameters returns the current
setting. Another alternative is to express a colour as a string in this format
"#RRGGBB", where R, G, and B are hexadecimal digits giving the colour components
in the 0 to 255 range.

The color method may be given two colour parameters, in which case the first
sets the pen colour, and the second sets the colour to be used when a shape is
filled in. color() with no parameters returns a tuple of two three-tuples which
are the current pen and fill colours, expressed according to the current
colormode. two extra methods, pencolor and fillcolor, may also be used.
They set or return just a single one of the pen or fill colours. bgcolor(colour) sets
the background to the drawing. It does not cover up the drawing, it just slides in
beneath everything. bgcolor() returns the current background colour.
Alternatively, if you have an graphical image that you would like to use as the
background, this is the way to do it: bgpic("images\\background.png"). Not
many file formats are supported, but png and gif always seem to be.

The pen can be either up or down, up allowing it to be moved without making any
marks, just changing its position. The penup and pendown parameterless methods
do that job, and they may be abbreviated to pu or up and pd or down. isdown()
returns True or False so that you don't have to record the pen’s state. If the pen
is up, putting it down then up again with no intermediate movement does not
leave a mark.

Things may also be changed in absolute terms instead of the relative terms used
by forward and left. setpos(x, y) or setpos((x, y)) move the turtle to the given
coordinates, measured in pixels. Unlike most computer graphics systems, the
turtle uses normal mathematical conventions: larger y values are up, smaller ones
are down, larger x values are right, smaller ones are left, and (0, 0) is the centre of
the window. if the pen is down, setpos will draw a straight line, if it is up, it
won’t. setposition and goto are both equivalent to setpos. setx(x) and
sety(y) just change one dimension of the turtle’s position, leaving the other
unchanged. Setting the turtle’s position does not affect its heading. pos() with no
parameters, it can also be called position(), returns an (x, y) tuple giving the
turtle’s current position. home() returns the turtle to (0, 0) and its original
heading. xcor() and ycor() return the single x or y coordinate for the pen’s
position.

setheading(a) or seth(a) sets the current direction in absolute terms. a being
zero means right or East, and increasing angles move anti-clockwise, so a being
90 means up or North. But these conventions can be changed by setting the
mode.

241

These are a few useful methods for tidying things up. clear() clears the screen
but leaves the turtle unaffected. reset() clears the screen and sets everything
back to how it was at startup. undo() is what the name suggests, everything goes
back to the way it was before the last command, except that reset() can’t be
undone. Commands are kept in a stack, calling undo() four times will undo the
last four commands, but the stack size is limited. setundobuffer(n) sets the
maximum size of the undo stack to n commands, but it also empties the stack.
setundobuffer(None) completely disables undo(). undobufferentries()
returns the number of commands currently on the undo stack.

The mode() method returns the current mode, it will be one of "standard",
"logo", or "world", "standard" is the default. mode(s), where s is one of those
strings, changes the current mode. "standard" is as described above. "logo"
means that direction 0 is up or North, and increasing angles move clockwise, so
90 means right or East. "world" is for use with the setworldcoordinates
method, coming up soon.

The appearance of the turtle may be changed and monitored: hideturtle() or
ht() makes it invisible, but it still behaves exactly as normal. showturtle() or
st() makes it visible again. isvisible() returns True or False. shape()
returns a string indicating how the turtle appears, it will be one of "arrow",
"turtle", "circle", "square", "triangle", or "classic", but the
getshapes() method returns a list of all registered shapes, so it would be better
to use that in case there is something system-dependent about the list. shape(s),
where s is one of those strings, sets the turtle’s shape accordingly. These six
screenshots show the different shapes in the order given here. They have been
enlarged.

The turtle’s size may be controlled in one of two ways, as selected by the
resizemode method. It takes one string parameter. "noresize" means the
turtle’s size will never change. "auto" means the turtle will be resized whenever
the pen width is changed, in order to keep it in proper proportion. "user" means
that the programmer will set the turtle’s size with the turtlesize method. On my
Windows PC "noresize" has no special effect, it is exactly the same as "user".

turtlesize(stretch_wid = None, stretch_len = None, outline = None) may
also be written as shapesize. Any parameter left as None causes no change.
stretch_wid and stretch_len are not the new sizes, they are what the turtle’s
natural size should be multiplied by. outline is a number of pixels: the turtle is
always drawn as a shape in the fill colour with an outline in the normal pen
colour. With no parameters, turtlesize() returns a three-tuple of the current
settings.

242

There are some very obscure methods that allow you to turn the turtle to an angle
that does not represent its heading and to distort its shape in pointless ways. I’ll
list them just for reference, but won’t say anything more about them.
shearfactor, tilt, settiltangle, tiltangle, shapetransform,
get_shapepoly.

The pen method allows you to set a lot of the turtle’s options at once, or to see all
of them at once. pen() returns a dictionary of all the pen’s current settings. The
keys are: shown (True of False - is the turtle visible), pendown (True or False),
pencolor and fillcolor (both colour strings), pensize, outline, and speed (all
numbers), resizemode (a string), and stretchfactor and tilt (the obscure
stuff). pen(d), where d is a dictionary of exactly the same kind, sets all the
settings that it mentions, if a key is missing, that setting is not changed. And also
you can provide the settings individually as keyword parameters, such as
pen(pensize = 3, outline = 2).

A few more drawing methods: circle(radius) draws a circle starting at the turtle
position and progressing by making a small step forward and a small turn to the
left until the whole circle has been made. circle(radius, extent) where extent is
an angle, draws an incomplete circle (an arc), it stops when the total of all the
small turns adds up to extent. The turtle will end up at the end of the arc,
pointing in the direction of the last small step forward. There is one further
variation, circle(radius, steps = s) or circle(radius, extent, s) sets the size
of the small steps forward so that an entire circle would be drawn in exactly s
equally sized steps. Setting s to 7 for instance draws a regular heptagon (or part of
one if extent is given) that would be inscribed inside the circle that would have
appeared if the number of steps had not been specified.

dot() draws a small dot of a size designed to still be easily seen. The diameter is
either the pen width plus four, or twice the pen width, whichever is largest. The
dot is drawn even if the pen is up. dot(size) does the same, but the diameter of
the dot is the given number of pixels. On my Windows PC, a size of 1 is invisible.
The colour of the dot may be set in a variety of ways: dot(size, R, G, B),
dot(size, (R, G, B)), dot(size, string), dot(None, R, G, B), dot(None, (R,
G, B)), or dot(None, string), the string being like "red" or "#FF0000".

stamp() makes an exact image of the turtle at its current position. After the turtle
moves, the image remains in place until it is deliberately removed. x = stamp()
captures an identifying number for the image, a later call to clearstamp(x) will
remove it. clearstamps(n = None), note the extra s at the end of the name. If n is
None, all stamps are removed. If n is positive, e.g. 3, the oldest 3 surviving stamps
are removed. If n is negative, e.g. -3, the newest 3 surviving stamps are removed.

Filling shapes is easy. First say begin_fill(), then move the turtle around the
shape, it doesn’t matter whether the pen is up or down, just move around the
outline, then say end_fill(). Whatever shape you made gets filled in with the fill
colour. It doesn’t even matter whether you close up the shape or not, a straight
line boundary from the end_fill position to the begin_fill position is

243

automatically added. If your shape’s edges cross each other, the effect of filling is
system dependent, but usually something a reasonable person would accept.

 1 >>> tu.color("red", "yellow")
tu.setup(300, 200)
tu.begin_fill()
tu.fd(80)
tu.circle(40, 180)
tu.fd(80)
tu.circle(40, 90)
tu.left(90)
tu.right(45)
tu.fd(math.sqrt(2 * math.pow(40, 2)))
tu.end_fill()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 >>>
 11 >>>

Beware of one little thing. At least on my Windows PC, undo()ing an end_fill()
doesn’t work. The corresponding begin_fill() is ruined and can not be ended
again.

You can have a number of turtles moving about at the same time. tu.clone()
returns an absolutely identical copy of the turtle tu, but despite starting out
identical, they now move and can be changed independently.

 1 >>> import turtle as tu

tu.color("red", "yellow")
tu.width(5)
tu.fd(150)
tu2 = tu.clone()
tu.lt(90)
tu.fd(50)
tu.write("Hippopotamus",
 align = "right",
 font = ("Arial", 14))
tu2.rt(45)

 2
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 ...
 11 ...
 12 >>>

 13 >>> tu2.fd(50)
tu2.color("blue", "white")
tu3 = tu2.clone()
tu3.color("black", "red")
tu2.lt(45)
tu2.fd(50)
tu3.rt(45)
tu3.fd(30)
tu3.rt(90)
tu3.fd(70)

 14 >>>
 15 >>>
 16 >>>
 17 >>>
 18 >>>
 19 >>>
 20 >>>
 21 >>>
 22 >>>

244

There is a little oddity here. tu is the module that we imported, and the object
returned from tu.clone() is not, it is of type turtle.Turtle, but almost all of
the same methods work in the same way on both of them. tu.turtles() returns
a tuple of all the turtles in the window. This is an example of a method that does
not work on a turtle object, only on the module.

Only the first parameter to write is necessary, it can be anything with a __str__
method to turn it into a string. The optional parameters are move = True or False,
the default is False, if True the turtle moves to the bottom right corner of the
text, if False it stays where it is. align = "left", "right", or "center", the
default is "left", it says where the turtle is relative to the text. font can be a
one-tuple ("name",), a two-tuple ("name", size), or a three-tuple ("name",
size, "normal" or "bold" or "italic") where of course name is an existing font
name.

Some useful navigational information is available too. tu.towards(other) returns
the angle tu would have to turn left in order to be heading towards other, which
must be another turtle object. tu.towards(x, y) and tu.towards((x, y))
return the angle tu would have to turn left be in order to be pointing directly to
that position. A similar method, tu.distance takes exactly the same parameter
possibilities, and returns how far tu would have to move forward to reach that
position if it were already pointing the right way.

tu.speed(n) determines how quickly lines are drawn. 0 is the fastest, but then
there is a sliding scale of floats from 1 to 10 where 1 is the slowest, and 10 is just
a little slower than 0. With no parameters it returns the current speed setting.

tu.bye() closes the window. tu.exitonclick() is something I can’t imagine any
use for. After calling it, a mouse click anywhere on the window will close it.

setworldcoordinates(left, bottom, right, top) changes the coordinate system
used in all operations. left specifies the x value that the left edge of the window
corresponds to, and the other three parameters have the obvious meanings in
view of that. setworldcoordinates(0, 0, 1, 1) would result in (0, 0) being the
bottom left corner and (1, 1) being the top right, all x and y values would be floats
between 0 and 1. If the parameters are “in the wrong order”, you can turn the
coordinate system upside-down to match most other graphics systems, e.g. ...(0,
500, 500, 0). If the mode is already "world", the screen is erased, but all
drawing on it is recreated according to the new coordinate system. If the mode was
not already "world" when setworldcoordinates is called, there is a complete

245

reset of the window, and everything disappears. Either way the mode ends up set
to "world".

This means that if, for example, you forgot about the unusual fact that positive y
is up, and wrote an entire program that turns out to draw everything upside-
down, you can add to the beginning of the program a call that turns things the
other way up. Or for a tiny bit of entertainment, set the mode to "world" at the
beginning of the program, then set the coordinate system the way your program
was designed for at the end.

You can create your own turtle shapes by working out the coordinates of all of its
corners (starting anywhere, but then moving around the shape in the proper order
for drawing it), and put them in a tuple. Then register that tuple as a shape, and
you can select it as normal with the shape method. The coordinates need to be
arranged so that (0, 0) is where the turtle’s centre should be when it is displayed,
and they are measured in pixels always, regardless of any setworldcoordinates.

In this example, "pointy" is just a name I made up for the new turtle.

 1 >>> shp = ((2.4, -20.0), (2.4, 0.0), (9.32, -4.0), (0.0, 12),
 (-9.32, -4), (-2.4, 0), (-2.4, -20), (2.4, -20))
tu.addshape("pointy", shp)
tu.shape("pointy")

 2 ...
 3 >>>
 4 >>>

The documentation says that the tuple should be of (x, y) pairs, but on my
Windows PC that resulted in it pointing the wrong way. I had to make them (y, x)
pairs instead, and that is what appears in the above example.

A slightly different approach is to define a polygon in exactly the same way as you
prepare to fill a shape. First call begin_poly(), then move around the outline of
the new shape, then call end_poly(). The way to register the shape after that is
with:

tu.addshape("pointy", tu.get_poly())

again here, there is the problem of the (x, y) pairs getting switched around. On my
Windows PC I have to move around what the edges of the shape would be if it were
pointing downwards.

A third approach is just to make a .gif file that you would like to use as the turtle,
register it, and select it like this:

tu.addshape("images\\E.gif")
tu.shape("images\\E.gif")

The centre of the gif will be at the turtle’s actual position, and the coordinates do
not get swapped around.

If input from the user is required, there are two turtle methods to help out. Both
cause a pop-up dialogue window to appear, and do not return until the user
enters something or cancels. What they return is what the user entered, or None if
the user selected cancel or closed the dialogue window. Both take two strings as

246

their first parameters. The first is the label that will appear in the window’s title
bar, and the second is a prompt that appears as a question.

textinput takes no additional parameters, and returns the user’s input as a
string. numinput can take a few options and always returns a float. If what the
user enters is invalid, it is rejected with a warning and the dialogue remains open.
The options are default = float: this will appear in the input area as though the
user had typed it. minval = float and maxval = float: these specify the range of
acceptable replies, any value outside this range will be rejected in the same way as
any other invalid input.

 1 >>> import turtle as tu
tu.numinput("Number required", "How many dachsunds do you need?",
 default = 1, minval = 0, maxval = 10)
4.0

 2 >>>
 3 ...
 4

Events such as keyboard keypresses and mouse clicks can be bound to callback
functions that are automatically called when the events occur while the turtle
window has focus. In the following, fun0 represents a parameterless callback
function, fun2 is a two parameter function whose parameters (x, y) will be the
screen coordinates for where the mouse was when the event occurred.

Beware: on my Windows PC, none of these things have any effect until I call the
listen method. I only have to call it once and then it is permanently OK. This is
not how it is supposed to be.

onkey(fun0, keyname)
onkeyrelease(fun0, keyname)
onkeypress(fun0, keyname)

onkey and onkeyrelease are two names for the same thing, their callback
is called when the named keyboard key is released after being pressed.
onkeypress triggers the callback when the key is first pressed. For most
keys, keyname is just that key’s character as a string, such as "x" or "X" or
"%". It isn't just the character that appears on the key, it is the character
that was typed, it can tell the difference between "x" and "X". "Return"
and "\n" both work for the enter key, The others are "Up", "Down",
"Left", "Right", "BackSpace", "Delete", "Escape", "Home", "Insert",
"End", and "F1" to "F12". "Prior" and "Next" are for page up and page
down. "Shift_L", "Shift_R", "Control_L", "control-R", "Alt_L", and
"Alt_R" are for the shift, control, and alt buttons on the left and right sides
of the keyboard. On my Windows PC, "Shift_R" doesn’t do anything, but
"Shift_L" catches both shift keys. I can’t find anything that works for the
numeric keypad. There is no direct way to attach a callback to something

247

like control-x, but keeping track of the control keys being pressed and
released lets you work out when control-x has been typed. If fun0 is None,
the connection is removed.

listen(x = None, y = None)

Forces the focus onto the turtle window. The two parameters are never
used, they exist only so that listen can be used as a fun2.

onclick(fun2, btn = 1, add = None)
onscreenclick(fun2, btn = 1, add = None)
onrelease(fun2, btn = 1, add = None)

onclick and onscreenclick are supposed to be two names for the same
thing, but on my Windows PC, onclick has no effect at all. For
onscreenclick the callback is called when a mouse button is pressed
within the turtle window. For onrelease it is supposed to be called when
the mouse button is released, but it also has no effect on my Windows PC.
There is no onscreenrelease to make up for that. btn says which mouse
button is to be listened for (1 means left, 2 the scroll wheel if there is one,
and 3 right), and add is supposed to be True if you are adding an extra
callback to the existing ones, or False or None if you are replacing the
callback(s). Again, fun2 being None removes all callbacks for this button.

ondrag(fun2, btn = 1, add = None)

According to the documentation, this method is very badly named. The
callback only has the standard (x, y) parameters, so it would not be capable
of reporting a mouse drag. This method also has no effect on my Windows
PC, so I can’t find the truth by experiment.

ontimer(fun0, t)

Automatically calls fun0 after t milliseconds have elapsed.

According to the documentation the getcanvas() method should return a Canvas
object as described in the next section, so you should be able to use it to set any
of a Canvas’ properties. But at least on my Windows PC, that doesn’t work. Using
Canvas methods does not cause an exception, but nothing else happens either.

39. Tkinter - the Canvas

Tk is a graphics system that has been around for quite a while, and has nothing
to do with Python. tkinter is the Python interface to Tk. It comes with the
standard Python installation. tkinter is very fond of keyword arguments so lines
can get annoyingly long.

The documentation for tkinter is not very good. I have done what I can to search
out as much as possible, but a few things remain a total mystery, and there is no
guessing at what I might have missed altogether.

248

For displaying graphics, a Canvas is the most important kind of object, but for
user interaction where you want to be able to enter text into a window, press
buttons to make things happen, choose options from menus and so on, there are
many other kinds of objects provided by tkinter. The objects, like Canvasses,
that can be put in a tkinter window are supposed to be called widgets.

We'll start with the most basic of things, drawing a coloured diagonal cross. There
are three steps:

1. Create a window and optionally give it a title.
2. Create a Canvas and put it in that window. A Canvas is a blank graphical

component that can accept drawing commands.
3. Draw the two diagonal lines to make the cross.

 1 >>> import tkinter as tk

win = tk.Tk()
win.title("Cross")

ca = tk.Canvas(win,
 width = 200, height = 200,
 background = "white")
ca.pack()

ca.create_line(20, 20, 180, 180, width = 5, fill = "red")
ca.create_line(20, 180, 180, 20, width = 5, fill = "blue")

 2
 3 >>>
 4 >>>
 5
 6 >>>
 7 ...
 8 ...
 9 >>>
 10
 11 >>>

12
>>>

An important note: Everything I do in this whole section is from Idle. If instead I
run a Python program just by double clicking it I just see an empty window.
Nothing happens unless I call win.update() after all the widgets have been
created and put in place. win.update() does no harm when using Idle, so it is
probably best to just use it always.

 13
win.update() 14 >>>

Tk is a class that represents windows. As soon as a Tk object is created, the blank
window appears. As usual, it goes away when you click the close × button at the

249

top right. A window isn't the only thing that can contain graphical components,
there are others. I’ll use the term “container” to refer to anything of that kind.
Measurements are in pixels unless you put a little effort into saying otherwise.

The parameters to Canvas’ constructor will be obvious apart from the first one.
Whenever you create a graphical object (they call them widgets) apart from the
top-level window itself, you must say which container it should go inside. That’s
the first parameter. But it is the pack method that actually puts it there. pack can
be given parameters to say where you want it to be within its container. The
default for background is system dependent. For me it is a vaguely ugly beige.

The call to tk.Tk on line 3 is not strictly necessary. As soon as you create any
tkinter object, such as a Canvas as above, a window will automatically appear if
you haven't already created one. The first win parameter to tk.Canvas can then
be left out, the object will automatically belong to that window. While it saves a
very short line of typing, it is usually not a good idea to take advantage of this. The
object that tk.Tk creates can be used to control the window later on. For example
you can say win.destroy() to make the window go away.

Once you have created the window with tk.Tk(), there are quite a few things you
can do with it, you can resize it, minimise it, make it semi-transparent, give it
your own icon, and a lot more. This is all covered in a later subsection called The
Tk window.

The create_line method is probably obvious too, unless perhaps you are colour-
blind. The first four parameters are x0, y0, the pixel coordinates for the beginning
of the line, and x1, y1, the coordinates of the end. create_line returns a value
that you can use later to refer to this particular line if you want to change its
colour or something.

create_line can take any number of coordinate pairs, it connects each to the
next with a straight line. It doesn't seem to make any attempt at antialiassing, so
thin lines do not appear very prettily.

Keep in mind that this can all be done completely interactively. If a program needs
to produce an image, then of course you'll have to code all the steps into it. But if
you want to produce an accurate diagram, like the arrow shape a little below this,
trial and error may be necessary. This is what I used:

 1 >>> def start():

 global can, stk
 win = tk.Tk()
 can = tk.Canvas(win, width = 400, height = 400,
 background = "white")
 can.pack()
 stk = []

def do(f, * p, ** k):
 global stk
 it = f(* p, ** k)

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8
 9 >>>
 10 ...
 11 ...
 12 ...

250

 13 stk.append(it)

def kill(n = 1):
 global can, stk
 for i in range(n):
 it = stk.pop()
 can.delete(it)

 14 >>>
 15 ...
 16 ...
 17 ...

18
...

The definition of do allows it to receive a function to be called, f, any number of
positional parameters, p, and any number of keyword parameters, k. The global
variable can is obvious, stk is a stack that records everything that has been
drawn. The function is called, and the value it returns is saved on the stack. This
value is a reference that can be used later to identify the thing that was drawn. So
I can experimentally draw some lines or other things:

 19 >>> start()
do(can.create_line, 20, 20, 180, 180,
 width = 5, fill = "red")
do(can.create_line, 180, 20, 20, 180,
 width = 5, fill = "blue")

 20 >>>
 21 ...
 22 >>>

23 ...

and if I don't like the look of it:
 24 >>> kill(2)

can.delete is the method that removes something from the Canvas, so kill(n)
erases the last n things that were drawn. Once everything looks just right, I take
a screen shot and I’ve got the image I needed.

There are a large number of predefined names for colours, far too many to list
here, but the obvious web search always delivers. Actually, a few of them get it
completely wrong. If you’re told something is dark magenta but can see that it is a
brownish green, don’t just assume that tkinter has irrational colour names, just
move on to the next search result. You can create any colour you like by
specifying its red, green, and blue components as hexadecimal numbers between
0 and FF (0 to 255) after a # sign in a string. "#FF0000" would be the brightest
red, "#FFFF00" is yellow, "#000066" is a dark blue, and so on. We are not limited
to eight bit colour. 4, 12, and 16 bits are also allowed, but each of the R, G, B
components must have the same number of bits. So if R, G, and B are hexadecimal
digits, a colour can look like "#RGB", "#RRGGBB", "#RRRGGGBBB", or
"#RRRRGGGGBBBB".

An entire canvas can very easily be converted into a postscript (.ps) file. Some
printers accept postscript files directly, but it is also very easy to convert a
postscript file into a pdf file. You can also fairly easily convert postscript to any of
the graphical file formats line .png, .jpg, .gif, etc. This will be covered quite
soon under the heading Other Canvas methods as the postscript method.

i. Lines

The first parameters to create_line are always an even number of numbers
(floats are allowed) being the x, y coordinates of the start, corners, and end of the

251

line. They may be provided in many different ways. All of the following are
permitted:

...(x0, y0, x1, y1, x2, y2, x3, y3, ...)

...((x0, y0), (x1, y1), (x2, y2), (x3, y3), ...)

...(((x0, y0), (x1, y1), (x2, y2), (x3, y3)), ...)

...([x0, y0], [x1, y1], [x2, y2], [x3, y3], ...)

...([[x0, y0], [x1, y1], [x2, y2], [x3, y3]], ...)

...([(x0, y0), [x1, y1], (x2, y2), [x3, y3]], ...)

...(([x0, y0], (x1, y1), [x2, y2], [x3, y3]), ...)

create_line can take a lot of options, all as keyword parameters. Apart from the
already seen width and fill they are:

arrow = "first" or "last" or "both"

An arrow-head is drawn at the end of the line. "first" means that the
arrow will be at the first point of the line, and "last" means it will be on
the other end. "both" should be obvious.

arrowshape = (len, back, wid)

Specifies the exact shape and size of the arrow, which can be understood
from this diagram:

The line labelled � shows where the end of the line would have been if there
had been no arrow added to it. len is the distance between the � and �
lines. back is the distance between the � and � lines. wid is the distance
between the � and � lines. Note that � is on the edge of the drawn line, not
at its centre.

The default values (8, 10, 3) work nicely for narrow lines, but they remain
the same regardless of the width of the line, which doesn’t sound like a very
good plan to me. For wide lines you will always need to specify arrowshape.

capstyle = "butt" or "projecting" or "round"

Specifies the appearance of the endpoints of the whole potentially multi-
point line. "butt" means that it will have normal square ends.
"projecting" is also square, but extends the length of the line by half of its
width. "round" means that the end will be a semicircle centred on the
endpoint.

joinstyle = "round" or "bevel" or "miter"

252

Specifies the appearance of the places where two segments of a multi-point
line meet at an angle. "round" means that it will be rounded off with a
segment of a circle. "bevel" means that the corner will be cut off square.
"miter" means that the corner will come to a sharp point, continuing the
angles of the two line segments.

smooth = True or False

Only for multi-segment lines, the default is False. If smooth is True,
instead of just drawing a sequence of straight lines between the specified
points, it will make a nicely smooth curving line. The shape drawn is a
“spline”, which is a well-known thing in computer graphics, but far too
complicated to go into here.

splinesteps = n only valid when smooth is also used

A spline is always drawn as a sequence of straight lines, and if those lines
are short enough it looks smooth. The default is to always use 12 regardless
of the length of the line segment. This lets you specify a different number.

tags = "name"
tags = ("name1", "name2", "name3", ...)

Tags allow related Canvas items to be controlled all at once. When any
Canvas item is created, it can be given any number of tags. Later on, the
Canvas’ itemconfigure method can be used to change any of the options
for all items with a particular tag in the same way. There is always a tag
called "all" which means every item on the Canvas, you should not specify
it as one of the names in this option.

activefill = colour

Many tkinter objects are aware of whether or not the mouse is on top of
them. When it is, the object is considered to be active. It doesn't require any
mouse clicking, but it does require exact placement over the object. If
activefill is specified, then the line will turn to that colour when it is
active, and back again when it isn’t.

activewidth = n

Like activefill except that the line’s width changes when it is active.

activedash = a tuple of ints

Like activefill but see the dash option above.

disabledfill = colour

The programmer may disable any object in a Canvas. This option, like
activefill, causes the line to change colour when it is disabled.

disabledwidth = n

Like disabledfill except that the line’s width changes when it is active.

disableddash = a tuple of ints

Like disabledfill but see the dash option above.

253

state = "normal" or "hidden" or "disabled"

"normal" is the default. If an item is created hidden, it is completely
invisible. Disabled is the state that the previous three options react to. The
state can be changed any time you want.

dash = a tuple of ints

The line will not be solid, but will have gaps along it, making a dashed line.
The tuple can be any length you like. (12, 5, 9, 7) means that there will
be an initial drawn section 12 pixels long, then a gap of 5 pixels, then a
drawn section of 9 pixels, then a gap of 7 pixels, then a drawn section of 12
pixels again, then a gap of 5 pixels again, and so on, with the pattern
repeating for the entire length of the line. If the length of the tuple is odd,
the cycle will still blindly repeat it, so what represented a gap in one cycle
will represent a solid section in the next. (10,) means alternating lines and
gaps all 10 pixels long.

This does not work under Windows. You will get a dashed line, but not the
one you ask for.

dashoffset = n only valid when dash is also used

The dash pattern will start as though n (an int) pixels of the line have
already been completed. With the (12, 5, 9, 7) example from above, a
dashoffset of 10 would mean that the initial drawn segment is only 2
pixels long, but the pattern continues as normal after that.

Also does not work under Windows.

Recall that create_line returns a value, actually an int, that can be referred to
later as a reference for the line. Given that number, a Canvas’ itemconfigure
method may be used to disable something, or make it disappear, or turn it back to
normal, or a lot of other things. If c is a Canvas object and n is an item reference
number then:

c.itemconfigure(n, state = "normal"), or
c.itemconfigure(n, state = "hidden"), or
c.itemconfigure(n, state = "disabled")

All of the options described above can be changed by the itemconfigure method.
We’ve already seen delete removing things from a Canvas. Once something has
been removed there is no getting it back.

c.delete(n)

Of course, lines are not the only things that can be painted onto a Canvas. There
is also an arc, bitmap, image, oval, polygon, rectangle, text, and window. There is
no create_...able item that represents an individual pixel, but a PhotoImage
(described below) does allow you to set and read individual pixels within it.

ii. Text

254

create_text(x, y, other keyword options) makes strings appear on the canvas
close to position (x, y). The options are:

text = any string

This is of course the string to be displayed. If it contains \ns they will
behave as expected, making the text span multiple lines.

anchor = "n", "s", "w", "e", "ne", "nw", "se", "sw", or "center"

Gives meaning to the position coordinates x, y. "center" means that the
text’s bounding rectangle will be centred on (x, y). "nw" means that (x, y)
will be the top left corner of that rectangle, "s" means that (x, y) will be at
the centre of its bottom, and so on. The default is "center".

fill = colour

Gives the colour of the text. No need to specify a background colour because
only the text itself is drawn, the spaces around the letters are transparent.
The default is system dependent.

font = (family, size, style) or
font = family or
font = tkf.Font(options)

In the first form, family is the font name, such as "times new roman" or
"helvetica". Size is what you would expect, the font size in points. It can
be in the form of an int or a string. A negative number is taken as the size in
pixels instead of points. Style is optional. It is a string containing any
combination of "italic", "bold", "underline", "overstrike" separated
by spaces. "overstrike" means that a horizontal line is drawn across the
text. If the font you ask for doesn’t exist, one that seeems as though it could
be similar will be used instead.

In the second form, family is as before, just a font name as a string. This
form is not recommended because you just don't know what size you are
going to get.

The third form requires import tkinter.font as tkf before it will work.
Using this style, you can create one Font object and use it for many strings.
The options are all keyword parameters: family, size, weight ("bold" or
"normal"), slant ("italic" or "roman" for unslanted), underline (0 or 1
for underlined), and overstrike (0 or 1 for overstruck).

The tkinter.font module provides some extra information.
tkf.families() returns a tuple of all the font names or families on your
system. If f is a Font object, f.measure(string) tells you how many pixels
wide that string would be, and f.metrics() gives you a dictionary with
four keys: "ascent", "descent", "linespace", and "fixed". The four
values are all ints, fixed = 1 means that it is a fixed width font, 0 means it
isn’t.

255

justify = "left", "right", or "center"
The default is "left". Only has an effect on multi-line strings. "left"
means that all the lines will start at the same x position, "right" means
they will end at the same x, "center" means they will all be equally
balanced about the same x. “x” here does not refer to the x parameter.

width = int

The text is automatically split into multiple lines if it is wider than the given
width.

Whenever you specify a size, except for a font size, you can specify the unit
of measurement if you make it a string. "3.5i" means 3½ inches, "3.5c"
means 3.5 centimetres, "3.5m" means millimetres, and "3.5p" means
points (as in the traditional font measurement).

tags, state, disabledfill, and activefill mean the same as they do for lines.

iii. Rectangles

create_rectangle(x0, y0, x1, y1, other keyword options) or
create_rectangle((x0, y0), (x1, y1), other keyword options) or
create_rectangle(((x0, y0), (x1, y1)), other keyword options) etc
all draw a rectangle. x0, y0 and x1, y1 can be the coordinates of any two opposite
corners, the order doesn’t matter.

A rectangle must be perfectly aligned with the vertical and horizontal axes. If you
need a solid rectangle at an angle, you can draw a thick line instead. If you just
want an outline you're stuck, you'll have to work out the coordinates of the
corners and draw four lines.

The options are:

fill = colour or
activefill = colour or
disabledfill = colour

The colour for the rectangle’s enclosed area. The default is not to fill that
area, having the effect of transparency.

outline = colour or
activeoutline = colour or
disabledoutline = colour

The colour for the outline of the rectangle. If colour is an empty string, no
outline is drawn. The default is system dependent.

width = size or
activewidth = size or
disabledwidth = size

The width of the outline, default is 1.

256

tags, state, dash, and dashoffset are the same as for lines.

iv. Ovals and Circles

create_oval(x0, y0, x1, y1, other keyword options) or
create_oval([x0, y0], [x1, y1], other keyword options) etc
The x0, y0, x1, y1 are exactly as for rectangles and can be arranged in any of
those three ways. A perfectly symmetrical oval is drawn, as big as it can be to fit
inside the rectangle described by the coordinates. Because an oval is based on a
rectangle, it must be perfectly aligned with the vertical and horizontal axes.

create_arc (just below) can do everything that create_oval can do and more,
but create_oval is very slightly easier to use.

fill, outline, and width in their normal, active, and disabled forms are
exactly the same as for rectangles.

tags, dash, dashoffset, and state are exactly the same as for everything.

v. Polygons

create_polygon((x0, y0), (x1, y1), (x2, y2), ..., other keyword options) or
create_polygon(x0, y0, x1, y1, x2, y2, ..., other keyword options)
or any of the options for presenting coordinates from create_line.

Like drawing a rectangle except that there can be any number of sides. The xs and
ys are the coordinates of the vertices (corners). You do not need to repeat the first
vertex at the end, the polygon will be closed automatically. Complex polygons,
where the edges cross over each other, work as would be expected.

fill, activefill, disabledfill: polygons, unlike rectangles and ovals, are
filled by default. If you only want the outline, set these colours to be empty
strings.

joinstyle is the same as for lines: "round", "bevel", or "miter".

tags, dash, dashoffset, outline, activeoutline, disabledoutline, width,
activewidth, disabledwidth, and state are the same as for everything else.

smooth = True, False, "bezier", "raw", or "":
True means "bezier", False and "" mean no smoothing, just straight lines with
corners. "bezier" is the same as smooth = True for lines. "raw" is like
"bezier", but much more complicated. Too complicated for here. It is a cubic
bezier curve with knot points and control points.

splinesteps is exactly the same as for lines.

257

vi. Arcs

create_arc(x0, y0, x1, y1, other keyword options)
The x0, y0, x1, y1 are exactly as for rectangles and can be arranged in any of
those three ways. A perfectly symmetrical oval is imagined, as big as it can be to
fit inside the rectangle described by the coordinates, and an arc or chord of that
oval is drawn. Because an arc is based on a rectangle, it must be perfectly aligned
with the vertical and horizontal axes.

start = degrees
extent = degrees
The size of the arc or chord is determined by two angles. start is the direction
from the centre to one of the edges, measured in degrees anti-clockwise from the
positive x axis. That is right, or East, or three o’clock. Default zero. extent is how
many degrees the arc stretches, anti-clockwise from the starting angle. It may be
negative in which case it goes clockwise instead. The default is 90 degrees.

style = "arc", "pieslice", or "chord". Default is "pieslice".
The shape drawn always includes the portion of the outline of the oval described
by start and extent, and with "arc" that is all that is drawn. With "chord" the
two ends of the arc are also joined with a straight line. With "pieslice" there are
two straight lines, one from the centre of the oval to one end of the arc, and one
from the centre to the other end.

fill, activefill, disabledfill are the same as for polygons, the default is
usually to fill the shape, but if style is "arc" there is nothing to fill, just a curved
line.

tags, dash, dashoffset, outline, activeoutline, disabledoutline, width,
activewidth, disabledwidth, and state are the same as for everything else.

vii. Images from graphical files

An image represents the sort of thing that is stored in a graphics file, like a jpeg,
a gif, or a png. An extra class, PhotoImage, is required to handle that side of
things.

create_image(x, y, other keyword options)
The x and y are the same as for create_text, and are interpreted according to an
anchor which is also the same. There are only two other options.

tags and state are exactly the same as for everything else.

image, activeimage, and disabledimage may be set to a PhotoImage object.
There is a second alternative, a BitmapImage, but that is restricted to strictly two-
colour images. Not even a grey scale, just one bit per pixel.

258

Once you have found your image file, turning it into a PhotoImage can be as
simple as

 1 >>> im = tk.PhotoImage(file = "pictures\\diagram.png")
and displaying it on the canvas

 2 >>> can.create_image(20, 20, anchor = "nw", image = im)

Some care is needed. If you create a PhotoImage and store it in a local variable in
a function, then as soon as that function exits the PhotoImage becomes eligible
for garbage collection. Being displayed in a Canvas isn’t enough to keep it alive.
Make sure the variable holding your PhotoImage lasts at least as long as the
Canvas that displays it.

That may be the reason behind something that is bound to cause trouble. If I
combine those two statements into one:

 1 >>> can.create_image(20, 20,
 anchor = "nw",
 image = tk.PhotoImage(file = "pictures\\diagram.png"))

 2 ...
 3 ...

absolutely nothing happens.

Unfortunately, a tkinter PhotoImage can only handle four formats: PNG, GIF,
PGM, and PPM, and who has ever even heard of the last two? PGM is for grey-
scale images, and PPM is an ancient thing from the very first days of the internet.
There was some concern about GIF over a patent on an algorithm that it uses, and
JPEG hadn’t been invented yet. There is a third party module that handles JPG,
BMP, and others. We’ll come to that later.

Once a PhotoImage has been created, its size in pixels is given by im.height()
and im.width(). You can inspect individual pixels, im.get(x, y) returns a
three-tuple (R, G, B) of the colour components of the pixel, they will be in the 0
to 255 range.

When specifying a position within a PhotoImage with column, row or x, y
coordinates, the coordinates are relative to the top left corner of the PhotoImage,
not of the Canvas.

To change the colour of individual pixels:

 1 >>> im.put("red", (30, 50))
Sets the single pixel at x = 30, y = 50.

 2 >>> im.put("blue", (30, 50, 70, 70))
Sets the entire rectangle where x is between 30 and 70, and y is between 50 and
70

 3 >>> im.put("red red red green green", (30, 50, 70, 70))
Fills the entire rectangle. The first three rows of pixels will be red, the next two
rows will be green, and then the pattern will repeat until the rectangle is filled.
The colours don't all have to be in one string, a list or tuple like ["red", "red",
"red", "green", "green"] would do the same.

 4 >>> a = ["red"] * 10 + ["green"] * 5 + ["blue"] * 15
b = ["yellow"] * 20 + ["pink"] * 10 5 >>>

 6 >>>

259

7
>>> patt = [a] * 10 + [b] * 8

im.put(patt, to = (200, 200, 350, 350))

A two dimensional list or tuple gives a two dimensional pattern. a describes a row
of 10 red pixels, then 5 green pixels, then 15 blue pixels, repeated as many times
as necessary. b represents a similar row with 20 yellow and 10 pink pixels making
the repeated pattern. The whole rectangle will be filled with the first 10 rows
following pattern a, the next 8 rows following pattern b, and that repeating all the
way to the bottom.

A useful feature is that you can make changes to a PhotoImage even after it has
been put on a Canvas, and those changes will still appear immediately.

Individual pixels can be made transparent. im.transparency_set(x, y, v)
makes the pixel transparent if v is True, opaque otherwise. Unlike with most
graphics systems, there are no degrees of transparency, it’s all or none. There is
also no option for making a whole region transparent, you need a loop. You can
check the transparency of a pixel with im.transparency_get(x, y).
Transparency just means that whatever is underneath the PhotoImage at that
point gets seen instead. Usually that will be the Canvas’ background colour. The
entire image can be made transparent all at once with im.blank().

The entire PhotoImage, with whatever changes you may have made to it, can be
saved to a file:

 1 >>> im.write("abc.png", format = "png")
The first parameter, the file name, can be anything you want. The format
parameter must be one of "png", "gif", "pgm", or "ppm".

Finally, two more ways to create a PhotoImage. First you can create a totally
blank one if you want to create an image from scratch, no need for a graphics file
with e.g. im = PhotoImage(height = 100, width = 100). There is no way to
specify the background colour, but on my computer it comes up white.

Second, if you have read the entire contents of a supported graphics file into a
bytes object, you can give that to the constructor.

 1 >>> f = open("abc.png", "rb")
cont = f.read()
f.close()
im = PhotoImage(data = cont)

 2 >>>
 3 >>>

4 >>>

The data parameter may also be a base 64 encoded bytes object as might be
extracted from an email.

viii. Other Canvas methods

Apart from the above methods for creating Canvas items, there are a large number
of other methods that act on a whole Canvas. Keep in mind the fact that every

260

object is assigned an int value to identify it when it is created, and every create...
method has a tags option that lets you attach tag strings to the created object. In
the following descriptions, when a parameter is given as “items”, it can either be
an int to refer to a single object or a tag to refer to any number of them. If a
parameter is given as “singleitem” it can still be an int or a tag, but if that delivers
more than one item, then only the item with the lowest int identifier is actually
used.

There is also a thing called the display list. It prioritises all of the items in a
Canvas. When any item is created, it goes to the top of the display list, anything
below it is considered to be closer to the surface of the Canvas, and will therefore
be obscured by the newer item if there is any overlap. The order of the display list
can be changed, so this is not the same as an item’s int identifier.

c.itemconfigure(items, option = value, option = value, ...)

All of the identified items have their options changed or set as directed.

c.itemconfigure(singleitem)

Returns a dictionary where the keys are option names and the values are
option values of all the options that the item has.

c.itemcget(singleitem, option)

Returns the value of the given option for this item. Option must be a string.

c.move(items, dx, dy)

dx and dy are distances, ints mean pixels but "0.5i", "3c", etc also
allowed. All of the items are moved dx to the left, and dy down.

c.delete(item)

The item is removed. Not just made invisible, but permanently gone.

c.type(singleitem)

Returns what kind of item it is: "arc", "image", "line", "oval",
"polygon", "rectangle", "text", or "window".

c.postscript(option = value, option = value, ...)

Converts the canvas into postscript (.ps) format. This can be used for
printing or be converted to any of the commonly used graphics file formats.

file = string

The name of the file that the results should be stored in. You should
make it end with .ps otherwise your computer might not know what
to do with it. If you don’t provide a file name, the entire result is
returned as a string.

x, y, height, width, all should be numbers

The default behaviour is that the output should only contain the part
of the Canvas that is currently visible. If you have scrollbars, that is
not going to be what you want. These four values should correspond

261

to the values you set for the scrollregion option (described under
canvas options) when you created the Canvas: x = left, y = top,
height = bottom - top, width = right - left.

colormode = "color", "gray", or "mono", the default is "color"

How to handle colours. "color" means take them as they are,
"gray" means throw away colour information but keep the darkness
and brightness producing a greyscale image, "mono" means just pure
black and white, nothing in between.

rotate = False

False: produce the result in portrait style, True: landscape.

To make use of the .ps file, you will probably need to convert it to a
different format. On this computer, double-clicking on the file automatically
starts up Acrobat Distiller, which will convert it into a pdf. Usually the
conversion happens immediately, but occasionally I have to select “open”
from the menu and manually select the file.

If you don’t want a pdf, there are numerous free on-line sites that will do the
conversion to just about any graphics format file for you. I found that some
of them somehow ignore the Canvas’ background colour and render it as
black. If that happens, just make sure the first thing you create on the
Canvas is a rectangle that covers the whole thing with its fill set to the
background colour you want.

There is a program called ghostscript which you can download for free (for
non-commercial purposes) so that you don't have to use the on-line
services. Unfortunately I have been unable to make it work, it always claims
that some file doesn’t exist, but won’t say which one.

c.scale(items, xOffset, yOffset, xScale, yScale)

All of the items are enlarged or shrunk. Just changing their sizes isn’t likely
to be what you want, you’ll almost certainly want the spaces between them
to change in the same way. For that to work, you need to designate a centre
point around which the scaling will happen. (xOffset, yOffset) provides that
point. Every point in all of the items is moved so that its horizontal distance
from the centre point is multiplied by xScale, and the vertical distance by
yScale. The most common thing is that you want to scale the entire Canvas.
In that case, select the top left corner as the centre point, and use "all" as
the tag name.

c.tag_bind(items, event, function = None, add = None)
c.tag_unbind(items, event, funcId = None)

These will be saved until the subsection on binding events.

c.scan_mark(x, y)
c.scan_dragto(x, y, gain = 10)

These will be saved until the subsection on scrolling.

262

c.bbox(items = None)

Bounding Box. Finds the smallest rectangle that encloses all of the items,
and returns its edges as a four-tuple of pixel numbers (left, top, right,
bottom).
If the parameter is None, then every item on the Canvas is included.

c.coords(singleitem)

Returns a list of the coordinates associated with the item. The list is an
alternating sequence of x1, y1, x2, y2, ... If the item is a line or a polygon,
these are the coordinates of its start, corners, and end. For anything else
they are just four numbers giving its bounding box.

c.canvasx(x , gridspacing = None)
c.canvasy(y , gridspacing = None)

x or y are positions relative to the top left corner of the window. what is
returned is the equivalent position relative to the top left corner of the
canvas. If gridspacing is not None, the result is rounded to be a multiple of
it.

c.gettags(items)

If items only refers to a single item, return a tuple of all the tags that item
has. Otherwise, if items is a tag, it does the same for the item that has that
tag and is lower in the display order than the others.

c.dtag(items, unwantedtag)

The unwanted tag (a string of course) is taken away from all of the items.

c.find_all()

Returns a list of the int identifiers for all of the items on the Canvas.

c.find_withtag(items)

Returns a list of the int identifiers for all of the items.

c.find_enclosed(xleft, ytop, xright, ybottom)

Returns a tuple of the int identifiers for every item that is entirely inside the
given rectangle.

c.find_overlapping(xleft, ytop, xright, ybottom)

Returns a tuple of the int identifiers for every item that is either entirely
inside the given rectangle, or crosses its edge.

c.find_closest(x, y, halo = None, start = None)

Normally returns the int identifier for the object that is closest to the given
x, y position. The result is a one-tuple normally, but a zero-tuple if there is
no qualifying item. The halo parameter doesn’t seem to have any effect. The
start parameter is supposed to have some effect, but I haven’t been able to
detect it. Perhaps it’s another Windows thing.

263

c.find_above(singleitem)
c.find_below(singleitem)

Finds the item that is closest to but just above/below the given item in the
display list as a tuple of one int identifier, or a zero-tuple if there is nothing
above/below. The documentation says something about what happens if
multiple items qualify, but if we’re talking about the closest in the display
list, that can’t really happen.

c.tag_raise(items, singleitem)
c.tag_lower(items, singleitem)

Changes the positions within the display list of all of the items, so that they
are immediately above/below the given single item. If there are multiple
items, their relative ordering is kept. This means that if one of the items was
obscuring or obscured by some other item, the display may change.

The c.addtag_... methods all add a new tag to a group of existing items. In
the following, newtag is the name of the tag to be added.

c.addtag_all(newtag)

Add the new tag to every item in the whole Canvas.

c.addtag_enclosed(newtag, x0, y0, x1, y1)

Add the new tag to every item that is completely inside the rectangle with
top left corner (x0, y0) and bottom right corner (x1, y1).

c.addtag_enclosed(newtag, x0, y0, x1, y1)

Add the new tag to every item that is either completely inside the rectangle
with top left corner (x0, y0) and bottom right corner (x1, y1) or crosses its
edge.

c.addtag_closest(newtag, x, y, halo = None, start = None)

Add the new tag the item that is closest to position (x, y). As with
find_closest, halo and start are a mystery.

c.addtag_withtag(newtag, items)

Add the new tag to all of the items.

c.addtag_above(newtag, singleitem)
c.addtag_below(newtag, singleitem)
Add the new tag to the one item that is immediately above or below the given
single item in the display list.

ix. Canvas options

When creating a Canvas there are more available options than the width, height,
and background that we've seen. You do not need to provide all the options to the
constructor. Once a tkinter object exists you can add or change any of the
options with the configure method (below).

264

background = colour background may be abbreviated to bg

borderwidth = size borderwidth may be abbreviated to border or bd

The Canvas will be enlarged by the given size in all four directions to create
a border. Drawing is not allowed in the border, but coordinates are offset so
that nobody has to do anything about it, (0, 0) is the top left drawable
position. The border remains clear, in the Canvas’ background colour.
Under windows, it doesn’t work quite properly, the borders are not even.

relief = "groove", or "raised", or "ridge", or "sunken".

Only meaningful in conjunction with border, and only effective for narrow
borders of about 4 pixels or so. Attempts to give a 3-D look to the border.

closeenough = distance

Normally a component only takes on its active colour etc when the mouse is
directly above it. This changes that. A component becomes active if the
mouse is within that many pixels of it.

scrollregion = (left, top, right, bottom)
xscrollincrement = distance
yscrollincrement = distance

These are all part of setting up scrollbars for your Canvas, and are
described later in the subsection on scrolling.

cursor = string

If this is set, then the shape of the mouse cursor changes whenever the
mouse is within the bounds of the canvas. On my windows computer, most
of the possibilities are very badly drawn indeed. I'm led to believe that this is
mostly an Xwindows feature and things might be better under that. This is
my categorisation of the available cursors as I see them on this system:

These cursors are well drawn, and are likely to be useful:
"arrow": the normal arrow pointer used to select things,
"crosshair": a sort of plus sign for more accurate positioning,
 "fleur": arrows pointing in all four direction,
"hand2": a pointing finger,
"question_arrow": the same as "arrow" but with a question mark,
"tcross": the same as "crosshair" but hollow,
"watch": an hourglass, used to indicate “wait”,
"xterm": the vertical text cursor.

These are at least reasonably well drawn, but not very useful:
"bogosity", "bottom_right_corner", "center_ptr", "cross", "plus",
"sb_h_double_arrow", "sb_v_double_arrow".

These are of at best moderate quality, but could be useful:
"based_arrow_down", "based_arrow_up", "bottom_left_corner",
"bottom_side", "bottom_tee", "diamond_cross", "dotbox",
"left_tee", "ll_angle", "lr_angle", "right_tee", "rtl_logo",
"sb_down_arrow", "sb_right_arrow", "sizing", "top_left_corner",

265

"top_right_corner", "top_side", "top_tee", "ul_angle", "ur_angle",
"X_cursor".

These are just plain bad:
"boat", "box_spiral", "circle", "clock", "coffee_mug",
"cross_reverse", "dot", "double_arrow", "draft_large",
"draft_small", "draped_box", "exchange", "gobbler", "gumby",
"hand1", "heart", "icon", "iron_cross", "left_ptr", "left_side",
"leftbutton", "man", "middlebutton", "mouse", "pencil", "pirate",
"right_ptr", "right_side", "rightbutton", "sailboat",
"sb_left_arrow", "sb_up_arrow", "shuttle", "spider", "spraycan",
"star", "target", "top_left_arrow", "trek", "umbrella".

40. Universal widget methods

All tkinter gui objects, or widgets, also have a large number of methods. The
following are available with every kind of widget, and are only a selection of the
most useful ones, there are too many.

w.configure(keyword = value)

Changes an option, e.g. w.configure(background = "yellow"). Note that
the option names are not strings this time, they are keyword parameters,
just as they were for the widget’s constructor.

w.cget(string)

Returns the value of a particular option, e.g. w.cget("background") might
return "yellow". This will nearly always be the same string or int that you
originally supplied, but for more complex values like fonts it will not. cget
only delivers option values that you set: every widget has a width, but
w.cget("width") will return 0 unless you explicitly set the width option.

w.keys()

Returns a list of strings which are the names of all the options that are
applicable to this kind of widget.

w.winfo_rgb(string)

The string must be the name of a colour. Returns a three-tuple of that
colour's red, green, blue values on an unsigned 16 bit scale (0 to 65535), for
example w.winfo_rgb("yellow") is (65535, 65535, 0). What isn’t this a
class method?

w.winfo_geometry()

Returns a string the widget’s size and position. It will always be of this
format '71x105+41+253' which means width = 71 pixels, height = 105, left
edge is 41 pixels from its containing window’s left edge, and top is 253
pixels down from its window’s top. Unlike w.cget("width"), this returns
the correct current values even if you didn't set them.

w.winfo_width(), w.winfo_height(), w.winfo_x(), and w.winfo_y()

266

Return the same values as w.winfo_geometry() but as more conveniently
usable ints.

w.after(milliseconds, callback, parameters for callback)

After at least milliseconds has expired, the callback function will be called
with the provided parameters. They should be just separate parameters, not
a tuple unless your function wants a tuple. after returns a string which
may be used to cancel this request. Callback is optional. If only milliseconds
is given, this method will just wait for the given time before returning.

w.after_cancel(string)

Cancel the after request that returned this string.

w.after_idle(callback, parameters for callback)

Call the given function the next time the tkinter system finds itself idle,
having no events to deal with. There are never any events to deal with
unless you have started an event loop.

w.focus_get()

Focus refers to the widget that is currently selected for input operations. In
many gui systems, when a button has focus, pressing enter or space has
the same effect as clicking on it. If a text input box has focus, everything
you type will go into that box. focus_get returns the widget object that
currently has focus, or None if none have.

w.focus_set()

If any of the current program’s widgets has focus, focus will immediately be
transferred to w. If another program currently has focus, then focus will be
set to w as soon as this program regains control again.

w.focus_force()

Is the same as focus_set, except that it is more demanding. Focus will be
set on w even if it is currently held by another program.

41. Label

A Label is the most basic kind of thing that can appear in a window. It is just a
piece of text.

 1 >>> win = tk.Tk()
win.title("Label")
lab = tk.Label(win,
 text = "One two three four\nthe cat sa"
 "t on the mat\nabcdefghijklmnop"
 "rstuvwxyz", padx = 25, pady = 15)
lab.pack()

 2 >>>
 3 >>>
 4 ...
 5 ...
 6 ...

7 >>>

267

Note that I only provided four parameters to Label. Those are not three strings
after text =, I am making use of a Python feature: if multiple strings appear one
after the other with only white space between them, they are treated as a single
string. Without that I wouldn’t be able to do this demonstration satisfactorily. And
don’t forget about the universal methods: configure and so on.

The padx and pady parameters say that the size of the Label object will not just
be the minimum size required to hold the text, but an extra 25 pixels will be
added to the left and right, and 15 above and below.

Other options are

background = colour background may be abbreviated to bg
foreground = colour foreground may be abbreviated to fg

Specify the background and foreground colours. fg is the colour of the text,
and bg is the colour of the space surrounding it. Colours are described
exactly as they are for Canvas components.

width = size
height = size

Allows you to specify an exact size, over-riding the content-based value. But
beware, the units are not obvious. If a component contains text, as Labels
usually do, the size is not measured in pixels but in characters. For height
that’s fine, but unless you are using a fixed width font, width is impossible
to judge. If the component contains an image then the height and width are
taken to be in pixels.

anchor = "n", "s", "w", "e", "ne", "nw", "se", "sw", or "center"

If you force a label to be bigger than it naturally would be, perhaps by
specifying height and width, the anchor says where the text will appear.
The default is "center". "nw" means it will be snug up against the top left
corner of the Label, and so on.

image = PhotoImage

PhotoImage should be a PhotoImage object as discussed for Canvas. Any
text parameter will be ignored unless you set compound. The Label will
simply show the image in place of the normal text.

compound = "bottom", "top", "left", "right", or "center"

Any of these settings means that the Label can have both text and an image.
The first four give the Image’s position relative to the text, so "bottom"

268

means the text will appear like a title, above the image. "center" means
that the text will be superimposed on the image at its centre.

state = "normal", "disabled", or "active"

The state of a Label is supposed to automatically change to "active"
whenever the mouse cursor hovers above it, regardless of any button
pressing. On my Windows computer that doesn't work. "disabled" is not
very useful for Labels because it is mean to make a component
unresponsive to mouse clicks, and Labels already are. Background and
foreground colours may change according to the state of the object.
"normal" is the default.

activebackground = colour
activeforeground = colour
disabledforeground = colour

Specify the alternate colours used when the object’s state is not "normal".
Why on earth is there no disabledbackground?

wraplength = number

Specifies a maximum length for a line of text. If a line is longer than this a
newline will be inserted, preferably replacing a space, but anywhere if
necessary. The documentation says that we specify the number of
characters, but experiment shows that it is really the size, in pixels by
default.

underline = int

The specified character of the string, counting from zero, will be underlined.
This is usually used to remind users of “hot keys”, keyboard shortcuts that
have the effect of clicking on a button. Therefore it is not much use with a
Label. The default, -1, means no underlining.

cursor, borderwidth, border, bd, and relief

Exactly as for Canvas.

justify = "left" or "right" or "center"
font = family
font = (family, size, style)
font = tkf.Font(options)

Exactly as for Canvas.create_text.

Automatic line breaking

A Message is almost identical to a Label. The only difference is that if you want a
Label to have more than one line of text, you must explicitly put \n characters in
its text. A Message automatically breaks lines to fit them into the desired width.

There is a slight difference in the options. There is no height, and width is
measured in pixels rather than a Label’s number of characters. With a Message,

269

if you specify a width then the height is completely controlled by the contents, it
can’t take a Scrollbar. Alternatively, you can specify the aspect option as a
number. This controls the shape of the widget. 100 means exactly square, 200
means twice as wide as it is high, 50 means twice as high as it is wide, and so on.

Automatic updating

tkinter defines a StringVar class. The objects hold strings, and when passed to
a function give the effect of call by reference. The function can change the value of
the StringVar’s string so that the new value can be seen when the function exits.

StringVars may only be created when a tkinter window is in existence. For
some reason they have to be associated with a window. The constructor is:

s = StringVar(master = None, value = None, name = None)

master is the window that it is associated with. None means the currently active
one. value is a string giving its initial value, and name allows you to name the
variable so you can tell the difference between a number of StringVars. The
default is to make up a unique name.

StringVars have the obvious set and get methods, s.set("new value")
changes the value, s.get() returns the current value.

StringVars have built-in assistance for debugging. You can specify a callback
function that will automatically be called whenever a StringVar’s value is
changed, deleted, or even looked at. Deletion happens when you say del s. The
callback function must have three parameters. The first will be the name of the
StringVar, the second isn’t of much use, and the third is the operation that
caused the callback, "r", "w", or "u".

 1 >>> def callbk(n, x, o):
 print(o, "operation on", n)
sv = tk.StringVar()
sv._name
'PY_VAR31'
sv.set("hello")
sv.get()
'hello'
sv.trace("w", callbk)
'1605411050432callbk'
sv.trace("u", callbk)
'1605345043281callbk'
sv.get()
'hello'
sv.set("goodbye")
w operation on PY_VAR31
sv.trace_remove("write", "1605411050432callbk")
sv.set("again")
del sv
u operation on PY_VAR31

 2 ...
 3 >>>
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10
 11 >>>
 12
 13 >>>
 14
 15 >>>
 16
 17 >>>
 18 >>>
 19 >>>
 20

270

The trace method’s first parameter is "w" if you want to detect .set operations,
"r" if you want to detect .get operations, and "u" if you want to detect deletions.
trace returns a reference string which you must remember if you ever want to
cancel the trace. That's what trace_remove does. Mysteriously its first parameter
must be the entire word "read", "write", or "unset", it doesn’t accept the
abbreviations "r", "w", or "u" given to trace.

There are also IntVar, BooleanVar, and DoubleVar classes, but the option is still
called textvariable for all three.

To make use of a StringVar in a Label, forget about the text = "string"
parameter, and use the textvariable = sv parameter instead. The Label will
show the value of sv as its text, and it will be updated automatically whenever
sv’s value changes.

 1 >>> sv = tk.StringVar(value = "Elephants")
lab = tk.Label(win, textvariable = sv) 2 >>>

42. Multiple items in a window

i. Pack

 1 >>> win = tk.Tk()
lab1 = tk.Label(win,
 text = "One two three four\nthe cat sa"
 "t on the mat\nabcdefghijklmnop")
lab1.pack()
lab2 = tk.Label(win, text = "Elephants")
lab2.pack()
lab3 = tk.Label(win, text = "*",
 font = ("courier new", 30))
lab3.pack()

 2 >>>
 3 ...
 4 ...
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 ...

10
>>>

You can pack() any number of things, but they all end up on top of each other.
We can improve in this just a little bit by using pack's optional side parameter.
The possible values are "top" (the default), "bottom", "left", and "right". It
says which edge of the window the object wants to be next to. If more than one
object requests the same side, they are lined up, moving inwards from the desired
side. The side only specifies one dimension, the object is centred in the other
dimension.

271

The first example shows what happens when all three labels request "left", the
second is when the first chooses "left", the second chooses "top", and the third
chooses "right". It isn't easy to predict exactly what will happen.

Other keyword options for pack are

padx = number
pady = number
ipadx = number
ipady = number

All four of these add extra space around the text. The x versions add the
given amount both to the left and to the right, and the y versions both above
and below. If you don't do anything with background colours, you might not
see any difference between the plain versions and the i... versions. The
plain versions put space around the outside of the entire Label object, so
the window’s background colour will show through in this space. The i...
versions (i is for internal) make the Label object itself larger, so the extra
space is filled with the Label’s background colour. You can use all four
together.

expand = True or False False is the default
fill = "none", "x", "y", or "both" "none" is the default

At least on my PC, these two only work if used together, so that is what I’ll
describe here. Normally, if you resize the window to make it larger, objects
within it will move around to remain stuck to their desired sides, but will
not grow. expand and fill change that. If fill is "x" the object, along
with its background colour, will stretch horizontally as far as it can. "y" lets
it stretch vertically, and naturally "both" lets it grow both ways. Growth
also happens as soon as the window is fully populated by its packed objects.

This is definitely not what the documentation says will happen, so possibly
it will be different on other types of system.

anchor = "n", "ne", "e", "se", "s", "sw", "w", "nw", or "center", the default
It is very hard to tell what this is supposed to do. side continues to determine
which side of the window components will grow from, but anchor seems to change
the side that they will stick to if the window grows. Maybe that is indeed what it is
supposed to do.

ii. Place

272

Fortunately, pack() isn't the only way to put things into a window. Another
method, place() allows more control but is very inflexible, you have to have a
good idea of how big all of your objects are going to be, and a slight redesign can
require a lot of changes. A third alternative, grid() is the easiest to design with,
but I’ll save that for last.

 1 >>> win = tk.Tk()

lab1 = tk.Label(win, text = "One two three four\nthe cat s"
 "at on the mat\nabcdefghijklm"
 "nop", bg = "yellow")
lab1.place(x = 0, y = 0)
lab2 = tk.Label(win, text = "Elephants", bg = "yellow")
lab2.place(x = 100, y = 100)
lab3 = tk.Label(win, text = "*",
 font = ("courier new", 30),
 bg = "yellow")
lab3.place(x = 300, y = 200)

 2 >>>
 3 ...
 4 ...
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 ...
 10 ...

11
>>>

The x and y parameters to place tell it the coordinates for the top left, or "nw",
corner of the object. Notice that only the first two labels are visible. When pack is
used, the window grows to fit its contents. When place is used, it doesn’t. If I
stretch the window, the missing Label appears. That is easily fixed:

 1 >>> win.geometry("500x400")

That sets the window to 500 pixels wide and 400 pixels high. Curiously, geometry
only accepts strings, you can't give it the two numbers. The string can be extended
to this form "widthxheight+left+top". Width and height are as before, left and
top give the position of the window on the screen. Calling geometry with no
parameters returns the full string giving the window’s current size and position.

And while we’re at it, win.destroy() will make the window go away, you don’t
have to wait for the user to close it manually.

Naturally, place has other options:

273

anchor = "n", "ne", "e", "se", "s", "sw", "w", "nw", or "centre"
"nw" is the default.
This says how to interpret the x and y parameters. If anchor is "sw" then it
will be placed so that its South-West (bottom left) corner is at position (x, y).

width = number
height = number

Let you over-ride the object’s natural size.

relx = float between 0 and 1
rely = float between 0 and 1

An alternative to x and y. relx = 0 refers to the left edge of the window,
relx = 1 is the right edge, relx = 0.5 is the exact horizontal centre of the
window, and so on. If you change the size of the window, the component will
keep its relative position.

relwidth = float between 0 and 1
relheight = float between 0 and 1

An alternative to width and height. relwidth = 0.5 means that the width
of the object will be half the width of the window.

bordermode = "inside" or "outside"
It is possible for windows and other containers like them to have borders around
them. bordermode = "inside" means that position (0, 0) is just inside the border
at the top left corner. bordermode = "outside" means that (0, 0) is the window’s
own real top left corner.

iii. Grid

 1 >>> win = tk.Tk()

lab1 = tk.Label(win, text = "One two three four\nthe cat s"
 "at on the mat\nabcdefghijklm"
 "noprstuvwxyz", bg = "yellow")
lab1.grid(row = 0, column = 0)
lab2 = tk.Label(win, text = "Elephants", bg = "yellow")
lab2.grid(row = 1, column = 1)
lab3 = tk.Label(win, text = "*",
 font = ("courier new", 30),
 bg = "yellow")
lab3.grid(row = 2, column = 2)
lab3 = tk.Label(win, text = "Hello!", bg = "pink")
lab3.grid(row = 2, column = 0)

 2 >>>
 3 ...
 4 ...
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 ...
 10 ...
 11 >>>
 12 >>>

13
>>>

274

The grid placement scheme imagines that the window is divided into some
number of rows and columns, just like a spreadsheet. Each row and column is
sized to fit the largest object it contains, and the window is sized to fit everything.
The number of columns and rows is completely determined by the values you give
for row and column when you call grid. they don’t get specified in advance.
Unless you specify otherwise, stretching or shrinking the window has no effect on
the positions of its contents.

padx = number
pady = number
ipadx = number
ipady = number

These four options are exactly as they were for pack().

sticky = string consisting of any combination of n, s, w, and e.

If the grid cell ends up being larger than this object, the object will be stuck
to the given sides of the cell. If two of the specified sides are opposites, the
object will be stretched so that it can stick to both. So "nw" means it will
just sit in the top right corner at its natural size. "nse" means it will sit up
against the right edge at its normal width, but its height will be stretched to
the entire height of the cell.

rowspan = int, the default is 1
columnspan = int, the default is 1

Neighbouring cells will be merged into a single big cell capable of holding
one larger than usual object. Two examples: If row is 1, column is 3,
rowspan is 1 and columnspan is 5 then the fives cells (1, 3), (1, 4), (1, 5), (1,
6), and (1, 7) become a single big cell. If row is 2, column is 3, rowspan is 2
and columnspan is 2 then the four cells (2, 3), (2, 4), (3, 3), and (3, 4)
become a single big cell.

43. Button

The Button is the most basic of the interactive components. It has all the usual
features for getting its appearance right, but it also needs something that hasn’t
come up before. We need some way of saying what should happen when the
button is pressed. This is done by providing a “callback” as the command option. A
callback is a parameterless function that is automatically called when some event,
in this case a mouse press in the right place, occurs.

275

 1 >>> def callback1():

 print("You pressed button one")
def callback2():
 print("You pressed button two")

win = tk.Tk()
b = tk.Button(win, text = "one", command = callback1,
 activebackground = "yellow",
 padx = 5, pady = 5)
b.grid(row = 0, column = 0, padx = 10, pady = 10)
b = tk.Button(win, text = "two", command = callback2,
 activebackground = "cyan",
 padx = 5, pady = 5)
b.grid(row = 0, column = 1, padx = 10, pady = 10)

 2 ...
 3 >>>
 4 ...
 5
 6 >>>
 7 >>>
 8 ...
 9 ...
 10 >>>
 11 >>>
 12 ...
 13 ...
 14 ...

It is immediately up and running, reacting properly to button clicks. It is
beginning to look as though substantial programs will need a lot of callback
functions, but if you remember functools.partial and how to define a class,
there isn't necessarily such a crowd.

 1 >>> import functools as ft

class variable:
 def __init__(self, value):
 self.value = value

def callback(butnum, var):
 print("you pressed", butnum, end = ", ")
 var.value += butnum
 print("the value is now", var.value)

x = variable(0)

win = tk.Tk()
b = tk.Button(win, text = "one",
 command = ft.partial(callback, 1, x),
 activebackground = "yellow",
 padx = 5, pady = 5)
b.grid(row = 0, column = 0, padx = 10, pady = 10)
b = tk.Button(win, text = "two",
 command = ft.partial(callback, 2, x),
 activebackground = "yellow",
 padx = 5, pady = 5)
b.grid(row = 0, column = 1, padx = 10, pady = 10)
b = tk.Button(win, text = "three",
 command = ft.partial(callback, 3, x),
 activebackground = "yellow",
 padx = 5, pady = 5)
b.grid(row = 0, column = 2, padx = 10, pady = 10)

 2
 3 >>>
 4 ...
 5 ...
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11
 12 >>>
 13 ...
 14 >>>
 15 >>>
 16 ...
 17 ...
 18 ...
 19 >>>
 20 >>>
 21 ...
 22 ...
 23 ...
 24 >>>
 25 >>>
 26 ...
 27 ...
 28 ...
 29 >>>
 30

276

 31 you pressed 1, the value is now 1
you pressed 3, the value is now 4
you pressed 2, the value is now 6
you pressed 1, the value is now 7

 32
 33
 34

The options for a Button are

text, textvariable, justify, image, and compound

Exactly as they are for Labels.

command = zero parameter callback function

background, bg, foreground, and fg

Exactly as they are for Labels.

activebackground = colour
activeforeground = colour

Almost the same as for Labels, but not quite. The active colour appears
while the button is being clicked (i.e. between the down and up events),
merely hovering the mouse has no effect. And they both work under
Windows.

padx, pady, height, width, cursor, state, wraplength, underline, and anchor

Exactly as they are for Labels.

borderwidth = number borderwidth may be abbreviated to border or bd
relief = string
overrelief = string

border and relief are the same as for a Canvas. overrelief is allowed
the same values as relief, the border shading will change to overrelief
whenever the mouse is within the Button whether clicked or not.

repeatdelay = milliseconds
repeatinterval = milliseconds

Unlike keyboard buttons, gui buttons do not normally repeat when they are
held down. If you want a Button that does repeatedly call its command
callback when help down, set these two options. repeatdelay is how long
the Button needs to be held down before the first call happens.
repeatinterval is how long to wait for the next call as long as the Button
is held down.

Every Button also has two new methods, but don’t forget about the universal
methods: configure and so on.

b.flash()

The Button will flash, rapidly switching between its normal and active
colour schemes three or four times.

b.invoke()

277

Simulates a click. The Button's callback function is called.

44. Entry - simple text input

An Entry is a box in which the user can type a single line of text that the program
can then access. This is an ugly and slightly dangerous calculator:

 1 >>> def doit():
 svout.set(eval(svin.get()))

win = tk.Tk()
svin = tk.StringVar()
svout = tk.StringVar()
inw = tk.Entry(win, width = 20, textvariable = svin,
 background = "white")
inw.pack()
doitw = tk.Button(win, text = "do it now", command = doit)
doitw.pack()
outw = tk.Label(win, textvariable = svout,
 background = "white")
outw.pack()

 2 ...
 3
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 ...
 9 >>>
 10 >>>
 11 >>>
 12 >>>
 13 ...
 14 >>>

The user types an expression into the Entry box at the top, clicks the Button in
the middle, and the value appears in the Label at the bottom.

background, bg, foreground, fg, textvariable, justify, font, relief,
borderwidth, border, bd, and cursor,

Exactly as they are for Labels.

width = size

Specifies the width of the box, measured in characters, not pixels. This will
be inaccurate unless you use a fixed-width font. The default is 20.

state = "normal", "disabled", "readonly", or "active"

When the Entry is "disabled", the user can’t do anything with it. "readonly"
is similar, but the user can still select and copy the text. The programmer
should not normally set the state to "active", it is supposed to change to
"active" automatically when the mouse is inside the Entry, but it doesn’t on
my Windows PC.

disabledbackground = colour
disabledforeground = colour

Alternative colours used when the Entry object is disabled.

insertbackground = colour
insertwidth = number of pixels
insertontime = milliseconds
insertofftime = milliseconds

These change the appearance of the cursor that marks the position where
keypresses will be entered. insertbackground is the cursor’s colour,

278

default "black". insertwidth is the width of the cursor, default 2 pixels.
The cursor normally flashes on and off fairly evenly, the two time options
change the rate of flashing. insertontime is the time it will spend visible,
and insertofftime is the time it will then spend invisible. An
insertofftime of 0 means no flashing at all.

There is no padx, pady, height, activebackground, or activeforeground

validatecommand = tuple
validate = "focus", "focusin", "focusout", "key", "all", or "none"

The contents of the Entry can be automatically checked for validity as it is
being changed. You provide a function that returns True if the contents is
valid, and False if it isn't. You then register that function with your
window, and provide it as the first item in validatecommand’s tuple.
validate is set to say exactly when the automatic checking should be
performed.

The values for validate mean:
 "focus" getting or losing focus
 "focusin" getting focus
 "focusout" losing focus
 "key" contents changed by a keyboard keystroke
 "all" any of the above
 "none" never validate

The easy way to do this doesn’t work (on Windows anyway). The easy way
would be to make your validating function just look at the StringVar's
value and base its decision on that. It doesn’t work because the validator’s
job is to say whether the change should be allowed or not. If it says False,
the StringVar doesn’t get changed. That means that the validator is called
before the StringVar changes, so it will be making its judgement based on
what the string was before the user’s change.

Instead you specify extra parameters that will be generated and supplied to
your validator as parameters. That’s what the other entries in the tuple are.
I have only found one of them to be really useful, but I can imagine a use for
three others.

"%P" is what the string would be if the change is allowed.
"%s" is the unchanged string, the same as the StringVar’s .get().
"%W" is the name of the widget.
"%v" is the current value of validate.

So Imagine that I would be happy with any string that does not contain an @
sign. I would need to add a function and a registration step, and change the
call to the Entry’s constructor:

 1 >>> def ok(newval):

 return newval.find("@") < 0

 2 ...
 3

279

 4 >>> validator = win.register(ok)

inw = tk.Entry(win, width = 20,
 textvariable = svin,
 background = "white",
 validatecommand = (validator, "%P"),
 validate = "all")

 5
 6 >>>
 7 ...
 8 ...
 9 ...
 10 ...

This only results in nothing at all happening when the user types an @, no
explanations or warnings are given to the user. You would need extra code
in the ok function to make some easily seen explanation appear somewhere
in the gui.

I think you would be better of forgetting about this feature, and just perform
validation on the final result of all the user’s activities when the “do it now”
button is pressed.

An Entry also has a lot of methods. When a cursor position is given, 0 means
before the first character, 1 means between the first and second characters and so
on. When a character position is given, it is the normal Python way, 0 means the
first character. And don’t forget about the universal methods: configure and so
on.

e.show(string)

This is used for password entry fields. Whenever the user types anything
into the Entry, every character typed is just show as though the first
character of the given string had been typed instead. Of course, the value
that you retrieve from the StringVar contains the real characters that were
actually typed.

e.insert(pos, s)

Insert the string s into the string and the display, just before character pos.

e.delete(first, last)

Delete characters from the string and the display, beginning with the firstth
character, and ending before the lastth. Default for last is all the way to the
end.

e.icursor(pos)

Move the cursor to character pos.

e.select_clear()

Deselect everything. The selection is the usually highlit range of characters
that the user has dragged the mouse across prior to copying or deleting.

e.select_range(first, last)

Select everything starting from the startth character and ending just before
the lastth character.

e.select_present()

280

True or False: is there anything selected at the moment?

e.selection_get()

Return the currently selected substring.

45. Binding to mouse and keyboard events

The following is written with the example of an Entry object in mind, but all of
this applies equally to all other tkinter objects.

Users don’t expect to have to press a button in order to have their input accepted.
Pressing enter is usually enough. tkinter allows keypresses to be bound to
functions so that the function is called whenever that key is pressed, so long as a
particular widget has focus. It is easy to do. I could just add

 1 >>> win.bind("<Return>", doit)
immediately after creating the window, then the doit function would be called if
anything in the window has focus when enter is pressed. It is almost certainly
better to be more precise with this instead:

 1 >>> inw.bind("<Return>", doit)
right after the Entry inw is packed. That way doit is only called if that particular
Entry has focus when enter is pressed. You can have a different function attached
to enter for each of a large number of Entry objects.

One more change would be required. When a function is called as a result of a
bound key being pressed, it is given a parameter, a KeyPress event object that
says exactly what the triggering event was. But when a function is called because
it is a Button’s command callback, no parameter is provided. Just give doit a
parameter with a default value so both cases will be valid.

To bind a keypress other than enter, you can usually just provide that character
as the string, as in

 1 >>> win.bind("a", doit)
The exceptions are for space and <, which become <space> and <less>. Note that
Return must have a capital letter while space and less must not. If you use
<Key> then any key, even a shift key, will trigger the function call, and you'll have
to look at the event parameter to see which one it was.

These are “all” the keypresses you can bind, but just by example of a few from
each category. Note that capitalisation is totally inconsistent but you have to get it
right.

"<Return>", "a", "q", "Q", "3", "7", "#", "(", "$", "\"", "<Control-u>",
"<Control-slash>", "<Control-backslash>", "<Control-Key-1>",
"<Control-Key-7>", "<Tab>", "<space>", "<less>", "<BackSpace>",
"<Delete>", "<Escape>", "<F1>", "<F7>", "<Alt-h>", "<Alt-q>",
"<Left>", "<Up>", "<End>", "<Home>", "<Prior>", and "<Next>".

Note: <Prior> and <Next> are tkinter’s names for Page Up and Page Down.
Control-Key-n refers to the non-standard combination of typing a digit while
holding down the control key.

281

You can also bind to some mouse events. Button-1 always refers to the left
mouse button, but the right is sometimes 2 and sometimes 3. On this computer,
"<Button-3>" is for a right-click, "<B1-Motion>" is for dragging the mouse while
keeping the left button pressed. For the details of a mouse drag you need to look
at the value (let’s call it e) passed to your callback function. e.x and e.y are the
coordinates of the mouse pointer at the time the event was recorded. You will get a
lot of these events while the mouse is being moved, so you can trace its path quite
well. e.type will be tkinter.EventType.Motion.

In any given component, each event can only be bound to a single callback. A
subsequent bind for that event to a different callback will cancel the original
bind. To cancel a bind deliberately, use:

 1 >>> inw.unbind("<Return>")

In fact, all tkinter components support bind and unbind, but that is of limited
use for some of them. Canvasses and Labels can not take keyboard focus, so
binding keyboard events for them has no effect. But you can still bind mouse
events for them, to detect clicks and so on. The list of mouse events is:

"<Button-n>" or just "<n>":

The nth mouse button is clicked.
"<ButtonPress-n>"
"<ButtonRelease-n>"

The two components of a click. Pressing and clicking can not be
distinguished on my Windows PC.

"<Double-Button-n>"
The nth mouse button is double-clicked. Also not distinguishable from clicks
on my PC.

"<Triple-Button-n>"
The nth mouse button is triple-clicked. Has no effect at all on my Windows
PC.

"<Bn-Motion>"
The mouse is dragged while its nth button is held down.

"<Enter>"
The mouse cursor has entered the widget’s space. Clicks not necessary.

"<Leave>"
The mouse cursor has left the widget’s space.

There are also a few other kinds of event:

"<Configure>":

The widget’s size or position has changed.
"<FocusIn>":

Keyboard focus has been gained by this widget, or if it is a container,
possible one of the widget that it contains.

"<FocusOut>":
This widget has lost keyboard focus.

282

Individual Canvas items may also have events bound to callback functions:

c.tag_bind(items, event, function = None, add = None)

event may be any of the mouse events that are described a bit later in the
sub section for an entry (sometimes there is no order of presentation that
really works) such as "<Button-1>" for a left mouse click. Every time the
given event occurs directly on top of any of the items, the callback function
will be called. "Directly on top of" is modified by the closeenough Canvas
option. The function should have exactly one parameter, and it will be an
object describing the event. Normally this function replaces any function(s)
already bound to this event and this item, but if add is "+", it becomes an
additional callback for the same event. The return value is a string that can
be used later with the tag_unbind method.

c.tag_unbind(items, event, funcId = None)

The parameters are as for tag_bind, funcId is the string that tag_bind
returned. The callback function for these items and this event is removed. If
funcId is None, all the callbacks are removed.

46. Text

A Text object is a vast extension of an Entry. It is multi-line, multi-font, multi-
background, images can be included, text editing operations are available. A Text
object does not provide buttons or menus allowing the user to command these
things, the programmer has to provide all such things. You can do that by key
bindings as described for Entry objects, or by creating Buttons, or by providing
menus, which is still to come.

background, bg, foreground, fg, textvariable, font, relief, borderwidth,
border, bd, cursor, padx, pady, insertwidth, insertbackground,
insertontime, and insertofftime.

Exactly as they are for Entrys and earlier things.

height and width

Are measured in characters, not pixels.

state = "normal" or "disabled"

The same as for everything else.

tabs = tuple of list of strings

The strings give the positions of the tab stops, they are in the usual distance
format, "1.5i" for inches, "1.5c" for centimetres, "1.5m" for millimetres,
and "1.5p" for points. Each position is optionally followed by one of
"left", "right", "center", or "numeric" to specify the kind of tab. The
first three mean what they normally mean in word processing. "numeric"
means that the decimal points in the text immediately following the tab
insertion will be aligned at the tab position. The decimal point is simply the

283

first "." encountered. If there is no decimal point then the entire string is
deemed to be before the decimal point.

wrap = "char", "word", or "none"

If a line is too long for the given width, it will be split at the first character
that doesn’t fit, the previous piece of white space, or not at all, respectively.
"word" is the default.

selectbackground = colour
selectforeground = colour

When a region of text is selected, either by the user dragging the mouse
across it, or as a result of a method call, these colours will be used in
displaying it.

spacing1, spacing2, or spacing3 = size, defaults are 0

Extra space above and below each line. 1: space above, 3: space below. If a
long line is wrapped, 1 only applies above the whole thing and 3 only below
the whole thing. 2 is the extra internal vertical space within wrapped lines.

 And of course a Text has all the universal methods: configure and so on.

There is absolutely nothing to stop the contents of a Text from being bigger than
its height and width specified. The display will automatically move around to
ensure that the input cursor remains visible after any user activity (inserts,
deletions, arrow keys, etc). You can add scrollbars to give the user more control,
and that is covered soon, but there is a subclass called ScrolledText that
automatically adds a vertical scroll bar, that is coming later in this subsection.
The program can itself cause the text to scroll with these three methods. The first
one uses an index, which is a way to specify a position in a Text’s contents, and is
described next.

t.see(index)

Does whatever scrolling is necessary to make the text at the index visible.

t.xview("scroll", n, "units" or "pages")

Moves the contents horizontally by a distance of n. What n means is
determined by the second parameter, "units" means n characters,
"pages" means n times the Text’s width. Calling that a “page” makes sense
for vertical movement. If n is positive the text moves to the left (We normally
expect left to be negative and right to be positive, but this method is really
intended to be used automatically by a Scrollbar widget, and the text
moves left when the scrollbar moves right), and if n is negative it moves
right.

t.xview("moveto", pos)

pos should be a float between 0 and 1. Moves the contents horizontally so
that position pos is as close to the left edge as possible. pos = 0 means that
a scrollbar would be all the way to the left, pos = 1 means that a scrollbar
would be all the way to the right.

284

t.yview(...)
Is the same as the two xviews except that the movement is vertical.

This small example uses a ScrolledText rather than a plain Text widget, but
they are both used in exactly the same way. The only difference is that a
ScrolledText automatically adds a scroll bar to the right. The insert method
used here is explained in the next subsection. Note also that ScrolledText is
imported from tkinter.scrolledtext whereas Text is imported from plain old
tkinter.

 1 >>> from tkinter.scrolledtext import ScrolledText

win = Tk()
st = ScrolledText(win, width = 40, height = 7)
st.pack(fill = "both", side = "left", expand = True)
fi = open("boolean.py", "r")
st.insert("1.0", fi.read())
fi.close()

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>

i. Index - positioning, inserting, etc

An index is used to refer to a position within the text and images. It is always a
string. Indexes are used with many of a Text’s methods, such as w.get(index1,
index2) and w.delete(index1, index2) which retrieve or erase the text
between the two indexes. If you have images within the text, they are considered
to be single characters.

"12.15":

Just before the character 15 on the twelfth line. Lines start counting from 1,
but characters start counting from 0, so "4.0" is the beginning of the
fourth line, "1.0" is just before the first character of all. It is not an error
for a number to be too big. If the line number is beyond the end of the text,
it is taken as meaning the end of the text. If the character number is beyond
the end of its line, it is taken as meaning the end of that line.

"4.end":

Just after the last character on the fourth line.

"end":

285

Just after the very end of all the contents, the opposite of "1.0".

"insert":

The position of the cursor. Not the ordinary cursor that follows the mouse
everywhere, but the vertical line insertion cursor specific to this Text.

"current":

The closest index to the current position of the mouse. A character has to be
completely left of the mouse cursor in order to be included.

"@x,y":

x and y must be numbers. The closest index to position (x, y) within the
Text object, measured in pixels.

"sel.first":

The index of the first character in the current selection. Exception if there
isn’t currently a selection.

"sel.last":

The index of the last character in the current selection.

"abc":

You can create things called marks at any position in the text. Marks have
names. If abc is the name of a mark, then "abc" means the position of that
mark.

"abc.first":

As well as marks, there are also tags. A mark represents a single position,
but a tag represents a whole region of text. If abc is the name of a tag, then
"abc.first" is the position of the first character within that tag.

"abc.last":

The position of the last character within a tag.

Index strings may be extended by adding any number of extra strings in the
following formats. They are interpreted as modifiers to a position in left to right
order. "4.7 + 3 lines + 8 chars" is (usually) equivalent to "7.15". Only
usually because "+ n chars" doesn’t stop if it reaches the end of a line, it just
moves on to the next one.

"+ n chars" or "+nchars"
"- n chars" or "-nchars"
"+ n lines" or "+nlines"
"+ n lines" or "+nlines"

The obvious meanings, given the little example above.

"linestart"
"lineend"

The very beginning or very end of the line we are on now.

286

"wordstart"

Just before the beginning of the word that contains the current position. A
word is considered to be any unbroken sequence of letters, digits, and
underlines. If the current position isn’t within any such thing, then it just
moves back by a single character.

Indexes are operated on by various methods of the Text object:

t.index(index)

However the index is specified, it is converted to the first form,
"line.character" and that string is returned.

t.get(index)
t.get(index1, index2)

The first form returns the character immediately after the given index. The
second form returns a string containing all the characters that come after
index1 and before index2, so w.get("1.0", "1.3") return the first 3
characters of the first line. \ns are included if the region spans more than
one line. Images are ignored in constructing the string.

t.delete(index)
t.delete(index1, index2)

The indexes describe a range of text in exactly the way they do for get. The
range of text is deleted.

t.insert(index, string)

The string is inserted at exactly the position of the index.

t.compare(index1, relationship, index2)

Relationship may be any one of "==", "!=", "<", ">", "<=", and ">=".
Returns True or False depending upon whether or not the given
relationship holds between the relative positions of index1 and index2.

t.bbox(index)
Short for bounding box. Characters are displayed so that their bounding
boxes are pressed up against each other, usually with no space between
them, and always with no overlap. Returns a tuple giving the position and
size, all in pixels, of the bounding box for the character following the index.
If the index is at or beyond the end of a line, the box returned describes the
unused portion of the line, from the right edge of the last character to the
Text's own right edge.

The bounding box is in the form (x, y, w, h), x and y are the co-ordinates
of the top left corner, w and h are the width and height.

t.dlineinfo(index)
Exactly the same as bbox, except that it is the bounding box for the whole
line that contains the given index.

287

t.search(string, index, ...options...)

Searches for a match for the string, starting at the given index. It returns an
index in its most basic form "line.character" showing where the match
starts or an empty string if there is no match. All of the options are optional,
they are:

nocase = 1

The search will be case insensitive.

stopindex = index

Limits the scope of the search, it will not go beyond this index.

exact = True or False, True is the default.
Requires an exact match for the string, it is the opposite of regexp.

regexp = True or False, False is the default.

Treats the string as a regular expression and accepts any match for it.
tkinter's regular expressions are not as powerful as Python’s own
regular expressions, the only special characters are ., ^, [,], (,), |,
*, +, and ?, and nothing has any special meaning inside [...].

forwards = True or False, True is the default.

Searches from the index towards the end of the text.

backwards = True or False, False is the default.

Searches backwards from the index towards the beginning of the text.

count = IntVar.

The number of characters from the text that matched the pattern will be stored as
its value.

ii. Mark - automatically updated position reference

A mark gives a name to a position within the text, and it is updated automatically.
If the text before a mark is inserted or deleted, the mark moves forwards or
backwards to keep its position between the same two characters.
If the text around a mark is deleted, the mark remains valid, and represents the
new position where the deleted text used to be.

If text is inserted at the exact position of a mark, what happens depends on the
value of the mark’s “gravity”. Gravity may be either "left" or "right". "left"
means the mark would move to the left of the inserted text, and "right" means it
would move to the right of the inserted text. The default gravity is "right".

Marks do not have much of an existence of their own, they are entirely controlled
by the Text’s own methods:

288

t.mark_set(name, index)
Creates or modifies a mark at the position given by index. The name may be
any string so long as it doesn’t include any '.' or whitespace characters.

t.mark_unset(name)

Deletes the named mark.

t.mark_gravity(name, "left" or "right")
t.mark_gravity(name)

The first form changes the gravity of a mark, the second form returns it.

t.mark_next(index)
t.mark_previous(index)

Return the name of the next mark either following or preceding the given
index. If the index starts with the form "name" (i.e. the index is actually a
mark), it is not an eligible return value, the next before or after it will be
returned. In other cases, if the given index exactly matches the position of a
mark, then that mark will be returned. The value is an empty string if there
is no mark meeting the requirements.

t.mark_names()
Returns a tuple of all the mark names currently in existence. It will always at least
include "insert" and "current", which always count as mark names
corresponding to the same-named indexes.

iii. Tag - control over multiple regions

As stated a little while ago, a tag describes a region of text, but it is more than just
two indexes. Tags do not have to describe contiguous areas, they represent any
number of contiguous regions of text, each of which could be described by a start
index and an end index. Tags can overlap, any region of text can be covered by as
many tags as you want.

The purpose of a tag is not really just to describe a region of text, but to give you
control over it. You can set any of the properties: colour, font, justification, etc, all
at once. If two tags overlap and demand different settings (perhaps a run of
characters is within two tags, one of them sets it to orange and the other sets it to
blue) there is a “tag stack” that resolves the conflict. Essentially, newer tags
outrank older tags. You can modify the tag stack to change the order.

If any of the text is selected (usually because the user dragged the mouse across it
while keeping the left button down), there will automatically be a tag named "sel"
that represents the selected region. The programmer can cause text to be selected
by using the tag_add method on "sel".

The Text methods that control tags are:

t.tag_add(name, index1, index2)

289

The region between the two indexes becomes part of the named tag. If no
such tag exists, it is created. The second index is optional, if it is absent,
then just the single character immediately after the first index is taken.

t.tag_remove(name, index1, index2)

The same parameters as tag_add. the region of text is no longer controlled
by the named tag.

t.tag_delete(name)

The tag is removed everywhere from the entire Text, and any settings of
options that it imposed are undone.

t.insert(index, string)

This is primarily a method for working with an index, but it has an effect on
tags. Tags define a region of the text, so if the index point is within a tag, the
entire inserted string will also be covered by that tag. There is an optional
third parameter which must be a tuple of strings, the strings being tag
names.
The inserted text will all belong to all of the named tags. If a tag with that
name does not already exist, it will be created.

t.tag_config(name, option = value, option = value, ...)

For all the text controlled by the named tag, the given options are set to the
given values. The applicable options are the familiar ones: background,
foreground, font, justify, underline, tabs, borderwidth, spacing1,
spacing2, spacing3, and wrap.

Plus some new ones:

lmargin1, default 0

indentation for first lines.
lmargin2, default 0

indentation for successive lines
rmargin, default 0

space to be left between the end of a line and the Text’s right edge
offset, default 0

distance characters must be raised or lowered compared to their
neighbours (for superscripts and subscripts)

overstrike, default 0
overstrike = 1 means a horizontal line is drawn through the middle
of the text.

t.tag_config(name)

Returns a dictionary of all the options that have been set for this tag and
their values.

t.tag_cget(name, option)

Returns the value of the option that has been applied to this tag.

290

t.tag_bind(name, event, callback)
If the given event occurs in an area controlled by the named tag, the
callback function will be called with one parameter that describes the event.
The events that can be bound are just as they were for Entry objects,
"<Button-1>" for a mouse left-click, "w" for a lower case w being typed, etc.

t.tag_unbind(name, event)

Undoes the effect of tag_bind.

t.tag_names()

Returns a tuple of the names of all known tags in tis Text.

t.tag_names(index)

Returns a tuple of the names of all of the tags that control the text at index.

t.ranges(name)

Returns an even-length list of indexes giving the entire portion of the Text
that is controlled by the named tag. The indexes come in pairs, the first of
each pair says where a subregion begins, the second says where it ends.

t.tag_nextrange(name, index1)
t.tag_nextrange(name, index1, index2)

Searches forward from index1 to the end of the Text, looking for the
beginning of a region controlled by the named tag. It returns a tuple of two
indexes: that region’s beginning and end, or a zero-tuple if none is found. If
index2 is provided, the search ends there instead of at the end of the Text.

t.tag_prevrange(name, index1)
t.tag_prevrange(name, index1, index2)

Exactly the same as tag_nextrange, except that it searches backwards
from index1 to the beginning of the Text. It is still only searching for
beginnings of regions.

t.tag_raise(name, aboveThis = None)

If aboveThis is None, the named tag goes to the top of the priority stack.
Otherwise aboveThis must be another tag name, and the first named tag's
priority is raised until it is just above the second. If the change in priority
results in any conflicts being resolved differently, the display is updated
accordingly.

t.tag_lower(name, belowThis = None)
Just like tag_raise. If belowThis is None, the named tag goes to the bottom of
the priority stack. Otherwise belowThis must be another tag name, and the first
named tag's priority is reduced until it is just below the second.

iv. Images

291

A PhotoImage, as described in the Canvas: Image subsection, can also be inserted
into the text. It is treated as a single character.

t.image_create(index, image = PhotoImage, options)

The image appears in the text at the index’s position. There are only a very
few options:

name = string

Gives the image a name. You can find an image’s position if you know
its name. If you do not provide a name, tkinter will make on up, and
return it as the result of image_create.

padx and pady

Have their usual meanings..

align = "top", "bottom", "baseline", or "center",

The height of a line is always the height of the tallest thing within it
plus any extra spacing caused by spacing1/2/3. Usually an image
will be taller than anything else, in which case align does not come
into effect. But if you insert two images of different heights, one of
them will be shorter than the line that contains it. align says what
its vertical position should be in this case. "top" aligns the image’s
top with the line’s top, "center" aligns centre with centre, and
"bottom" aligns bottom with bottom. "baseline" aligns the image’s
bottom with the line’s baseline. The baseline is the bottom of any
normal character that has no descender such as p or q.

t.index(imagename)

This is an extra use of the index method in the Text/Index subsection.
Returns the position of the image in the usual "line.character" string
format.

t.image_configure(index, option = value, ...)

You can only refer to an image by its index, which is for the position just to
the left of the image. This method lets you change any of the very few
options given to create_image. If you do not provide any option = value
pairs, it returns a dictionary of all of them.

t.image_cget(index, option)

Returns the value of the given option.

t.image_names()
Returns a tuple of the names of all the images in this Text object.

v. Window - inserting widgets in text.

Images are not the only non-text thing that can appear in a Text object. Any
tkinter widget can go in there, even a container with many other widgets inside

292

it. Such objects occupy what is called a window in the text. Like images, windows
are treated as single characters.

t.window_create(index, options)

Strangely, window_create does not allow you to provide a name, but if you
ever want to find a window, you'll need to know its name. To handle this,
you must give a name to the widget that the window is based on. When you
create the widget, just use the name = "xxx" option. If the widget’s name is
"xxx" then the window’s name will have a dot added at the beginning:
".xxx".

Also remember that when you create a widget, the first parameter to its
constructor must be the container that will contain it. But these widgets are
not going into a real container. I’ve found that giving None as that first
parameter, or the main window itself, both work well.

These are the possible options. You must provide either window or create
but not both.

align, padx, and pady

The same as for an image.

stretch = int, the default is 0.

If stretch is set to 1 and the widget is shorter than the line that
contains it, then align will be ignored and the widget will be
stretched vertically to fill the line’s height instead.

window = widget

This is the widget that is to be embedded in the text.

create = function

This parameterless function will be called and the widget that it
returns is the one that will be embedded in the text.

t.index(imagename)

Just like for images.

t.window_configure and t.window_cget

Are exactly the same as t.image_configure and t.image_cget.

t.window_names()
Returns a tuple of the names of all the windows in this Text object.

vi. Undo and Redo

There are three more options available to the Text object’s constructor, they are
undo (default False), maxundo (default -1), and autoseparators (default True).
They control the object’s ability redo and undo editing operations.

293

If undo is left at False, there is no ability to undo operations, and nothing else in
this subsection will work. When True, everything that makes a change to the text,
whether it was done by the user typing or deleting or by the program using the
object’s methods, is recorded on a stack. maxundo says the size of the stack, -1
means unlimited. If maxundo is exceeded, the oldest entries are lost.

t.edit_undo() and t.edit_redo()

Reverses the effect of the last changes, how many will be explained very
soon. Those changes are not completely discarded immediately. As soon as
another change is made after an edit_undo, those changes are discarded. If
no further change has been made, an edit_redo will reverse the effect of
the last edit_undo, restoring the effects of all the undone editing
operations.

t.edit_separator()

Adds a special entry, called a separator, to the stack. An edit_undo will
always undo all the operations on the stack, back to (and including) the last
separator. The system will not allow two consecutive separators on the
stack.

If autoseparators is True, the system automatically adds a separator after
each closely related sequence of operations. What counts as closely related
is a little inconsistent, at least on this Windows PC. Any sequence of
t.inserts, even to totally different parts of the text, and any sequence of
t.deletes to anywhere at all, are considered to be closely related. When
the user is typing or deleting, only consecutive operations are closely
related. Type something somewhere, move the cursor, and type something
somewhere else becomes two sequences with a separator between them.

t.edit_modified()

The system records whether or not the text has been changed in a special
Bool flag. Every time any change is made, the flag is set to True, but
edit_undo and edit_redo are taken into account, so the flag can go back
to being False. This method returns the value of that flag. If you’ve been
editing a file and find that the flag is False, there is no need to re-save the
results.

t.edit_modified(True or False)
Explicitly sets the value of that flag. If you initialise a Text object with the
contents of a file, you probably want to consider that to be the original
unmodified state, but the act of inserting the file’s contents would have set
the flag to True. This method lets you choose what is considered to be the
unmodified state.

47. Scrolling

There are widgets that represent horizontal or vertical scroll bars, and other
widgets that could have more content than can fit inside a reasonably sized one

294

(such as Canvasses and Texts) have ways of being controlled by Scrollbar
widgets.

Everyone is perfectly familiar with scroll bars, but
we need to get tkinter’s terminology for them
sorted out, so here are two of them.

The dark bit in the middle, that you move to make big changes in position is
called the slider. We generally expect the size of the slider to be proportional to the
portion of the document we can currently see. The pale areas to the left and right,
or above and below, that you typically click on to move by approximately a page
are called troughs. The top or left one is trough 1, the bottom or right one is
trough 2. The triangles at the ends, that we click on to move by a fairly small
amount are called arrow 1 and arrow 2.

The constructor follows the usual pattern for widgets:

sb = tk.Scrollbar(window, option = value, ...)

and it has many of the familiar options. These ones are exactly as we are used to
them being: background (or bg), borderwidth (or border or bd), cursor, relief,
activebackground, and activerelief, and command provides the callback to be
used whenever there is any movement. background (or bg) is taken as the colour
of the slider and the arrows. The active... options do not work on my Windows
PC.

The new options are:

orient = "horizontal" or "vertical" (default "vertical")

With the obvious meaning.

width = size

The narrow dimension of the whole Scrollbar. For a vertical one there is
no question about what width should mean. For a horizontal one, we might
think this should be called height, but it isn’t.

troughcolor = colour

The colour for the troughs.

jump = 0 or 1 (default 0)

The usual behaviour is that after even the slightest movement of the slider,
the callback is called so that the display can be updated in time with it. If
jump is 1, nothing happens until the slider is in its new position and the
mouse has been released.

elementborderwidth = size (default -1)

The width of the borders around the arrows and slider. The illustrations
don't show any border because that isn't the current Windows style, but

295

blockier guis often present the slider as a rectangle with raised borders. -1
means that it should be the same as borderwidth.

repeatdelay = milliseconds (default 300)
repeatinterval = milliseconds (default 100)

If the mouse button is held down in one of the troughs for longer than
repeatdelay, the callback will be called again, and then again and again
after every repeatinterval.

To make a Scrollbar work, it must be configured to know about the component
that it is controlling, and that component needs to be configured to know about
the Scrollbar.

Everything that can be scrolled has xscrollcommand and yscrollcommand
options and xview and yview methods.

If you create the scrollable thing first, then set your Scrollbars’ command option
to be the scrollable’s xview (for horizontal) or yview (for vertical) method, then
configure the scrollable's xscrollcommand or yscrollcommand to the
Scrollbars’ set method.

If you create the Scrollbars first, then it is the other way round. When you
create the scrollable widget, set its xscrollcommand and/or yscrollcommand
options to the appropriate Scrollbar’s set method, then configure the
Scrollbars’ command option to be the scrollable’s xview or yview method.

Here is the whole thing:

 1 >>> win = tk.Tk()

txt = tk.Text(win, width = 50, height = 10, wrap = "none")
txt.grid(row = 0, column = 0)
 # use txt.insert("1.0", ...) to give the Text its content
hsb = tk.Scrollbar(win, orient = "horizontal",
 width = 20, command = txt.xview)
hsb.grid(row = 1, column = 0, sticky = "ew")
vsb = tk.Scrollbar(win, orient = "vertical",
 width = 20, command = txt.yview)
vsb.grid(row = 0, column = 1, sticky = "ns")
txt.configure(xscrollcommand = hsb.set)
txt.configure(yscrollcommand = vsb.set)

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 ...
 7 >>>
 8 >>>
 9 ...
 10 >>>
 11 >>>

12
>>>

If you don’t set the Text’s wrap to "none" you will never get an opportunity to use
the horizontal Scrollbar. If you don’t use sticky when you grid the
Scrollbars they will be so small that they can't be moved.

The slider can also be moved by the program through the following methods. You
should almost certainly not do this unless you also move the contents by the
corresponding distance with the Text’s xview and yview methods. Even then,

296

there isn’t much point: Calling the Text’s xview or yview method automatically
moves the slider to the correct position.

sb.get()

Returns the tuple (L, R) describing the slider’s position and size. L and R
are both floats in the range 0 to 1, where 0 means the left or top and 1
means the right or bottom of the Scrollbar. L gives the left or top edge of the
slider, and R give the right or bottom.

sb.set(L, R)

L and R should be exactly as described for get. The slider’s size and
position are changed to match them.

sb.delta(xchange, ychange)

xchange and ychange represent a desired movement in pixels. It returns a
float between 0 and 1 which is the amount that would need to be added to
the slider’s L and R values to cause that movement. There really should not
be two parameters: a horizontal Scrollbar completely ignores the value of
ychange, and a vertical one completely ignores xchange.

sb.fraction(x, y)

x and y are a position inside the scrollable thing, measured in pixels.
Returns a float in the range 0 to 1, which is the value that the slider’s L
should be set to in order to move that position to the left or top.

sb.identify(x, y)

x and y pixel coordinates relative to the Scrollbar’s own top left corner.
Returns "arrow1", "trough1", "slider", "trough2", or "arrow2"
depending on which of those is at that position. If no part of the Scrollbar
is at that position, it returns the empty string.

sb.activate()
sb.activate("arrow1", "slider", or "arrow2")

This method does not work on my Windows PC. The first form is supposed
to return either "arrow1", "slider", or "arrow2", if the mouse is directly
above one of those things, or the empty string if it isn’t. The second form is
supposed to put that named part into the active state, so it will be coloured
appropriately. Why would they leave out "trough1" and "trough2"?

Texts are not the only widgets that can have Scrollbars attached to them. A
Canvas, a Listbox, and a Treeview can too. Listbox and Treeview will be
covered soon. They all have a xscrollcommand, yscrollcommand, xview, and
yview that work exactly the same as they do with a Text.

A Canvas provides three extra options:

scrollregion = (L, T, R, B)

The other three scrollable widgets have a natural size determined by their
contents, so how far you are allowed to scroll in any direction is perfectly

297

clear. But a programmer could potentially draw anywhere on a Canvas, so
the scrollable region can be controlled. All four values in the tuple are
positions measured in pixels, being the Left, Top, Right, and Bottom edges
of the region that can be scrolled through. One would normally expect L and
T to be 0, and R and B to be the width and height of the imaginary piece of
drawing paper that we are scrolling over, but that is not an actual
restriction.

The numbers really do describe the imaginary paper, but L and T can be
negative if you want. The default position when everything is first displayed
is that your paper’s (0, 0) will be at the top left of the visible area.

xscrollincrement = size
yscrollincrement = size

size is in pixels if it is an int, but it may also be in the string format,
"0.25i" for a quarter of an inch for instance. Setting these makes the
scrolling jumpy. If you very slowly move the slider, nothing will happen for a
while, but then all of a sudden the viewing area moves by the specified
distance. The visible portion of the paper can only start at an exact multiple
of size from its top or left edge.

Additionally for Canvasses and Texts only, there are methods for what is called
fast scrolling. The idea is that when the user drags the mouse across the canvas
while keeping a mouse button pressed, the canvas should scroll as though the
paper were being pulled in the same direction. These two methods enable that
behaviour:

w.scan_mark(x, y)
w.scan_dragto(x, y, gain = 10)

scan_mark should be called when the chosen mouse button is pressed, and
scan_dragto is called if mouse movement is detected while the button is
still pressed. It isn’t possible to directly ask whether a mouse button is up
or down, but motion events are only generated for mouse movements while
a button is held down. So the appropriate mouse events should be bound to
callback functions that call these methods. If w is a Canvas or Text:

 1 >>> def pressed(evt):
 w.scan_mark(evt.x, evt.y)

def dragged(evt):
 w.scan_dragto(evt.x, evt.y, 3)

w.bind("<ButtonPress-1>", pressed)
w.bind("<B1-Motion>", dragged)

 2 ...
 3
 4 >>>
 5 ...
 6
 7 >>>

8 >>>

The gain parameter says how fast the paper should move, it has no
particular units. I find that the default of 10 is far too reactive, and 3 is
more comfortable.

298

48. Checkbutton

A Checkbutton is the familiar simple mechanism for allowing the user to make a
binary yes/no choice. Here are three of them:

In a very simple situation, they are very simple to set up:

 1 >>> from tkinter import *

iv1 = IntVar()
cb1 = Checkbutton(win, variable = iv1, text = "Measles")
cb1.grid(row = 0, column = 0, padx = 10)
iv2 = IntVar()
cb2 = Checkbutton(win, variable = iv2, text = "Chicken pox")
cb2.grid(row = 0, column = 1, padx = 10)
iv3 = IntVar()
cb3 = Checkbutton(f, variable = iv3, text = "Plague")
cb3.grid(row = 0, column = 2, padx = 10)

 2 >>>
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>

10
>>>

From now on, I’m going to assume that * for tkinter’s import, that way I won’t
have to type tk. in front of so many things, and I can fit a little more on a line.

Checkbuttons are controlled by an IntVar, whenever it is selected or deselected
the IntVar is automatically changed (by default 0 is for off, and 1 is for on). Each
Checkbutton takes its initial state from the original value of its IntVar, so if I
wanted Chicken pox to be initially selected, I would have typed iv2 =
IntVar(value = 1). The program may turn the Checkbutton on and off by itself,
either by using the IntVar’s set method, or by using the Checkbutton’s select,
deselect, and toggle methods.

A Checkbutton’s description is usually given by the text option, as in the
example, but you can instead set the textvariable option to a StringVar. Then
its description can be changed easily whenever desired.

As with a Button, the description can be a string (set text or textvariable), or a
graphic (set image), or both if you set compound.

These options are exactly the same as for Buttons: background or bg,
foreground or fg, borderwidth or border or bd, font, justify, cursor, padx,
pady, relief, overrelief, state, underline, wraplength, anchor,
disabledforground, activebackground, and activeforeground.

image = PhotoImage
 The same as for a Button, this provides an image that will be used instead
of text.

compound = "top", "bottom", "left", "right", or "center"
 The same as for a Button, allows an image and some text to both appear.

299

selectimage = PhotoImage
 This only works if you have provided an image too. When the Checkbutton
is on, this image will appear instead.

height specifies the number of lines of text but even without it \ns are treated
correctly. width is measured in characters not pixels.

The documentation claims that selectcolor specifies the colour that the widget
should have when it is on, but at least on my Windows PC it just specifies the
colour of the little box regardless of whether it is on or off.

indicatoron = 0
 When set to 1, the Checkbutton will not have the usual little box to show its
state, empty for off and for on. Instead, the whole thing will look just like a
Button, with (by default) a raised border when it is off, and a sunken border when
it is on. Also, selectcolor starts to work as the documentation says: the entire
background of the Checkbutton changes to selectcolor when it is on.

command should be a parameterless callback function, it is called every time the
Checkbutton is turned on or off by a mouse click, changes made by the program
do not cause a callback. Callbacks usually have an event parameter so you can
tell what happened. In this case you just have to use the IntVar’s get method.
The IntVar will always be changed before the callback happens.

onvalue = 1
offvalue = 0
 These provide the values that the IntVar will be set to to indicate whether
the Checkbutton is on or off.

overrelief = "raised", "sunken", "groove", "ridge", or "flat"
 The relief around the Checkbutton will be changed to this style whenever
the mouse is hovering over the Checkbutton. Remember that relief isn't possible
unless you also have a border of a few pixels. Unlike most things to do with mouse
hovering, this does work under Windows.

offrelief = "raised", "sunken", "groove", "ridge", or "flat"
 The relief around the Checkbutton will be set to this style whenever the
Checkbutton is off. This does not work on my Windows PC.

The Checkbutton’s extra methods are:

c.select()
c.deselect()

Turn the Checkbutton on or off.

c.flash()

For about a second or maybe less, the Checkbutton rapidly switches
between its current colour scheme and the alternative given by

300

activebackground and activeforeground. In this case, the active...
settings do work under Windows.

c.invoke()

Causes the callback function to be called.

c.toggle()

If the Checkbutton is on, it is turned off. If it is off, it is turned on.

49. Radiobutton

A Radiobutton is a lot like a Checkbutton, most of the options and methods are
exactly the same. The difference is that Radiobuttons are not independent. Of all
the Radiobuttons whose values are reported and controlled by the same IntVar,
exactly one of them must be on at all times.

There is in fact an exception to the “exactly one” rule. There is nothing the user can
do to make any more or less than one option be selected, but the program can.
This is the code that produced that display:

 1 >>> iv1 = IntVar(value = 2)

lbl = Label(win, text = "Select the size")
lbl.grid(row = 0, column = 0, sticky = "w")
cb1 = Radiobutton(win, variable = iv1,
 text = "small", value = 1)
cb1.grid(row = 1, column = 0, sticky = "w")
cb2 = Radiobutton(win, variable = iv1,
 text = "medium", value = 2)
cb2.grid(row = 2, column = 0, sticky = "w")
cb3 = Radiobutton(win, variable = iv1,
 text = "large", value = 3)
cb3.grid(row = 3, column = 0, sticky = "w")

 2 >>>
 3 >>>
 4 >>>
 5 ...
 6 >>>
 7 >>>
 8 ...
 9 >>>
 10 >>>
 11 ...

12
>>>

The three Radiobuttons all use the same IntVar, iv1. That means that only one
of them may be selected. Another group of Radiobuttons using a different IntVar
will be independent from this group.

The value option says that value that the IntVar will have when this option is
selected, and of course the other way round: if the IntVar’s value is changed the
Radiobutton with the matching value becomes the selected one. This is how the
program can disobey the “exactly one” rule. Change the IntVar so that it matches
none of the options. The default value for an IntVar is zero, not explicitly setting it
would have resulted in nothing being selected. That is a useful way to set things up

301

if you want to be sure that the user has made a positive selection and not just
accidentally taken your default.

These options are exactly the same as for Checkbuttons: background or bg,
foreground or fg, borderwidth or border or bd, text, textvariable, image,
selectcolor, selectimage, compound, font, justify, cursor, padx, pady,
command, height, width, relief, offrelief, overrelief, indicatoron, state,
underline, wraplength, anchor, disabledforground, activebackground, and
activeforeground.

These four methods are the same as for Checkbuttons: select, deselect, flash,
and invoke. There is no toggle.

And there isn’t anything else.

50. Scale

A Scale allows the user to select a numeric value from a predetermined range by
sliding a marker up and down or left and right along a marked background.

This is the code that produced that scale:

 1 >>> iv1 = IntVar(value = 3)

sc = Scale(win, label = "Select the number of triodes",
 variable = iv1,
 from_ = 0, to = 15,
 length = 400,
 orient = "horizontal",
 tickinterval = 5)
sc.pack()

 2 >>>
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...

8 >>>

If you don’t specify a label, there won’t be one and the widget will be narrower.
The number above the slider shows the value currently selected, if you don’t want
it to appear, set showvalue = 0. variable is as with Checkbuttons and
Radiobuttons, it both controls and is controlled by the Scale. The variable may
be an IntVar, a DoubleVar, or a StringVar. Using a DoubleVar means that non-
integer values can be selected. StringVar is rather pointless, with it you can still
only select numeric values, but that value will be presented as a string.

from_ and to specify the minimum and maximum selectable values, the
underline after from is because from is a Python reserved word. length is the
length of the whole bar in pixels. orient may be "horizontal" or "vertical".
tickinterval specifies which numbers will appear beneath the bar. The from_
value will always appear, and after that numbers appear at the given interval. Set
tickinterval to 0 if you don’t want any numbers to appear at all.

302

These options are exactly the same as for Checkbuttons and Radiobuttons:
background or bg, foreground or fg, borderwidth or border or bd,
selectcolor, font, cursor, relief, state, and activebackground.

There are no options for providing a disabled... colour scheme, or for changes in
relief, or for an anchor, or for a textvariable.

command = callback

Specifies a function that will be called every time the user changes the
selection. This time it has one parameter, which will be the newly selected
value. Strangely, it is always presented as a string.

width = number

The size, in pixels, of the narrow dimension of the slider and troughs to
either side of it.

resolution = number

The only values that can be selected are equal to from_ plus an integer
multiple of resolution. If set to -1 and variable is a DoubleVar no
rounding is performed. On my Windows PC, resolution doesn’t work
properly when a DoubleVar is used. I can’t see any pattern behind what
actually happens.

repeatdelay = milliseconds
repeatinterval = milliseconds

The same as for a Scrollbar, used when the user holds the mouse button
down in one of the troughs beside the slider.

troughcolor = colour

The colour of the troughs on either side of the slider.

digits = int

The behaviour of this option is not consistent, at least on my Windows PC. If
I specify a value for digits, then the string passed to the callback function
is always in the form of a float with digits minus two digits after the
decimal point. It has no effect on what is stored in the controlling variable
when it is a StringVar.

The Scale’s extra methods are:

sc.get()
sc.set(newvalue)

Retrieve or change the currently selected value.

sc.coords()

Returns (x, y) being the position of the centre of the slider, relative to the top
left corner of the Scale widget.

303

sc.coords(value)
Returns (x, y) being the position that the centre of the slider would have,
relative to the top left corner of the Scale widget, if it were set to this value.

sc.identify(x, y)
(x, y) are pixel coordinates relative to the top left corner of the Scale widget. The
returned value will be "trough1", "slider", or "trough2" depending on what is
at those coordinates, or the empty string if none of them are. The troughs are
numbered the same was as for a Scrollbar.

51. Listbox

A Listbox displays a number of options as text in a box. The user selects any of
them by clicking on them with the mouse.

This is the code and output produced after I first clicked on “five”, then on “two”,
and finally on the “Now” button:

 1 >>> def doit():

 cs = lb.curselection()
 print("selection is", cs)
 for i in cs:
 print(" includes", lb.get(i))

sv = StringVar(value = "one two three four five six")
lb = Listbox(win, listvariable = sv,
 height = 6,
 selectmode = "multiple")
lb.grid(row = 0, column = 0)
bu = Button(win, text = "Now", command = doit)
bu.grid(row = 1, column = 0)

selection is (1, 4)
 includes two
 includes five

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 >>>
 9 ...
 10 ...
 11 >>>
 12 >>>
 13 >>>
 14
 15
 16

17

The options that a Listbox will display are given to it as space separated words in
the value of its controlling StringVar. You can change the choices at any time
just by using the StringVar’s set method. If you want the choices to have spaces
within them, prefix those spaces with \ characters. "one\ two\ three four
five\ six"

304

specifies three choices that will occupy three lines in the Listbox. Those choices
are “one two three”, “four”, and “five six”. Provide the StringVar through the
listvariable option.

height specifies the number of lines the Listbox will show, the default is 10. If
that is smaller than the number of choices, a Scrollbar will not be provided
automatically, but the user can still browse through them all by using the up and
down keyboard keys or the mouse. You can attach a vertical Scrollbar to a
Listbox if you want to.

selectmode specifies what the user is allowed to choose. "single" and "browse"
both mean you can only select a single item. "extended" means that you can
select any number of neighbouring items (drag the mouse over them or use the
keyboard up and down keys while holding shift down), and "multiple" means
you can select any items you want (click once to select, click again to deselect).
The difference between "single" and "browse" is very slight, and affects only the
result of a mouse drag across multiple items. "single" means the item that you
pressed the mouse button over is selected, "browse" means the item that you
released the mouse button over is selected. The default is "browse".

The two methods used in the doit function behave as the example illustrates.
lb.currselection() returns a tuple of all the currently selected items’ indexes,
empty if nothing is selected. lb.get(i) returns the string that is the ith option,
counting starts with 0 for the first option.

These additional options are the same as for just about everything: background or
bg, foreground or fg, borderwidth or border or bd, font, cursor, relief,
state, and disabledforeground.

width is the width of the box in characters.

selectforeground and selectbackground are the colours that will be used for
the selected items.

selectborderwidth, default 0, puts an extra border around every choice,
regardless of whether it is selected or not. Normally that border is the same as the
background colour, but for a selected item, a raised border in shades of the
background colour is shown.

activestyle allows for more changes in the appearance of selected items, the
possible values are "none", "underline", and "dotbox". This option does
nothing on my Windows PC, so I can’t say what they are really supposed to look
like.

Many of the Listbox methods refer to a particular one of the choosable strings.
When I call a parameter “index”, it can be any one of an int that specifies a line
number starting from 0, "active" to mean the line that was last selected, "end"
for the last line in the Listbox, or a string of the form "@x,y" where x and y are

305

pixel coordinates relative to the Listbox’s top left corner. It refers to the line that
is closest to that position.

lb.itemconfig(index, option = colour, option = colour, ...)

Sets a special option for a single line. Option may only be
selectbackground, selectforeground, background, or foreground.

lb.itemcget(index, option)

Option must be a string, and may only specify one of the four options
accepted by itemconfig. Returns the value of the given option for that line.

lb.size()

Returns the number of lines in the Listbox. Not just the visible ones, but
all of them.

lb.curselection()

As in the example, a tuple of all the selected indexes.

lb.selection_includes(index)

Returns 1 if the given line is currently selected, 0 if it isn’t..

lb.selection_clear(index1, index2)

De-select all lines in the given inclusive range. index2 defaults to being
equal to index1, but may also be "end".

lb.selection_set(index1, index2)

The same as selection_clear, except that it selects the indicated lines. It
does not replace the current selection, the given range of lines becomes
selected along with those that already were. This can cause multiple non-
adjacent items to be selected even when selectmode is "single",
"extended", or "browse".

lb.see(index)

Scrolls the options, if necessary, so that the indicated item is visible. Not
necessarily at the top or bottom, just somewhere in sight.

lb.get(index1, index2)

Returns a tuple of all the option strings between the two indexes inclusive
(not the usual Python way, but it is the usual tkinter way). get(1, 3)
returns the second, third, and fourth options. index2 is optional, it defaults
to being equal to index1.

lb.insert(index, string, string, string, ...)

Adds new options just before the given position, but in this context, "end"
means add it as a new last item. Unlike in the controlling StringVar, each
option gets its own string, so do not use \ before spaces.

lb.delete(index1, index2)

306

Removes all the choices between the two inclusive positions. index2 is
optional, if not provided, just one item is removed.

lb.bbox(index)

Returns the tuple (leftx, topy, width, height) being the bounding box for
the indicated line, with x and y relative to the Listbox’ top left corner. If the
indicated line is not visible, it returns None.

lb.nearest(y)

Returns the index of the visible line that is nearest to the given y position,
measured in pixels from the top of the Listbox. If the Listbox has no items
in it at all, this returns -1.

lb.selection_anchor(index)

The documentation leaves me without the slightest idea of what this is
supposed to do, and in every experiment I have been able to think of, it has
no effect. Perhaps it’s another exception for Windows.

lb.index(index)

Scrolls the options so that the indicated one is as close to the top of the box
as possible. It has no effect on my Windows PC.

lb.activate(index)

Select that line. This has no effect on my Windows PC.

Scrollbars, both vertical and horizontal, may be added to a Listbox in the
normal way, using the xscrollcommand and yscrollcommand options and the
xview, yview, scan_mark, and scan_dragto methods.

52. Spinbox

A Spinbox is a restricted kind of Listbox. It can only ever display one option at a
time, and only a single option can ever be selected. At the right edge of a Spinbox
there are two tiny arrows, and . Clicking on those changes what the selection
is.

As well as clicking on the arrows, the user can click on the text itself and enter
their own value by typing and using the backspace key and whatever.
Unfortunately, there is no checking. The user is free to enter anything they like
and it will be accepted. That can be fixed if you specify "readonly" as the state.

This is the code that produced this and the results after I clicked the top box’ up
arrow twice, the second box’ up arrow nine times, clicked the now button, clicked
the second box’s down arrow three times, the finally clicked the now button again.

307

 1 >>> def now():

 print(sb1.get(), "and", tv.get())

tv = StringVar()
sb1 = Spinbox(win, values = ("tiny", "small", "medium",
 "large", "big", "enormous"))
sb1.grid(row = 0, column = 0, pady = 5)
sb2 = Spinbox(win, from_ = 0, to = 10, increment = 0.5,
 textvariable = tv)
sb2.grid(row = 1, column = 0, pady = 5)
bu = Button(win, text = "Now", command = now)
bu.grid(row = 2, column = 0, pady = 5)

medium and 4.5
medium and 3.0

 2 ...
 3
 4 >>>
 5 >>>
 6 ...
 7 >>>
 8 >>>
 9 ...
 10 >>>
 11 >>>
 12 >>>
 13
 14

15

As you can see, there are two ways to specify the options: either a tuple of values
(they can be just about anything that has a simple form when printed, and they
don’t have to be of the same type), or through the from_, to, and resolution
options that we saw for a Scale.

There are also two ways of finding the currently selected option: the Listbox has
its own get method, or you can provide a StringVar as the textvariable option
and use its get method. Both ways will always deliver a string result.

By default, The Listbox first appears with its first option selected, but you can
change that if you provide the textvariable option with a StringVar and set its
initial value to the exact form that get would deliver for the option you want to
appear. But pre-setting the StringVar only seems to work if the options were
defined with from_ and to, not with a tuple. There are a lot of methods that are
supposed to let the program choose what is selected, but at least on my Windows
PC, they have no effect. Except for the invoke() method, described below.

Other options include the usual familiar ones: background or bg, foreground or
fg, borderwidth or border or bd, selectcolor, disabledbackground,
disabledforeground, font, justify, cursor, relief, wrap,
selectbackground, selectforeground, selectborderwidth, and
activebackground.

As well as those, insertbackground and insertborderwidth control the
appearance of the text input cursor when the user chooses to type their own
value.

command is a parameterless callback function, activated only when the user clicks
on one of the arrows and the selection changes as a result.

308

format should be set to one of the allowed % formats, e.g. "%8.1f", and gives the
format for converting options to strings. It only works if you used from_ and to,
not values.

state can take on the two usual values "normal" and "disabled", but it may
also be "readonly" which isn’t quite the right term. It means that the selection
can still be changed by clicking on the arrows, but the user can’t type their own
value any more. readonlybackground sets the colour to be used when the state is
"readonly".

width is, as is normal for text based widgets, gives the width measured in
characters.

insertbackground, insertwidth, insertontime, and insertofftime are as
they were for an Entry. There is supposed to be an insertborderwidth too, but
it has no effect on my Windows PC.

repeatdelay and repeatinterval are the same as they are for a Scrollbar.

buttonbackground specifies the background colour for the arrows, buttoncursor
sets the cursor that will appear when the mouse is above the buttons, allowable
values are as described under canvas options. buttonuprelief and
buttondownrelief set the relief for the arrows, but the arrows are far too small
for that to have any useful effect.

These are the methods for a Spinbox, remember that all the universal methods
are also available.

There are a few methods whose names being with selection which, according to
the documentation, are supposed to change which option is selected. On my
Windows PC they have no effect, and the documentation doesn’t say exactly what
their effect is supposed to be.

sb.bbox(index) is supposed to show the bounding box for the given option, just
like for a Listbox, but it is rather silly because in a Spinbox there is only one
place that an option can appear, so it always returns the same four-tuple.
sb.index and sb.insert have some strange effect, but nothing that seems at all
useful.

sb.invoke("buttonup" or "buttondown") has the same effect as the user would
cause by clicking on the given arrow.

sb.delete(index1, index2) has no effect, at least on my Windows PC.

sb.icursor(position) sets the position of the keyboard input cursor if there is
one, and is measured in characters, 0 meaning before the first.

309

sb.identify(x, y) returns "entry", "buttonup", or "buttonbown" depending
on which of those things is at the position (x, y) measured in pixels from the
widget’s top left corner, or the empty string if nothing is.

If the Spinbox is likely to have some very long options, you can attach a
horizontal Scrollbar to it in the normal way.

53. Frames - windows within windows

A Frame is a lot like a window. It can have a lot of widgets packed, placed, or
gridded inside it. But it is a widget itself, and can be packed, placed, or gridded
into something else. This can simplify the design of a complex gui and remove the
need for so many rowspans and columnspans.

Frames have many of the familiar options, plus the universal options and methods
of course: background or bg, borderwidth or border or bd, padx, pady, relief,
and cursor.

They also have width and height options which specify the desired size in pixels.
But these two are usually ignored, container widgets are supposed to adopt a size
that fits their contents perfectly. If you want a Frame to take the size you specify,
you must also call its grid_propagate method with 0 as its parameter.

 1 >>> win = Tk()
win.configure(background = "white")
win.configure(padx = 15, pady = 15)

one = Label(win, text = "Label One")
one.grid(row = 0, column = 0)
two = Label(win, text = "Label Two")
two.grid(row = 0, column = 1)
three = Label(win, text = "Label Three")
three.grid(row = 1, column = 1)
fr = Frame(win, padx = 20, pady = 20)
fr.grid(row = 1, column = 0)

four = Label(fr, text = "Label Four", background = "yellow")
four.grid(row = 0, column = 0)
five = Label(fr, text = "Label Five", background = "white")

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 >>>
 11 >>>
 12 >>>
 13
 14 >>>
 15 >>>
 16 >>>

310

 17 >>> five.grid(row = 0, column = 1)
six = Label(fr, text = "Label Six", padx = 20, pady = 20)
six.grid(row = 1, column = 0)
seven = Label(fr, text = "Label Seven", foreground = "red")
seven.grid(row = 1, column = 1)

 18 >>>
 19 >>>
 20 >>>
 21 >>>

It seems to be impossible use Scrollbars to control a Frame. That is a surprising
thing to be absent.

If widgets were inserted into a Frame or other container using grid, the container
and the widgets that it contains have some useful methods. In these methods you
must be careful about rows and columns because they are used completely
inconsistently. Sometimes rows comes first, and sometimes columns comes first.

There are the methods to use on the container:

fr.grid_size()

Returns a tuple (c, r) where c is the number of columns in the grid, and r
is the number of rows.

fr.grid_slaves()

Returns a list of all the widget objects that are in the grid.

fr.grid_location(x, y)

x and y are pixel coordinates measured from the top left corner of the
container. Returns a tuple (column, row)telling you which grid position x
and y are within.

fr.grid_propagate(0 or 1), 1 is the default setting.

Normally the width and height you specify when creating a Frame are
ignored, and it is sized to fit its contents. fr.grid_propagate(0) changes
this, the Frame will have the size you told it to have.

fr.grid_bbox()

Returns a four-tuple (x, y, width, height) giving the bounding box of the
whole grid. All four are measured in pixels, with x and y being relative to the
container’s top left corner.

fr.grid_bbox(column, row)
Returns the bounding box for the grid cell at the given position. That is not
the same as the bounding box for the widget at that position. Grid sizes
stretch to accommodate their largest widget.

fr.grid_bbox(column, row, col2, row2)
Returns the bounding box for the rectangular region of the grid that has cell
(row, column) at its top left and cell (col2, row2) at its bottom right.

There are the methods to use on the contained widgets:

w.grid_remove()

Takes the widget out of the grid, it disappears from the screen. But you can
put it back again with a parameterless w.grid() later on.

311

w.grid_forget()

This is a more violent version of grid_remove. The widget disappears from
the grid as before, but its position and other things given as parameters
when it was originally gridded are not recorded. You can put it back in the
grid later on, but you need to give w.grid(...) all the parameters that you
would use to place a new widget.

w.grid_info()
Returns a dictionary of all the aspects of the widget that were or could have been
provided as parameters to grid. They are row, column, rowspan, columnspan,
padx, pady, ipadx, ipady, and sticky. This is not a reference to some real object
in tkinter, changing one of the dictionary’s values will have no effect on the
widget itself.

54. LabelFrame

LabelFrame would seem to be a subclass of Frame. It isn’t, but still has everything
that a Frame has, so those things will not be repeated here. The difference with a
LabelFrame is that it draws a box around its contents with a gap in it. That gap is
usually filled with some descriptive text, but you can put anything you want in
there.

 1 >>> top = Button(win, text = "Top")

top.pack(pady = 5)
lfr = LabelFrame(win, text = "Controls",
 border = 4,
 relief = "raised",
 background = "white")
lfr.pack(pady = 5)
b1 = Button(lfr, text = "Start")
b1.grid(row = 0, column = 0, padx = 10, pady = 5)
b2 = Button(lfr, text = "Stop")
b2.grid(row = 0, column = 1, padx = 10, pady = 5)

 2 >>>
 3 >>>
 4 ...
 5 ...
 6 ...
 7 >>>
 8 >>>
 9 >>>
 10 >>>
 11 >>>

Obviously, text is what appears in the gap, border is the width of the edges of
the box (default 1), relief is how the box is drawn (default "groove"), and
background is what it always is. Additional options that Frames don’t have are:

foreground or fg

The colour for the text, but not the border.

labelwidget

Any widget at all, it will appear in the gap instead of text.

312

labelanchor
A string that says where in the surrounding box the gap and its text or
labelwidget will be. There are twelve possible values.
"nw", "n", and "ne" mean they will be at left, centre, or right of the top
edge,
"sw", "s", and "se" are the left, centre, or right of the bottom edge,
"wn", "w", and "ws" are the top, centre, or bottom of the left edge, and
"en", "e", and "es" are the top, centre, or bottom of the right edge.

55. PanedWindows

PanedWindows are another kind of container. In this case the widgets that it
contains can only be lined up horizontally or vertically, no grid. That isn't a
disadvantage, it is necessary in order for it to work. The contained widgets, which
would normally be fairly big things like Canvasses, Texts, or Frames are shown
with a separator between them. The user can drag those separators with the
mouse and change the sizes of the components. If the separator is dragged to the
left, the widget to the left of it shrinks, and the widget to the right grows to take up
the space. The separators are supposed to be called sashes. On my Windows PC,
the default is for the sashes to be completely invisible. I would call that a strange
choice.

This is the initial appearance:

and this is after I have dragged both sashes inwards.

 1 >>> pw = PanedWindow(win, orient = "horizontal",

 sashwidth = 5,
 sashrelief = "raised")
pw.pack()

one = Label(pw, text = "Hello")
pw.add(one, padx = 10)

two = Label(pw, text = "I'm the second one",
 font = ("times new roman", 20))
pw.add(two, pady = 10)

three = Label(pw, text = "Last one")
pw.add(three)

 2 ...
 3 ...
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10 ...
 11 >>>
 12
 13 >>>
 14 >>>

If orient is "vertical", then naturally the contents will be stacked vertically
and the sashes between them will be horizontal. The sashwidth and sashrelief
were necessary to make them reasonably visible, and even now I don’t think they
stand out at all well. The background or bg option sets the background colour

313

which is also the sash colour, so that could make them stand out better, but then
you would have to make sure that the background never shows naturally
anywhere else, and you would have to set bordersize or border or bd to 0, and
you couldn’t use padx or pady. It is not possible for the background and the
sashes to have different colours.

The add method is the only way to add a widget as a new pane, do not use pack,
place, or grid.

Additional options for the PanedWindow constructor include the usual cursor,
width, and height, plus:

showhandle = True or False, False is the default.

If set to true, this makes little square boxes, “handles”, appear on the
sashes, giving the user a larger target area for the mouse.

handlesize = number, 8 is the default.

Specifies the width and height of the handles.

handlepad = distance, 8 pixels is the default.

This is the distance between the top or left edge of sash and the top or left
edge of the handle.

opaqueresize = True or False, True is the default.

Normally the display is updated in real time when the user drags a sash,
continually showing the panes in their new size. Turning opaqueresize to
False stops this, the display isn’t changed until the user releses the mouse.

handlepad = size

This adds some padding between the shashes and the contents of the
panes. Unfortunately the background colour shows through in this extra
space.

The add method has some options of its own:

width = size
height = size

The size you want the added widget to have.

minsize = size

The smallest width or height the widget can be shrunk to when the user
drags a sash on either side of it.

padx = size
pady = size

Extra spacing around the added widget, through which the background
colour will show.

sticky

314

Exactly the same as for grid.

before = otherwidget
after = otherwidget

Otherwidget must be a widget that has already been added. Instead of being
added after all the existing widgets as usual, this one will be pushed in
immediately before or after the otherwidget.

Other methods for a PanedWindow are:

pw.remove(widget)
pw.forget(widget)

For a PanedWindow, these two methods are identical, they both make a pane
disappear, and it can always be readded again later. Unlike with a Frame,
remove does not record the original position of the widget.

pw.panes()

Returns a list of all the contained widgets in the same order as they
currently appear on the screen.

pw.sash_coord(which)

Returns the position of a particular sash as an (x, y) tuple. x and y are
measured in pixels from the top or left of the PanedWindow. Only one of x
and y will be correct, which one depends on orient. Which is an int, 0
means the leftmost or topmost sash, and of course they are counted in ones
from there.

pw.sash_place(which, x, y)

The parameters are as for sash_coord. It moves a sash to the given
position. Depending on the orient, either x or y will be ignored.

pw.paneconfig(widget, option = value, option = value, ...)

Changes the options that were given when the widget was added.

pw.panecget(widget, option)

Option must be a string, equal to one of the option names that are allowed
for the add method. Returns the value of that option for the given widget.

pw.identify(x, y)

x and y are pixel coordinates measured from the top left corner of the
PanedWindow. Returns what is at that position, either (which, "sash") or
(which, "handle") if one of those is true, where which is a sash number. If
the coordinates are outside the PanedWindow, or over one of the added
widgets, it returns an empty string.

56. The Tk window

Here are all the methods for the root window created by the call to Tk():

315

win.destroy()

Permanently removes the window from the screen and destroys its contents.

win.protocol("WM_DELETE_WINDOW", callback)

Prevents the user from closing the window. That's what the documentation
says, but I recognise WM_DELETE_WINDOW as something specific to the
Windows operating system. Maybe they decided to use that name for all
operating systems, but don’t rely on that. If the user clicks on the window’s
close button, instead of closing the window, the parameterless callback
function will be called. It can do any saving and closing that is necessary,
and they use win.destroy if desired.

win.title(string)

Sets the title that appears at the top of the window. If you don’t provide the
parameter, it returns the current title as a string.

win.iconbitmap(filename)

Changes the icon that appears in the top left corner of the window, and also
represents the program when its window has been minimised or iconified.
The filename is a string like "d:\\pictures\\logo.ico", and the file must
be in the .ico format. Not many image editing applications support that
format, even Photoshop doesn’t. But there are numerous free on-line
services that will do it in an instant.

What should the dimensions of the image be? Unfortunately that depends
on your operating system. If you just want a tiny little icon at the top of a
window, they seem to be 16×16. The representation of a minimised window
seems to be 32×32, and there are other possibilities. But most systems,
Windows included, will scale an icon if the file is not of the size that it
wants. Scaling up from a small image is never good, so for complete
generality, 256×256 should cover everything.

win.geometry(string)

Changes the size and position of the window. The string should be of this
format "640x480" if you just want to change the size. That would be 640
pixels wide and 480 tall. Use this format "640x480+200+100" to change the
position too. That would place the window 200 pixels in from the left of the
screen and 100 down from the top. If you do not provide a parameter, it will
return the correct string to represent the window’s current state.

win.attributes("-fullscreen", 1)

Expands the window to fill the whole screen. The dash in the name is
essential. Using 0 instead of 1 changes it back to its original size.

win.winfo_screenwidth() and
win.winfo_screenheight()

Return the ints that you would expect from their names. They can be
helpful in deciding the correct geometry for your window.

316

win.resizable(w, h)
Allow you to prevent the user from changing the size of the window. w and h
should both be either True or False. True is the default state for a window.
w being False means that the width can not be changed, h refers to the
height.

win.minsize(w, h) and
win.maxsize(w, h)

Are less restrictive than win.resizable. They specify the minimum size
that the user may shrink the window to, and the maximum size that the
user can expand it to.

win.iconify() or
win.deiconify()

Make the window disappear to just be represented by a little icon, usually at
the bottom of the screen, or be restored from that state.

win.withdraw() and
win.state()

Is like win.iconify but the window completely disappears without even
leaving an icon to represent it, so the user has nothing to click on to restore
it. Also use win.deiconify() to restore it, there is no dewithdraw. state
returns one of "normal", "iconic", or "withdrawn".

win.attributes("-topmost", 1)

Brings the window to the front, above all other windows, and keeps it there.
The user can not make any other window cover it. This is used when there
is some unusual condition or emergency that the user must deal with.
Using 0 instead of 1 doesn’t push the window back down under others, it
just restores it to its normal compliant state, so the user can bring others
above it.

win.attributes("-disabled", 1)

Makes the window totally inert, nothing the user does has any effect on it.
Using 0 instead of 1 returns it to normal. win.state is unaware of windows
being disabled, and continues to report them as "normal". Some system
change the appearance of disabled windows, but Windows leaves them
looking exactly as they did.

win.attributes("-alpha", float)

Makes the window transparent, float should be between 0 and 1. 0 makes
the window totally invisible, 1 makes it completely opaque. 0.5 or other
intermediate values make it partially transparent, you can still see it, but
you can also see other things that are on the screen behind it.

win.overrideredirect(1)

Is a strange name for what it does. It takes away the window’s title bar and
any curved or raised edges it might have, leaving just the rectangle for its
contents. In this state, the user can not move it or close it or minimise it.
Using 0 instead of 1 puts everything back to normal.

317

57. Toplevel: an independent window

A Toplevel is a separate totally independent window just like the one created by
Tk(), it does not get inserted into any container. Like any other container, widgets
may be packed, placed, or gridded into it. The window can have a title, a menu
bar, and everything you would expect of a window. Oddly, there is no title
option, you have to use the title method after creating the window. A Toplevel
is counted as a widget itself, even though it can’t be put into a container. If you
create a widget before creating a Tk() window, an unusable Tk() will be created
automatically. That means that you should not try to use a Toplevel as your
program’s main window, you’ll end up with a second grey window just looking
silly. Toplevels are used as secondary windows, if you need to create a temporary
dialogue or something like that.

win2 = Toplevel(option = value, option = value, ...)

The options are the usual background or bg, borderwidth or border or bd,
width, height, relief, padx, pady, and cursor. borderwidth does not make
any border appear, it just has the effect of setting both padx and pady, so that
added widgets are kept away from the edges of the window. On my Windows PC,
relief has no effect.

There is an additional option, menu, which is used to add a standard menu bar.
Menus are covered in a later subsection.

Toplevel has all of these methods exactly as they are for a Tk() window:
destroy, title, protocol, iconbitmap, attributes (with the same options),
resizable, minsize, maxsize, iconify, deiconify, withdraw, state, and
overrideredirect.

58. Ttk widgets

tkinter.ttk provides more widgets. Most of them are almost exact copies of the
familiar ones: Label, Button, Entry, Scrollbar, Checkbutton, Radiobutton,
Scale, Spinbox, Frame, LabelFrame, and PanedWindow. It also provides six new
kinds of widgets that will be covered in the next few subsections.

ttk widgets are called styled widgets, which means that you can define a lot of
styles (collections of common options like background and foreground) and apply
an entire style to a ttk widget as a single option.

Every ttk widget has its own predefined default style, and the name of that style
(actually called its class name) is nearly always a capital T followed by the name of
the type of widget, such as "TButton". There are five exceptions, some of them
just plain foolish. The three kinds of widget that can have an orientation are like
"Vertical.TScrollbar": their natural names preceded by their orientation

318

(with a capital first letter) and a dot. A PanedWindow loses the capitalisation of its
W: "TPanedwindow", and the new widget Treeview gets no additional T:
"Treeview".

In case of future changes or additions, there is always an easy way to find the
correct class name. Just create a minimal widget widg of that type, and get it to
tell you by asking widg.winfo_class(). The result will be a string, like
"TLabel".

When you create your own style, it must be a variation on an existing style, and
its name absolutely must be an arbitrary non-empty string, followed by a dot,
followed
by the name of an existing style, such as "redandyellow.Tlabel".

 1 >>> from tkinter import *
from tkinter import ttk

win = Tk()

def pressed():
 print("Pressed!")

redyel = ttk.Style()
redyel.configure("redandyellow.TLabel",
 foreground = "red",
 background = "yellow")
lab = ttk.Label(win, text = "cat",
 style = "redandyellow.TLabel")
lab.pack()
but = ttk.Button(win, text = "dog",
 style = "redandyellow.TLabel",
 command = pressed)
but.pack()

 2 ...
 3 ...
 4 >>>
 5
 6 >>>
 7 >>>
 8
 9 >>>
 10 ...
 11 >>>
 12
 13 >>>
 14 >>>
 15 >>>
 16 >>>
 17 >>>
 18 >>>
 19 >>>

The example shows two surprising things. You can apply a style made for one
kind of widget (here a Label) to a totally different kind of widget (here a Button).
The result is a Button that looks exactly like a Label, not even any visual change
when it is clicked. But it still functions as a button, clicking it does call its
callback function.

There is another surprising and difficult to handle inconsistency. If you mistype
the name of the style when creating the widget (I typed a little l instead of a capital
L) you get a proper exception and know about it. You can’t use a style that doesn’t
exist. But if you make the same mistake when creating the style, but don’t make
that mistake when using it, you are still trying to use a style that doesn’t exist,
but no exception is raised, it just silently fails.

319

There is a quite complicated and poorly documented hierarchy of things going on
here. First of all, there is a theme, this is intended as a way of giving all of your
widgets the same, or at least a consistent look. An example is that Macintosh gui
elements usually have a rounded shape, but Windows makes most things
rectangular. That could be called a theme.

Naturally, the appearance can’t be exactly the same for every kind of gui object,
otherwise we would have buttons that are indistinguishable from labels, like in
the example above, and nobody would know what is going on. Each kind of object
needs its own detailed description to specify how the theme is applied to it. That is
what a style is. A theme is a collection of styles.

Gui objects tend to consist of a number of parts all put together. For example, a
Button may have an outer border, inside that border there may be but usually
isn’t a focus ring which can change its appearance when the Button has focus.
Inside that there may be some padding, and inside that there is the text itself,
called the label. These are all called elements. Each widget has a collection of
elements which may have their own options. The elements have names, a
Button’s padding is called "Button.padding". In the case of a Button, they are
all inside each other, so the label is considered to be a child of the padding, which
is a child of the focus, which is a child of the border. It isn’t always that way. In a
Scrollbar, the two arrows and what they are now calling the thumb instead of
the slider are considered to be children of the trough, and the grip, which I
assume is the four little lines visible in the “clam” example below, is a child of the
thumb.

Fortunately you don’t have to pay any attention to elements unless you are going
to create your own style from scratch. For all the options that elements may share,
each style only records one value. Changing the background of the label also
changes the background of the padding. If two elements are allowed to have
different values, the options will have different names. Just as in a Scrollbar,
where we have both background and troughcolor options.

To find out what themes are available, you need to create a Style object and use
its theme_name method, it returns a tuple of strings. To find out what the current
theme is, call its theme_use method. To change to a different theme, use its
theme_use method again, but with the theme’s name as a parameter.

 1 >>> s = ttk.Style()
s.theme_names()
('winnative', 'clam', 'alt', 'default', 'classic', 'vista',
 'xpnative')
s.theme_use()
'vista'
s.theme_use("winnative")

 2 >>>
 3
 4
 5 >>>
 6
 7 >>>

As you see, my Windows PC reports seven different themes, but that is quite
deceptive, as they are all very similar. I made this little function to try them all
out.

320

 1 >>> def tryout(name):
 win = Tk()
 win.configure(background = "white")
 ttk.Style().theme_use(name)
 lab = ttk.Label(win, text = "The style in use is " + name)
 lab.pack(padx = 15)
 but = ttk.Button(win, text = "cat")
 but.pack()
 scr = ttk.Scrollbar(win, orient = "horizontal")
 scr.pack(expand = True, fill = "both")

tryout("winnative")

 2 ...
 3 ...
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10 ...
 11
 12 >>>

And here are all the results:

If you know the name of a theme, or just want to deal with the default theme, you
can extract a layout for any style. A layout lists all of the style’s elements, their
parent-child relationships, and supposedly all of their options. Layouts have very
annoying formats, full of nested lists, tuples, and dictionaries. Rather than work
through every detail, which would not be of any use because there is no other
context where this comes into play, I’ll provide a little program that just extracts
all the element names. Every time a tuple is encountered in a layout, its first item
will be an element name:

 1 >>> def show_elements(theme_name, style_name):
 st = ttk.Style()
 st.theme_use(theme_name)
 lay = st.layout(style_name)
 explore_elements(st, lay)

def explore_elements(st, item):
 if type(item) == tuple:
 print(item[0])
 explore_elements(st, item[1])

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 ...
 9 ...
 10 ...

321

 11 ... elif type(item) == list:
 for i in item:
 explore_elements(st, i)
 elif type(item) == dict:
 for k in item:
 explore_elements(st, item[k])

show_elements("classic", "TButton")
Button.highlight
Button.border
Button.padding
Button.label

 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17
 18 >>>
 19
 20
 21
 22

And we can get a bit more out of it. When a tuple is encountered, after the element
name, the next item will be a dictionary of all of that item’s pre-set options, so a
slightly more complex search is needed. Additionally, if you have a Style and an
element name, the Style’s element_options method returns a tuple of all the other
permitted option names:

 1 >>> def show_one_element(theme_name, style_name, element_name):
 st = ttk.Style()
 st.theme_use(theme_name)
 lay = st.layout(style_name)
 explore_one_element(st, lay, element_name)

def explore_one_element(st, item, element_name):
 if type(item) == tuple:
 if item[0] == element_name:
 for opt in sorted(item[1]):
 if opt != "children":
 print(opt, ": ", item[1][opt], sep = "")
 opts = st.element_options(element_name)
 for opt in sorted(opts):
 print(opt, "is also allowed")
 else:
 for opt in item[1]:
 explore_one_element(st, item[1][opt], element_name)
 elif type(item) == list:
 for i in item:
 explore_one_element(st, i, element_name)
 elif type(item) == dict:
 for k in item:
 explore_one_element(st, item[k], element_name)

show_one_element("classic", "TButton", "Button.label")
sticky: nswe
anchor is also allowed
background is also allowed
compound is also allowed
embossed is also allowed
font is also allowed
foreground is also allowed
image is also allowed
justify is also allowed
space is also allowed
stipple is also allowed

 2 ...
 3 ...
 4 ...
 5 ...
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13 ...
 14 ...
 15 ...
 16 ...
 17 ...
 18 ...
 19 ...
 20 ...
 21 ...
 22 ...
 23 ...
 24 ...
 25
 26 >>>
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

322

 38 text is also allowed
underline is also allowed
width is also allowed
wraplength is also allowed

 39
 40
 41

I won’t waste space by showing all the options for the other three elements. One of
them has none at all, the others all have sticky, and one also has border. But
there is obviously something missing. Looking at the pictures, the vista theme
gives Buttons rounded corners and classic makes them sharp right angles.
Where is the option for that? There just isn’t one. Themes and styles have hidden
things that we just can’t do anything about. Themes and styles are actually
programmed in C. Nobody has produced a Python way of doing it. Well, maybe
there is some third-party software somewhere, but I haven’t seen it.

The Separator is the most trivial widget it is possible to imagine, it just appears
as a straight line between other widgets. The only options it has are orient (as for
a Scrollbar) and style.

 1 >>> def lab(text, row, col):
 w = ttk.Label(win, text = text)
 w.grid(row = row, column = col, padx = 10, pady = 10)

lab("First Label", 0, 0)
sa = ttk.Separator(win, orient = "vertical")
sa.grid(row = 0, column = 1, sticky = "ns")
lab("Second Label", 0, 2)
sb = ttk.Separator(win, orient = "horizontal")
sb.grid(row = 1, column = 0, columnspan = 3, sticky = "ew")
lab("Third Label", 2, 0)
lab("Fourth Label", 2, 2)

 2 ...
 3 ...
 4
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 >>>
 11 >>>
 12 >>>

59. ttk.Progressbar

We all know what a progress bar is, a coloured line that grows across the screen
to let you know how far through a task the program is. They are usually
horizontal, but they can be vertical if you want. It is controlled by an internal
counter which starts at zero, you specify its maximum as an option (the default is
100), and tell the counter when to move and by how much using its step method.
The length option specifies how long the bar should be in pixels, it is still called
length even if the Progressbar is vertical.

 1 >>> pb = ttk.Progressbar(win, orient = "horizontal",
 maximum = 50, length = 250)
pb.pack()

 2 ...
 3 >>>

323

 4
count = 0

def move():
 global count
 pb.step(1)
 count += 1
 if count < 49:
 pb.after(100, move)

move()

 5 >>>
 6
 7 >>>
 8 ...
 9 ...
 10 ...
 11 ...
 12 ...
 13
 14 >>>

There are two mysteriously wrong things to keep in mind. One is that there
doesn’t seem to be any way to control the bar’s colour or width. The other is that
maximum does not behave very sensibly: the largest value the bar can reach is
maximum - 1, at which point there is still visible space to the right. If the counter
ever reaches maximum, the bar goes back to zero and disappears.

You may also be surprised by how complicated the controlling mechanism was.
Why not just say

 5 >>> for i in range(49):
 time.sleep(100)
 pb.step(1)

 6 ...
 7 ...

tkinter doesn’t update the display immediately after every operation, it waits
until nothing is going on, and a timed sleep somehow counts as something going
on. With the loop version, the Tk() window doesn’t even appear.

A widget’s after method provides a period of time, in milliseconds, and a callback
function, and it makes sure the function is called after the period of time has
expired. The program would have been smaller if I had written a loop where i
increases from 100 to 490 in steps of 100 and called pb.after with i as its first
parameter each time round. That would have set up 49 callback requests all at
once. But that approach is not scalable. Instead, the move function does its little
bit of work, then requests another call to itself 100mS in the future.

A Progressbar has the usual cursor and style options, and one called phase
which has no clear use, plus two more.

value = number

Provides a different starting value for the internal counter if you don’t want
it to start from zero.

variable = IntVar or DoubleVar

The variable provided replaces the internal counter. Just set its value and
the bar moves. You can even make it move backwards.

324

mode = "determinate" (the default) or "indeterminate"

If you have no way of knowing how far through a task you are, make the
Progressbar indeterminate. Then it will just move backwards and forwards
until you tell it to stop. It is controlled by the start and stop methods.

pb.start(t)

Only for indeterminate Progressbars. This starts the bar’s back and forth
movement. Every t milliseconds it moves by one step. After reaching the
maximum or minimum it just changes direction.

pb.stop()

Only for indeterminate Progressbars. This stops the bar from moving, call
it when the task is complete. To avoid confusion, after calling stop, you
should probably either set the bar to its maximum value or make it
disappear altogether.

pb.step(increment)

Already seen, the increment is optional and defaults to 1.

60. ttk.Combobox

A Combobox is an extension of a Spinbox or Listbox. Both of those present the
user with a list of possibilities to choose from. A Combobox also allows the user to
type their own choice if it isn’t among those offered. The fact is that a Spinbox
already has that functionality, so we’re not about to see any great advance.

 1 >>> win = Tk()

def doit():
 print("You selected \"", cb.get(), "\"", sep = "")

cb = ttk.Combobox(win, values = ("tiny", "small", "medium",
 "large", "big"))
cb.pack()
bu = Button(win, text = "Now", command = doit)
bu.pack()

You selected "medium"
You selected "enormous"

 2
 3 >>>
 4 ...
 5
 6 >>>
 7 ...
 8 ...
 9 ...
 10 ...
 11
 12
 13

The box initially appears completely blank, nothing is selected. You select
something by clicking on the downward vee at the right of the box, a menu of the
possibilities appears. I selected small, then selected medium, then pressed the
button, then typed enormous into the box, then pressed the button again.

325

The options include the usual justify, cursor, and style, plus validate and
validatecommand exactly as they are for an Entry. Unlike with the Spinbox,
there is no readonly option.

The background option exists but is ignored, no exceptions raised. Trying to set
order or relief does cause an Exception. background, border, and relief are
just ignored if they are part of the selected style. A horizontal Scrollbar may be
attached in the usual way.

textvariable = StringVar

The StringVar is bound to whatever string is selected, so using its get
method is an alternative way of seeing what was chosen. Setting the
StringVar changes the selection, giving it an initial value means that the
Combobox will not start out blank with nothing selected.

state = "normal" or "readonly" or "disabled"

"disabled" prevents the user from typing their own choice.

height = number

This is the number of rows that the drop-down menu will have, except that
the menu never has more lines than there are choices. The default is 20.

width = number

The width that the box will have, measured in characters.

postcommand = function

The callback function will be called every time the little vee at the right is
pressed.

Other methods for a PanedWindow are:

cb.current()
cb.current(position)

The first form returns the index in the values option of the currently
selected item, or -1 if the selection was typed by the user and isn’t in
values. The second form returns the string at the given position in values.

cb.set(string)

Selects that string as though the user had typed it into the box.

cb.bind('<<ComboboxSelected>>', callback)

The callback function will be called every time the selection is changed by
clicking on a different choice. The user typing their own value does not
trigger this callback. This takes away the need for a button for the user to
click when they have made their choice. The callback function will receive a
pointless parameter of type VirtualEvent which carries no information at
all.

326

And remember that widgets have configure methods. Any time you want to
completely change the available choices, just say something like

cb.configure(values = ("big", "fat", "hairy"))
That will not change the current selection, but the available choices are
completely replaced. If you just want to add a few options, leaving the existing
ones intact:

cb.configure(values = cb.cget("values") + ("ugly",))

61. ttk.Notebook

Notebooks allow a number of different versions of a widget, usually a Frame, to
occupy the same position on the screen, with only one of them visible at any one
time. There are a series of tabs, like with web browsers, that allow the user to
select which version is visible.

 1 >>> nb = ttk.Notebook(win)
nb.pack()

def make_frame(name, words):
 fr = Frame(nb)
 ca = Canvas(fr, width = 150, height = 100, background = "white")
 ca.pack()
 ca.create_text(10, 50, text = words, anchor = "w")
 nb.add(fr, text = name)

make_frame("First", "I'm the first Frame")
make_frame("Second", "I am the second Frame")
make_frame("Third", "Me third Frame")
make_frame("Fourth", "Fourth is my position")

 2 >>>
 3
 4 >>>
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10
 11 >>>
 12 >>>
 13 >>>

14

>>>

All I did was click on the tab labelled “third” to get here. The Frames can contain
all sorts of components, just like they usually do, and they don't even need to be
Frames, any widget can bet added to a Notebook.

A Notebook has cursor and style options, padding = dimension is added
outside on all four sides, width and height are in pixels.

Many of the Notebook methods have to specify a particular tab. To do this, you
can provide an int, being the tab’s position, 0 for the first one. Or you can use the
actual widget object that the tab contains, or you can give the string "current" to
mean the one that is selected now, or if somehow you know the pixel coordinates

327

of some point inside the tab relative to the Notebook’s top left corner you could
provide the string "@120,10" for 120 left and 10 down. When a parameter is given
as “tab” this is what it means.

The Notebook methods are:

nb.add(widget, option = value, option = value, ...)

Creates a new tab. The options are:
text, image, and compound:

as usual. The label on the tab can be a PhotoImage instead of text,
or both.

underline = int:
The specified character (starting from 0) of the tab’s text is
underlined, negative means no underlining.

sticky = string:
The string consists of the usual combinations of 'n', 's', 'w', and
'e'. If the added widget is smaller than others, this is the side that it
will be stuck to, and stretched if opposite sides are included, as usual.

padding = dimension:
Extra space added on all four sides outside the to-be-added widget.

nb.insert(where, widget, option = value, option = value, ...)

This is exactly the same as add, the same options and everything, but this
lets you specify what position this tab should occupy. where can be an int,
0 for before the currently first tab, or an existing tab’s widget object, in
which case the insertion is just before that tab, or "last" to mean at the
end.

nb.hide(tab)
nb.forget(tab)

These are the methods that are usually called remove and forget. hide
makes the tab go away, but if it is added again without providing any
options, it will be restored in its old position with all of its old settings.
forget is mostly the same, but the tab’s settings are not recorded, a later
re-add would need to specify all of the options again. The removed tab can
also be put back again by insert, but even if it was only hidden, all the
options are required again. If you re-insert a hidden tab without any
options, things go wrong: the system believes the tab has come back, but it
does not become visible until you call select (below) to select it. At least,
not on my Windows PC.

nb.select()
nb.select(tab)

The first form returns the almost useless name of the currently selected
tab. The second form selects the given tab, as though the user had clicked
on it.

nb.enable_traversal()

328

Special keyboard actions become possible. So long as the Notebook has
focus, control+tab will select the tab immediately following the current one.
control+shift+tab moves attention in the other direction, and if you used
the underline option, alt-q will select the tab that has the letter q
underlined.

nb.tab(tab)
nb.tab(tab, option = name)
nb.tab(tab, option = value, option = value, ...)

The first form returns a dictionary of all of the given tab’s options as
provided to add or insert and as modified by the third form of this method.
The second form returns the value of the tab’s option called name. Note
that what appears to be an option is not. option is a keyword parameter.
The thirs form changes the tab’s options.

nb.index("end")
nb.index(tag)

The first form returns the number of tabs. The second form returns the
position, starting from 0, of the given tag.

nb.tabs()

Returns a tuple containing the names of all of the tabs, in left-to-right order.

62. ttk.Treeview

A Treeview displays a hierarchical list of items. Generally, each item will have
some text saying what it is, and a little plus sign in a box to its left. If the user
clicks on the plus sign, the item opens up, displaying the sub-items that it
contains, those sub-items can have their own sub-items and so on, going as deep
as you want.

The example is for something that displays information about a number of
supermarkets. At the top of the hierarchy are the names of the chain that the
supermarket belongs to, below them are the individual shops, represented by their
addresses, and below each of them are the various departments. Going any
further would just make the example pointlessly big.

329

The left screenshot shows how things appear when the program starts. The right
shows it after I clicked on the plus sign for Publix, then for its shop at 77 Cat
Road, then on the dairy department. diary has no little plus sign, I clicked on the
text itself.

 1 >>> tv = ttk.Treeview(win)
tv.heading("#0", text = "Supermarkets", anchor = "w")

pu = tv.insert("", "end", text = "Publix")
wd = tv.insert("", "end", text = "Winn Dixie")
sa = tv.insert("", "end", text = "Sainsburys")
ca = tv.insert("", "end", text = "Caters")

pu_1 = tv.insert(pu, "end", text = "4567 40th St")
pu_2 = tv.insert(pu, "end", text = "77 Cat Road")
pu_3 = tv.insert(pu, "end", text = "401 Main St")
wd_1 = tv.insert(wd, "end", text = "88 Brook St")

pu_2_m = tv.insert(pu_2, "end", text = "meat")
pu_2_d = tv.insert(pu_2, "end", text = "dairy")
pu_2_t = tv.insert(pu_2, "end", text = "toothpaste")

tv.pack()

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8
 9 >>>
 10 >>>
 11 >>>
 12 >>>
 13
 14 >>>
 15 >>>
 16 >>>
 17
 18 >>>

The call to tv.heading will be explained a little later. The constructor for a
Treeview has the usual cursor and style options plus height which specifies
the number of rows, not pixels. Vertical and horizontal Scrollbars may be
attached in the usual way. Other options are:

padding = all or
padding = (all,) or
padding = (left_and_right, top_and_bottom) or
padding = (left, right, top_and_bottom) or
padding = (left, top, right, bottom)

Like the traditional padx and pady, but it allows the padding to be different
on all four sides. I have given the padding values names that say which side
they control. For example left_and_right gives the same padding at both the

330

left and right sides. Their values can be any kind of dimension, int for
pixels, "0.25i", and so on.

selectmode = "browse" or "extended" or "none"

Controls how many rows the user may have selected at the same time. A
row is selected by clicking on it, not its little plus sign, but the text.
"browse" means that only one row may be selected. "extended", the
default, means that any combination of rows may be selected at once. A
normal click de-selects any currently selected rows and selects the one that
was clicked instead. A control-click adds a row to the currently selected set.
A shift-click selects every row from the first in the current selection up to
the shift-clicked row. "none" means that selection by clicking is not
possible, the "none" is there to display information, not to receive choices
from the user. Clicking on the little plus signs still works of course.

These are most of the methods:

tv.insert(parent, index, iid = None, option = value, option = value, ...)

Creates a new row. parent indicates which existing row this one is nested
under, it is the value that was returned when the parent was inserted. The
new row becomes visible when its parent’s little plus sign is clicked. The
empty string means no parent, this row is at the top of the hierarchy.

index specifies the new row’s position within its parent’s underlings, 0
means it becomes the first, 2 means it is inserted before the second, and
"end" means it goes at the end.

Every row has a special value that identifies it. If you want to choose what
that value is, pass it in as the iid parameter. If you don’t, insert will make
up a unique value for it, and return it.

The options for insert are:

text = string

As in the example, this is the string that is displayed in the new row.

image = PhotoImage

Like with many widgets, you can have a graphical image instead of
text. Note that there is no compound option, it is automatic. If you
provide both text and image, the text will be to the right of the
image, with no space between them.

When setting an image it is essential to remember, from the
description of images in Canvasses, that your PhotoImage objects
must all be stored securely in variables or lists or whatever for as long
as the TreeView exists.

open = True or False

331

If set to True, this row will be created looking as though its little plus
sign has already been clicked. Its underlings (if any) will also be
visible. False is the default.

tags = String or
tags = (String, String, ...)

Tags are identifiers that many rows can share. There are methods
that make the same thing happen to all rows that have a particular
tag associated with them.

tv.delete(iid, iid, iid, ...)
tv.detach(iid, iid, iid, ...)

All of the rows identified by the iids (values returned by insert) are removed,
along with all of their underlings. The deleted rows are destroyed, they
can’t be reinserted. detach is less destructive, allowing the rows to be put
back later. This can only be done by using move, not insert.

tv.move(iid, parent, index)

The row identified by iid is detached from the view (unless it has already
been detached), and re-inserted under the parent at the position given by
index. Remember to use "" for parent if it is to move to the top level and
have no parent row.

tv.see(iid)

The row identified by iid is made visible by opening any unopen ancestors
and scrolling if necessary.

tv.get_children(iid)

Returns a tuple of the names of all the direct children/underlings of the row
identified by iid in the order that they are (or would be) displayed in. If you
don’t provide a parameter or it is the empty string, you will get all the top
level rows.

tv.set_children(newparent, iid, iid, iid, ...)

All of the rows identified by the iids are removed from their current parent (if
they have one), and become the children of row newparent. Any existing
children of newparent are removed, but only by detaching them, so they
can be put back by move.

tv.item(iid)
tv.item(iid, string)
tv.item(iid, option = value, option = value, ...)

The first form returns a dictionary of all the row’s options (of the sort given
to insert) and their values. The second form returns just the value of the
one named option. The third form changes option values.

tv.tag_configure(tagname)
tv.tag_configure(tagname, string)
tv.tag_configure(tagname, option = value, option = value, ...)

332

Much like item. The first form returns a dictionary of all the settings that
have been assigned to the tag. The second form returns the current value of
the named option for that tag. The third form changes the options for all
rows with a matching tag. The only options that can be set by this method
are foreground, background, font, and image. Trying to set text fails
silently.

tv.tag_has(tagname)
tv.tag_has(tagname, iid)

The first form returns a tuple of the iids for all rows that are controlled by
the given tag. The second form returns True or False depending on whether
the given row is controlled by the given tag.

tv.tag_bind(tagname, event, callback)

Every row controlled by the tag is set so that if the named event happens to
it, or while it has focus, the callback function will be called with a
descriptive event object saying what happened. The event can be just about
any of the events listed in the subsection on binding to mouse and keyboard
events.

tv.selection_set(iid, iid, iid, ...)

All currently selected rows are de-selected, and the specified rows are
selected instead.

tv.selection_add(iid, iid, iid, ...)

The specified rows become selected, adding to any current selections.

tv.selection_remove(iid, iid, iid, ...)

Any of the specified rows that are currently selected are de-selected.

tv.selection_toggle(iid, iid, iid, ...)

If any specified row is selected, it becomes de-selected. If any is currently
de-selected, it becomes selected.

tv.focus()

With no parameter, returns the iid for the item that “has focus”
tv.focus(iid)

With a parameter, moves the input focus to the given row, if this window
had focus at all. That means that if any event has been tag_binded to that
row, the callback function will be called if the event happens.

tv.index(iid)

Returns the given row’s position (0 for first child, etc) under its parent.

tv.next(iid)

Returns the iid for whatever row comes after the given iid under their
parent, or the empty string if iid is its parent’s last child.

tv.prev(iid)

333

Returns the iid for whatever row comes immediately before the given iid
under their parent, or the empty string if iid is its parent’s first child.

tv.parent(iid)

Returns the iid for whatever row the given iid is a child/underling of, or the
empty string if it is a top-level row.

tv.exists(iid)

True or False: is there a row with the given iid? detached rows count as
existing, deleted ones don’t.

tv.identify_row(y)

y is a pixel count, down from the top of the Treeview. Returns the iid for
whatever row occupies that position, or the empty string if none do.

Each row in a Treeview isn’t just limited to a little plus sign and some text. The
entire Treeview can be given extra columns with their own headings, and the
contents of any column for any row can be individually set to anything that can
reasonably be printed. Unfortunately, only things that can be converted to text are
allowed, no PhotoImages or widgets.

A Treeview may also display items of text data for each row, lined up in columns
with headings. The only really essential thing for this is to use the TreeView’s set
method. If that is all you do, it will work, but it will not look very good.

tv.set(iid, column, value)

The data for the row and column given by iid and column is set to value. At
the moment, column should be an int with zero representing the first data
column. There is of course an extra column to the left of it, containing all
the expandable labels, but that column is not included in the count. You
can also give names to columns and use those instead of the int to make
things more understandable. value is just about anything that can be
rendered as text.

You give names to the columns by providing them in a list as the columns
option for the Treeview’s constructor, like this:

tv = ttk.Treeview(win, selectmode = "browse",
 height = 8,
 columns = ["pop", "are", "par"])

You must give names to all of the columns if you are going to have any at
all.
By default, a row is set aside at the top of the Treeview to hold the column
headings even if you don’t have any headings. To get rid of it, you must add
the option show = "tree".

tv.set(iid, column)

Returns the data currently in the given cell.

tv.set(iid)

334

Returns a dictionary with the keys being the column names (not headings,
but the names given to the Treeview constructor). The values are of course
the corresponding data items.

tv.column(column, option = value, option = value, ...)

Configures a particular column, which may be an int or a column name. For
this function the column name "#0" is used to refer to the leftmost part
containing the expandable labels. The options are:

width = pixels

The default width is rather large, so you will probably want to set this.

minwidth = pixels

If you are not too picky you can just set a minimum acceptable width
rather than demanding a set width.

anchor = string

The familiar "n", "nw", "w", "center", etc. to describe where data
that is smaller than the cell size will be placed. The default is "w".

stretch = 0

Normally, when a Treeview is stretched horizontally, all of the
columns grow wider. This says that this particular column will not
join in, it will remain the same size.

tv.column(column, option = which)

Note that the word option is a keyword parameter, “which” should be the
name of one of the options listed above. This form returns the current value
of that option.

tv.column(column)

Returns a dictionary of all the option names and their values.

tv.heading(column, option = value, option = value, ...)

Gives the text and appearance of the column headings. Again, "#0" may be
used for column. The options are:

text = string

The heading itself.

image = PhotoImage

A graphical image can be used as a column heading.

anchor = string

The familiar "n", "nw", "w", "center", etc. to describe where column
heading is placed within the space available to it. The default is "w".

command = string

335

A callback function that will be called automatically if the user clicks
on the column heading. No parameters are provided, so the only way
to know which column heading was clicked is to use a different
callback function for each of them, unless you remember about
partial functions.

tv.heading(column, option = which)

Note that the word option is a keyword parameter, “which” should be the
name of one of the options listed above. This form returns the current value
of that option.

tv.heading(column)

Returns a dictionary of all the option names and their values.

tv.heading(column)

Returns a dictionary of all the option names and their values.

tv.identify_column(x)

x is a number of pixels from the left edge of the Treeview. Returns an
identifier for which column is at that position. Strangely it does not return
the names you gave with the constructor, the result is of the form "#0", or
"#1", etc, where 1 refers to the first data column, or the empty string if the
position is outside the Treeview.

tv.identify_region(x, y)

x and y are numbers of pixels from the top left corner of the Treeview.
Returns a string saying what kind of thing is there:

"heading": it is in amongst the headings,
"tree": it is in one of the expandable labels,
"cell": it is in one of the data cells,
"separator": it is in the headings, but on top of one of the
separators
"nothing": it is outside the Treeview.

tv.bbox(iid, column = None)

If the row is visible this returns the tuple (x, y, width, height) giving the
bounding box of the cell relative to the top left corner of the Treeview. If the
row is not visible it returns the empty string. If the column parameter is left
out you get the same but for the whole row. column may be an int data
column number, a column name as given to the constructor, or "#0", "#1",
etc.

Here is an example, and snippets of the code that produced it.

336

This got everything started:

 1 >>> tv = ttk.Treeview(win, selectmode = "browse",
 height = 8,
 columns = ["pop", "are", "par"])
tv.heading("#0", text = "Compound Nations", anchor = "w")

tv.heading(0, text = "Population", anchor = "w", command = say)
tv.column(0, width = 80)
tv.heading(1, text = "Area", anchor = "w")
...

 2 ...
 3 ...
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>

The expandable labels were produced like this:

 21 >>> images = []

def add(where, txt, fnm):
 im = PhotoImage(file = "pictures\\" + fnm + ".png")
 images.append(im)
 return tv.insert(where, "end", image = im, text = " " + txt)

uk = add("", "United Kingdom", "UK")
uar = add("", "United Arab Republic", "UAR")

en = add(uk, "England", "E")
...

 22 ...
 23 >>>
 24 ...
 25 ...
 26 ...
 27
 28 >>>
 29 >>>
 30
 31 >>>

And the data was entered like this:

 51 >>> def set(which, values):
 for index, value in enumerate(values):
 tv.set(which, index, value)

set(uk, ["68,138,484", "93,628", 4])
set(en, ["57,648,484", "51.320"])
set(wa, ["3,105,000", "8.192"])
...

 52 ...
 53 ...
 54
 55 >>>
 56 >>>
 57 >>>

63. Menus

337

Menu bars may be added to the Tk() window and toplevels only. They appear
as usual, at the top of the window, or on a Mac at the top of the screen. They are
fairly easy to deal with. Tkinter calls normal menus “cascades” and also allows a
few other things on a menu bar: a simple text string that can be clicked on,
Checkbuttons, and Radiobuttons.

On a Mac, if you want the Menu bar to be at the top of the program’s window
instead, these steps are supposed to work. First, pick any widget wid within the
window, and say win = wid.winfo_toplevel(). That retrieves the object that
represents the top level window. Then create your Menu bar with win as its owner:
mb = Menu(win). That should be all it takes. Also on a Mac, only ordinary Menus
may be added to the top Menu bar. Commands, Checkbuttons, and Radiobuttons
may only be added to drop-down Menus.

To add menus to a window, first create a Menu object belonging to the window,
then use the window’s configure method to tell it about it. Then create other
Menu objects, this time belonging to the original Menu. Tkinter uses the Menu type
for menu bars, actual menus, and even menus within menus. Finally give each of
your Menus whatever options you want them to have through their add_command
methods.

 1 >>> from tkinter import *
import functools as ft

def action(which):
 print(which, "was selected")

win = Tk()

can = Canvas(win, width = 300, height = 100, background = "white")
can.pack()

menbar = Menu(win)
win.config(menu = menbar)

filmen = Menu(menbar, tearoff = 0)
filmen.add_command(label = "Open",
 command = ft.partial(action, "Open"))
filmen.add_command(label = "Save",
 command = ft.partial(action, "Save"))
filmen.add_command(label = "Close",
 command = ft.partial(action, "Close"))
menbar.add_cascade(label = "File", menu = filmen)

edmen = Menu(menbar, tearoff = 0)
edmen.add_command(label = "Copy",
 command = ft.partial(action, "Copy"))
edmen.add_command(label = "Paste",
 command = ft.partial(action, "Paste"))
menbar.add_cascade(label = "Edit", menu = edmen)

 2 >>>
 3
 4 >>>
 5 >>>
 6
 7 >>>
 8
 9 >>>
 10 >>>
 11
 12 >>>
 13 >>>
 14
 15 >>>
 16 >>>
 17 ...
 18 >>>
 19 ...
 20 >>>
 21 ...
 22 >>>
 23
 24 >>>
 25 >>>
 26 ...
 27 >>>
 28 ...
 29 >>>

338

If I click on Save, “Save was selected” is printed. When creating one of the pull-
down menus, failing to say tearoff = 0 produces an ugly dotted line as you see in
the picture to the right. I think this is supposed to allow the user to drag the
menu away and put it somewhere else, but on my Windows PC it doesn’t work.
The add_command method needs a parameterless function as the callback, hence
the use of partial.

If I change the end of the program to this, we’ll see how easy it is to create a
sub=menu.

 29
submen = Menu(edmen, tearoff = 0)
submen.add_command(label = "to .jpg",
 command = ft.partial(action, "jpg"))
submen.add_command(label = "to .gif",
 command = ft.partial(action, "gif"))
submen.add_command(label = "to .png",
 command = ft.partial(action, "png"))
edmen.add_cascade(label = "Convert", menu = submen)
menbar.add_cascade(label = "Edit", menu = edmen)

 30 >>>
 31 >>>
 32 ...
 33 >>>
 34 ...
 35 >>>
 36 ...
 37 >>>
 38 >>>

The add_command method can also be used on the main menu-bar Menu in exactly
the same way as above. The result looks exactly the same as a cascade would,
until you click on it. Nothing drops down, it just calls the callback function.

Some more add_... methods for Menu objects:

m.add_separator()

339

Produces a line at the next position,
used to separate functionally different
areas, or for whatever other reason you
have.

 1 >>> submen.add_separator()

m.add_checkbutton(option = value, ...)

To add a Checkbutton to a Menu don’t create a Checkbutton
yourself, just use this method with a BooleanVar object as
the variable option. It doesn’t look like a normal
Checkbutton, it is just another label, but every time you
click on it the variable will flip its value, and when it is on a
little tick appears to the left.

 1 >>> b = BooleanVar()

b.set(True)
edmen.add_checkbutton(label = "Happy", variable = b)

 2 >>>
 3 >>>

m.add_radiobutton(option = value, ...)

Adding a set of Radiobuttons is almost the same, but in
order to know which of the buttons is currently selected, you
should create an IntVar or StringVar and provide it as the
variable option, and decide which value it should be given
for each button, providing that to the value option. It is still
useful to set command to a callback function just so that
you know when the selection has been changed. The initial
value of that variable determines the initial selection, if any.

 1 >>> i = IntVar()

i.set(2)

edmen.add_radiobutton(label = "Small", variable = i, value = 1)
edmen.add_radiobutton(label = "Medium", variable = i, value = 2)
edmen.add_radiobutton(label = "Large", variable = i, value = 3)

 2 >>>
 3
 4 >>>
 5 >>>
 6 >>>

Checkbuttons and Radiobuttons may both be added to the main menu bar, but
at least on my Windows PC, it doesn’t work as we would expect. Clicking one of
them still changes the variable (if there is one) and calls the callback function, but
the appearance of the button does not change. No little tick or anything. So the
user can not tell what is selected.

The Menu constructor has the normal options background or bg, foreground or
fg, borderwidth or border or bd, disabledforeground, font, cursor, relief,
activebackground, activeforeground, and activeborderwidth, but oddly no
state, so disabledforeground is fairly pointless. These all apply to the dropped-
down Menu itself, not to the title in the menu bar.

340

Other constructor options follow, but keep in mind that these are options for
creating whole Menus, they are not the options for the add_... methods.

postcommand = callback

This parameterless callback function will be called whenever the Menu drops
down, or expands, as the result of a mouse click on its title. On my
Windows PC, I’m sure that the way this option behaves is not what was
intended. Adding a postcommand for one single Menu results in that callback
being called whenever any of the other Menus drop down too. If I provide one
postcommand for one Menu, and another postcommand for another Menu,
both get called whenever any Menu drops down as the result of a mouse
click.

Also, postcommands happen only if a mouse click was involved. Menus tend
to drop down whenever the mouse hovers above them and that has no
effect.
This means that you can’t tell whether a Menu has dropped down at all.

selectcolor = colour

This this is the colour that the little tick for any Checkbuttons or
Radiobuttons in this Menu will have when if are selected.

tearoffcommand = callback
title = string

These only apply if you have a tearoff enabled Menu. The callback function
should be called when the Menu is torn off, and the torn off Menu’s little
window should have the given string as its title, but that just doesn’t do
anything on my Windows PC.

The add_... methods used to add choices to a Menu have their own set of options,
as well as the usual font, state, and underline:

background = colour
foreground = colour

These over-ride the background and foreground settings given to the whole
Menu for this item only. They may not be abbreviated in this use. These
colours are used when to mouse is not over the item. When the mouse is
over an item, the colours used are system dependent and can not be
changed by any options.

image = PhotoImage
compound = "left" or "right" or "top" or "bottom"

These only work inside pull-down menus, not on the menu bar, at least on
my Windows PC. These options are as usual if you want to have an image
instead of or as well as a text label. There is one irregularity, at least on my
Windows PC: if you set compound to "left" and it is an ordinary Menu item,
not a Checkbutton or Radiobutton, the image (and text if any) will move
further left than usual, and occupy the space used for Checkbuttons’ and

341

Radiobuttons’ little ticks if you have any. If you select "right", this
doesn’t happen.

selectimage = PhotoImage

This has no effect unless you also provide an image option. The
selectimage is shown instead of the normal image when the item is
selected, so it only applies to Checkbuttons and Radiobuttons.

onvalue = value
offvalue = value

Only for Checkbuttonss. Normally the controlling variable is set to 1 for
selected and 0 for not selected. These options over-ride that.

columnbreak = 0 or 1, the default is 0.

Menu items are normally arranged entirely vertically. Setting columnbreak
to 1 makes it start a new column of items before this one is added.

accelerator = string

Used to inform the user of “hot keys”, keyboard shortcuts that have the
same effect as selecting this item. The string you provide, something like
"^S" as a keystroke equivalent for “Save”, appears beside the label or image.
This only works for items in drop-down Menus, not in the menu bar. It also
does nothing to make the accelerator do its job. You would also have to
make a keyboard event binding for the window.

hidemargin = 0 or 1, the default is 0.

This has absolutely no effect on my Windows PC, and causes an exception if
I try to use it on a separator. Normally menu items have a small space
between them where the background colour shows through. Setting
hidemargin to 1 is supposed to result in that gap being left out. The idea is
that you would use this for images that you want to run together.

Menu methods: These are for whole Menus, not Menu items.

m.insert_...(position, ...)

This is a set of five methods that have the same names (after the underline)
as the add_... methods. They do exactly the same thing, except that instead
of adding the new item to the end of a Menu, they insert them between or
above existing Menu items. A position of 0 means that this becomes the
new first item, 1 means the new second, and so on.

m.delete(position)
m.delete(position1, position2)

Positions are ints, 0 means the first Menu item, 1 the second, and so on. The
first form removes one item from the Menu. The second form removes all
items between the two positions, inclusive.

m.type(position)

342

Returns one of "cascade", "command", "checkbutton", "radiobutton",
"tearoff", or "separator", depending on what kind of item is at that
position in the Menu. If position is too big, it just goes for the last item, but if
position is negative you get an exception.

m.index("end")

Returns the number of items in the Menu. Oddly, if the number is zero it
returns None instead.

m.entrycget(position, optionname)
m.entryconfigure(position1, option = value, option = value, ...)

These let you see or change the options that were (or could have been)
provided when the item was added or inserted.

m.invoke(position)

Simulate a mouse click on the indicated item, 0 for the first item in the Menu
and so on. If it is a Radiobutton, it is set to selected. If it is a Checkbutton,
its selectedness is reversed. All items have their callback function called.

m.post(x, y)

A detached but fully functional copy of the menu appears at the given
position measure in pixels from the top left corner. It disappears again as
soon as the user clicks the mouse within it. The position is supposed to be
relative to the main window, but on my Windows PC it is relative to the top
left corner of the primary screen.

m.yposition(position)

Is supposed to return the number of pixels between the top of the Menu and
the top of the indicated item (or where it would be if it were open), so that
you can use post to position a separated Menu immediately next to a
particular Menu item. Unfortunately this really does measure from the top of
the Menu, so on a Windows PC where post measures from the top of the
screen, it is not very helpful.

64. Menubutton and Optionmenu

Menubuttons are closely related to Menus, they provide a different way to make the
choices available. A Menubutton is an ordinary widget just like a Button that can
be positioned anywhere you want. When clicked, it expands into a normal drop-
down Menu.

Create a Menu exactly as in the previous subsection. Create a Menubutton and put
it wherever you want. But the Menu needs be created with the Menubutton as its
container, and the Menubutton needs to be created with the Menu as its menu
option. The way around this is to create the Menubutton first, without giving it
any menu option, then create the Menu, then use the Menubutton’s configure
method to set its menu option.

343

 1 >>> win = Tk()

can1 = Canvas(win, width = 150, height = 40, background = "white")
can1.pack()
mbt = Menubutton(win, text = "Colours", relief = "raised")
mbt.pack()
can2 = Canvas(win, width = 150, height = 40, background = "white")
can2.pack()

men = Menu(mbt, tearoff = 0)
men.add_command(label = "Red", command = selred)
men.add_command(label = "Green", command = selgreen)
men.add_command(label = "Blue", command = selblue)
men.add_command(label = "Indigo", command = selindigo)
mbt.configure(menu = men)

 2
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9
 10 >>>
 11 >>>
 12 >>>
 13 >>>
 14 >>>
 15 >>>

The window as first created is on the left, its appearance when the button has
been clicked is at the right.

The Menubutton constructor has all of the options of a normal Button except for
command, together with menu as described above. It is also lacking the flash and
invoke methods. It has one additional option:

direction = "left" or "right" or "above" or "below". The default is "below".

Which side of the Menubutton the Menu will be stuck to when it is opened.

An OptionMenu is a very similar thing, but it is designed to be very easy to use. All
you can do is provide a StringVar to control it, and a list of plain old strings to be
the choices. The label displayed will initially be the value of the StringVar, even if
it doesn’t match any of the choices. Once a choice has been clicked on, that is
displayed as the label.

OptionMenus also have all the options of a Button to control their appearance,
plus an indicatoron option. If indicatoron is 1, the default, then a little
rectangle appears beside the label. If it is 0, it doesn’t.

It also supports the usual command option. Here, the callback function should
have one parameter, it will be the string that was selected.

 1 >>> def click(s):
 print("selected", s) 2 ...

344

 3
sv = StringVar()
om = OptionMenu(win, sv, "Tiny", "Small", "Medium", "Large",
 "Enormous", command = click)
sv.set("Select Size")
om.pack()

 4 >>>
 5 >>>
 6 ...
 7 >>>
 8 >>>

The image at the left is of the initial appearance. At the right it is after I first
selected Small the clicked again to make another choice but haven’t yet made that
choice.

65. Dialogues

A dialogue is a small window that pops up temporarily to show some information
or ask a question. Tkinter has six built-in kinds of dialogues, three for asking
simple questions, one for yes/no questions or displaying a small amount of
information, one for selecting files, and one for selecting a colour. For all of those,
the appearance is totally system-dependent. Anything else, you can make for
yourself in a Toplevel window.

i. Simpledialog

This class provides three class methods for very quickly getting an int, or a float,
or a string from the user in response to a question.

 1 >>> from tkinter import *
from tkinter import simpledialog

simpledialog.askstring("String input",
 "What is your name?\t\t\t\t")
'Herbert Semolina McSmith'

 2 >>>
 3
 4 >>>
 5 ...
 6

345

The tabs at the end of the question string are because the natural size of the
dialogue window is too small for useful string input. A long question stretches the
window, and the text input area grows with it. If the user clicks cancel or just
closes the window, the return value is None.

There are four options:

initialvalue = string

A default value that will already be in the input area when the dialogue
opens.

minvalue = string
maxvalue = string

If the user enters a string below the minimum value or above the maximum
value an error message is produced and the user gets another try. The
comparisons are made the way strings are always compared, and are case
sensitive. That makes these options almost useless, but they already were in
the case of strings: when do you ever have a minimum dictionary ordering
value for acceptable strings?

parent = window

The dialog will appear directly on top of the given window.

Two more class methods, askinteger and askfloat, work in exactly the same
way. They only allow values of the right type, and initialvalue, minvalue, and
maxvalue must also be of an appropriate type. Both return whatever value the
user entered, or None if the user clicked cancel or closed the dialogue window.

 1 >>> simpledialog.askinteger("Integer input",
 "How many dachsunds do you need?",
 initialvalue = 1,
 maxvalue = 5)
1

 2 ...
 3 ...
 4 ...
 5

ii. Messagebox

This kind of dialogue is for showing information or asking very basic questions. It
has seven varieties, but you don’t get many options. Each variety has a predefined
appearance, number of buttons, and button labels. The documentation refers to
these by the name tkMessageBox, but Python itself doesn’t recognise that name.
It only works if you use messagebox instead. All are created by using messagebox
class methods, they all take a title to go in the pop-up window’s title bar, and the

346

text to be displayed (both strings), and a few options. The text string may contain
\n characters if you want it to span multiple lines.

showinfo, showwarning, and showerror are all very similar:

 1 >>> from tkinter import messagebox
messagebox.showinfo("You should know ...",
 "This is going to take a long time")
'ok'

 2 >>>
 3 ...
 4

The function does not return until the user clicks the button, and it always
returns the string "ok". Even if the user closes the pop-up rather than clicking
OK, it still returns "ok".

 1 >>> from tkinter import messagebox

messagebox.showwarning("Warning",
 "The file's checksum is incorrect")
'ok'

 2 >>>
 3 ...
 4

 1 >>> from tkinter import messagebox
messagebox.showerror("Fatal Error",
 "Division by zero")
'ok'

 2 >>>
 3 ...
 4

All messagebox types have the following two options:

icon = string

347

Changes the icon that appears beside the text. Not as useful as one might
imagine. You can’t provide your own image, the value must be one of four
strings, shown with their Windows PC results here:

"error" "info" "question" "warning"

parent = window
Normally the pop-up appears on top of the main Tk() window. If you want it
to appear over a Toplevel window, provide that object here.

askyesno, askquestion, askokcancel, and askretrycancel provide a binary
choice:

 1 >>> from tkinter import messagebox
messagebox.askyesno("Decide Please",
 "Is it time yet?")
True

 2 >>>
 3 ...
 4

The return value is True if Yes is selected, False if No. The user does not get the
option of closing the pop-up without answering.

 1 >>> from tkinter import messagebox
messagebox.askquestion("Decide Please",
 "Is it time yet?")
'yes'

 2 >>>
 3 ...
 4

The appearance is identical to that of an askquestion on my Windows PC. The
only difference is that the return values are "yes" and "no".

 1 >>> from tkinter import messagebox

348

 2 >>> messagebox.askokcancel("Are you sure?",
 "Continue to erase C:\\?")
False

 3 ...
 4

We are back to True and False as the return values. This one can be closed, in
which case the result is False.

 1 >>> from tkinter import messagebox
messagebox.askretrycancel("Try again?",
 "Could not connect to remote host")
True

 2 >>>
 3 ...
 4

Again True and False are the return values. This one can also be closed.

The four binary choice dialogues accept a third option called default. Normally,
the default button, the one that is pseudo-clicked if the user presses enter, is the
left-most button. default changes this. There are five strings with the obvious
meanings: "yes", "no", "ok", "retry", and "cancel". The documentation
claims a sixth choice, "ignore", but that just causes an exception on my
Windows PC.

iii. Colorchooser

As the name suggests, this dialogue lets the user select a colour for something.
The first parameter is the colour that is initially chosen when the pop-up appears.
The only other options are title and parent. The title of the pop-up may only
be given as an option, and the parent option means the same as for a
messagebox.

 1 >>> from tkinter import colorchooser
colorchooser.askcolor("white", title = "Pick a colour")
((0, 0, 255), '#0000ff')

 2 >>>
 3

349

If the user does pick a colour and click OK, the result is a two-tuple. First a three-
tuple of the 8-bit (red, green, blue) values, and second the hexadecimal version of
that as a string. If the user clicks cancel or closes the dialogue, the result is
(None, None).

iv. Filedialog

As expected, this dialogue allows the user to browse through discs and folders to
select a file. It has two varieties, one for selecting a file to be read, one for selecting
a file to be overwritten or created.

 1 >>> from tkinter import filedialog
filedialog.asksaveasfilename(title = "Save as ...",
 defaultextension = ".txt",
 initialdir = "D:\\Python")
'D:/class/231/322/classroll.csv'

 7 >>>
 9 ...
 10 ...
 11 >>>

The title option is, as usual, the title that appears at the top of the pop-up.
initialdir overrides the default for which directory or folder should be shown at
the beginning. If the user chooses a file either by double-clicking it, or selecting it
and then clicking Open, the complete path for that file is returned as a string. If
the user clicks Cancel or just closes the dialogue, the result is an empty string.
The user may type a file name instead of browsing for one. If the user double-
clicks on a file, or types in the name of a file that already exists, a warning and
opportunity to change their mind appears.

If the user types in a filename that has no extension, the defaultextension
string will be appended to it in the string that is returned, but it never appears in
the dialogue.

350

Using askopenfilename instead of asksaveasfilename is almost the same, but
the pop-up window does not have the "Save as type" input area, and of course the
defaultextension option is ignored. This time, if the user selects a file that does
not exist, it is rejected.

Other options:

initialfile = string

The string will appear as the initial contents of the "File name" input area.

filetypes = list or tuple

This gives the content of the "Save as type" input area with ...saveas... and
makes an extra input area appear with ...open..., at least on my Windows
PC.
The items in the list or tuple must themselves be two-tuples whose first is a
descriptive string for a type of file, such as "python files", or "all
files".
The second item in the tuples is either a single string or a tuple of strings
giving the pattern or patterns for matching file names, such as "*.py",
"*.*", or ("*.py", *.py3").

Filling the gaps in the above example:

 2 >>> types = (("python files", ("*.py", "*.py2", "*.py3")),

351

 3 ... ("text files", "*.txt"),
 ("named abc", "abc.*"),
 ("m... files", "m*.*"),
 ("all files", "*.*"))

 filetypes = types,

 4 ...
 5 ...
 6 ...

 8 ...

has this effect. Only the top line appears
in the input area until I click on it, when
this appears. Notice that two of my
patterns, "abc.*" and "m*.*", are not
as I specified, an extra star has appeared
at the beginning of both. What actually
happens doesn't agree with either.

The idea is that only files whose names match the currently selected pattern,
along with all folders, will be shown. The "m*.*" pattern as changed to
"*m*.*" does indeed show every file that has an “m” in its name before the
dot. But the "abc.*" pattern as changed to "*abc.*" completely misses two
files called xxabcxx.txt and abc3.txt. What could be going on? Perhaps it
is just another Windows PC peculiarity.

parent = window
The dialogue will appear directly on top of the given window.

typevariable

This option exists, something vaguely says that it has something to do with
filters, but I can find no adequate description of it anywhere.

multiple = True or False

The documentation claims that this allows more than one file to be selected,
but on my Windows PC using it just causes an exception.

Two more functions, asksaveasfilenames and askopenfilenames (both with an
extra “s” at the end) are exactly the same, except that they allow multiple files to
be selected. The return value is a tuple of the selected file names, but still just an
empty string if cancel is clicked or the dialogue is closed.

If the ...name... part of the four functions is left out (e.g. askopenfile), they open
the selected file, in the appropriate read or write mode, and return those file
objects in place of the names.

The askdirectory function only displays folders or directories, and naturally only
allows folders to be selected. The filetypes option becomes meaningless, and
using it causes an exception.

66. Pillow - better image processing

352

Pillow is an updated version of PIL, the Python Imaging Library. It supports many
more graphics file formats than tkinter, and allows you to modify images in a way
that would otherwise require a lot of programming.

Each version of Pillow can only run on the few most recent versions of Python, so
you may need to update your Python software if it is a bit old.

Pillow is not part of the normal Python distribution, it needs to be downloaded and
installed exactly as at the end of the section on Packages and Modules. Oddly,
what you must install is pillow, but what you import is PIL. Or more likely, you
will import something from PIL.

An introductory example will show how easy a lot of operations are. I’ll open a jpeg
file, display it, shrink it to half size, and save it as a png file.

 1 >>> from PIL import Image

full = Image.open("images\\10shilling.jpg")
full.show()
half = pic.resize((pic.width // 2, pic.height // 2))
half.show()
half.save("images\\half.png")

 2
 3 >>>
 4 >>>
 5 >>>
 6 >>>
 7 >>>

open only has one useful parameter, the image file. The other parameter, called
mode has a default value of "r", and giving it any other value causes an exception.
The image file may be a normal file name in a string, or a pathlib.Path object, or
an already open file object as returned by open(); it must be opened with mode
"rb".

show doesn't use any of Python’s graphical abilities such as Canvas or turtle. It
uses your computer’s default viewer for the image type. show’s only option is
title, giving the string that should appear in the window’s title bar, but it
usually has no effect.

Note that resize was just given a tuple as its single parameter. The result of the
resize method is a new Image object. If you only want to resize a part of the
original image, set the box parameter to a four-tuple (x, y, w, h) specifying the
desired part as the pixel coordinates of its top left corner and its width and height.

If the size you give to resize does not have the same ratio of width to height as
the original image, it will be distorted, so be careful. The thumbnail method (same
parameters as resize) does not distort, it treats the width and height that you

353

supply not as required values, but as maxima. One will be the exact size, but the
other will be changed to keep the same proportion. Unfortunately thumbnail is
only willing to shrink images, it does not accept sizes larger than the existing
ones.

When resizing, a rectangular neighbourhood of the original pixels may contribute
to each new pixel with different weights. Two optional parameters give information
about how this is to be handled. To understand these parameters requires more
knowledge of graphics processing than is reasonable to expect in this context.
Here I’ll just give the names. reducing_gap should be a float > 1. resample may
be any one of Image.Resampling.BICUBIC,BILINEAR,BOX,HAMMING,
....LANCZOS, orNEAREST.

The save method may be given the file to save in any of the three ways that open
accepts. If you provide an already open file (mode must be "wb"), save will not use
the file’s name to determine the format, you need to provide a second parameter
called format. It should be one of the capital letter strings like "PNG" shown in
the results in the next example, but using SAVE instead of OPEN. save
automatically converts the image to the format indicated by the file name or the
second parameter. If both are provided, the second parameter has precedence.

save accepts any keyword parameters you care to give it, but to have any effect
they must be from the set that is supported for the format you want. There are far
too many possibilities to cover.

The documentation says that you can see the list of file formats that PIL
understands through PIL.features.pilinfo(), but my Windows PC denies the
existence of PIL.features. To find the true list, use this:

 1 >>> from PIL import Image

def list_types(d):
 trans = dict({})
 exts = Image.registered_extensions()
 for k in exts:
 trans[exts[k]] = k
 bigs = sorted(set(d.keys()) & set(trans.keys()))
 return [big + "(" + trans[big] + ")" for big in bigs]

list_types(Image.OPEN)
['BLP(.blp)', 'BMP(.bmp)', 'BUFR(.bufr)', 'CUR(.cur)',
 'DCX(.dcx)', 'DDS(.dds)', 'DIB(.dib)', 'EPS(.eps)',
 'FITS(.fits)', 'FLI(.flc)', 'FTEX(.ftu)', 'GBR(.gbr)',
 'GIF(.gif)', 'GRIB(.grib)', 'HDF5(.hdf)', 'ICNS(.icns)',
 'ICO(.ico)', 'IM(.im)', 'IPTC(.iim)', 'JPEG(.jpeg)',
 'JPEG2000(.j2c)', 'MPEG(.mpeg)', 'MSP(.msp)', 'PCD(.pcd)',
 'PCX(.pcx)', 'PIXAR(.pxr)', 'PNG(.apng)', 'PPM(.pnm)',
 'PSD(.psd)', 'QOI(.qoi)', 'SGI(.sgi)', 'SUN(.ras)',
 'TGA(.vst)', 'TIFF(.tiff)', 'WEBP(.webp)', 'WMF(.emf)',
 'XBM(.xbm)', 'XPM(.xpm)']

 2
 3 >>>
 4 ...
 5 ...
 6 ...
 7 ...
 8 ...
 9 ...
 10
 11 >>>
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

354

That is the list of file types that it can currently open and therefore be able to
process. To find the list of file types that it can create and therefore save, replace
the Image.OPEN in the function call with Image.SAVE. That list is shorter.

To incorporate a PIL Image into a tkinter object only requires one extra step. To
illustrate, I’ll put an Image in a Canvas and a Label.

 1 >>> from PIL import Image
from PIL import ImageTk
from tkinter import Tk, Label, Canvas

win = Tk()
pic = Image.open("images\\10shilling.jpg")
img = ImageTk.PhotoImage(pic)
lab = Label(win, image = img)
lab.pack()
can = Canvas(win, width = 400, height = 400)
can.pack()
can.create_image(5, 5, anchor = "nw", image = img)

 2 >>>
 3 >>>
 4
 5 >>>
 6 >>>
 7 >>>
 8 >>>
 9 >>>
 10 >>>
 11 >>>
 12 >>>

The example showed two of Image’s attributes, width and height, and the use of
// instead of / to divide by two illustrates the fact that Pillow only accepts exact
ints as coordinates. There are some others:

img.size = (w, h)
 The image size as a width, height two-tuple.

img.format = string or None
 A string, like "PNG" or "JPEG". This is not what you might expect. File
formats like png and jpeg are responsible for how colours are represented, how the
image is compressed, and so on. Once an Image has been successfully opened or
if it was created by manipulating another image, these details are meaningless, it
is all just an uncompressed rectangle of pixel values. So most of the time, format
will be None.

img.filename = string
 The name of the file that open read to create the Image. If it didn’t come
from a file, the empty string is used.

img.mode = string
 How colours are represented. Two possible values, "RGB" and "CMYK", are
well known. The others require a lot of knowledge of image processing to
understand.

img.palette = ImagePalette object
 Some formats, such as gif, are limited to a small-ish number of different
colours. The definitions of the chosen colours, possibly as RGB triplets, are stored
in a list somewhere in the file. The image data refers to colours by their position in
this list. The list is called a palette. This attribute is designed to give access to the
palette, but at the time of writing it is still very experimental and lacking any
details.

355

img.is_animated = True or False
img.n_frames = int
 Some formats, such as gif, can be animated. Typically when displayed they
will cycle through a loop of individual ordinary images. These attributes tell you a
little bit about that.

Other useful methods that return new Images rather than altering existing ones:

img.crop((left_x, top_y, right_x, bottom_y))

The image is reduced in size by discarding everything outside of a given
rectangle. The one parameter is a four-tuple with everything measured in
pixels from the top left corner.

img.rotate(angle, expand = True or False)

The angle is degrees anticlockwise. If the image is square, and angle that is
not a multiple of 90 will result in part of the image being lost. For oblong
images, anything other than 180 degrees will cause image loss. The expand
parameter, which is normally False can be used to change this. if expand is
True the height and width will expand enough for the entire rotated image
to fit.

img.rotate(kind)

This does operations that could be thought of as in some way flipping the
image. kind is actually an int, but there are seven names for them. The
effects of the first five are obvious from their names: Image.ROTATE_90,
Image.ROTATE_180, Image.ROTATE_270 (rotations are anticlockwise),
Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM (mirror images of a
kind). Image.TRANSPOSE is the same operation as transposing a matrix, y
coordinates become x coordinates and x coordinates become y coordinates.
It is equivalent to a FLIP_LEFT_RIGHT operation followed by a ROTATE_90.
Image.TRANSVERSE is very similar, being equivalent to a FLIP_LEFT_RIGHT
operation followed by a ROTATE_270.

