
Deep Learning – Neural Nets 
 
The McCulloch-Pitts Perceptron, 1943 

 “Perception” and “Electronic” 
 A very simplified model of how a real neuron works 
 “Perceptron” and “Neuron” used almost interchangably, 
  but Perceptron is a little bit old fashioned now 
 Any number of inputs, ai 

Sometimes on/off, sometimes continuous 
 Each input has an associated weight, wi 

Changing the weights is how it learns 
 Output or State computed from weighted inputs 

∑ ai×wi 
 But a non-linear Activation Function is applied to that sum 

ƒ(∑ ai×wi) 
 Could be (but usually isn’t) a cut-off function 

ƒ(x) = if x < k then 0 else 1 
each perceptron can have its own value for k 

 Or the Sigmoid (or Logistic) function, popular 
ƒ(x) = 1 / (1 + e-x) 
easy to differentiate, that will turn out to be useful 

 Or the Rectified Linear Unit (ReLU) function 
ƒ(x) = max(0, x) 

 Or the Softplus function, a continuous approximation to ReLU 
ƒ(x) = loge(1 + ex) 

 Or the Hyperbolic Tangent function tanh 
ƒ(x) = (e2x – 1) / (e2x + 1) 
but that gives a range of -1 to +1 

 There can also be a Bias 
  Typically a constant value -1 or +1 
  that is treated as an extra input with its own weight 
  it can shift the curve given by ƒ to the left or right 
 
Layers 

 One perceptron recognizes a straight-line/plane/hyperplane 
Separating one set of possible inputs from the other 

 Originally arranged in a single layer 
Usually all receiving the same inputs from sensors 
And all recognizing different Features 

 But that can’t recognize such a simple thing as exclusive or 
 Now usually arranged in multiple layers 

This is what Deep Learning refers to 
There is an input layer and an output layer, 
 any others are called Hidden Layers 

 Just two layers can compute any continuous function 
As close as you like, just add more perceptrons 



 Maybe softmax for final outputs when classifying 
  ethisoutput / ∑ ealloutputs 

  Suppose the actual outputs are 0.3, -0.4, 1.2, 0.2 
  the softmaxes are 0.206, 0.102, 0.505, 0.186 
  they will always add up to 1, so can use as probabilities,  

small ones get closer together, so biggest stands out 
 Big things, vision, language, etc. can use many layers 
 Neurons in real brains are not really arranged in layers 

And are definitely not Fully Connected either 
 
Training in general 

 Improve performance by adjusting weights throughout the network 
 Diminishing Returns – stop when it isn’t making much difference any more 
 Use a training set of course - large set of pairs (inputs, desired outputs) 
 adjust each link according to the amount of error it was responsible for 
 For each training point, work out the Local Error of the entire network 
  Just the difference between the actual output and the correct output 
  squared of course, negative errors are just as bad as positive ones 
  If there are multiple outputs, just average all their errors 
  That is Mean Squared Error, MSE 
  Sometimes Root Mean Square, RMS, is used instead 
 Repeat that for the entire training set, averaging all the errors 
 If that average error is small enough 

  the network has Converged. Training is over. 
 
Training with a single layer (inputs are not neurons) 
 
nj represents the jth neuron in the output (only) layer. 
 
N is the number of output neurons 
 
 is the activation function, (x) = 1 / (1 + e-x) 
 
wi,j is the weight on the connection from input i to output j 
 
z୧
଴ is the value of input i 
z୨
ଵ is the value of output j 

 
z୨
ଵ = ((z୧

଴ × wi,j)) 
 
vj is the total weighted input to nj: (z୧

଴ × wi,j) 
 
tj is the target, the correct value for z୨

ଵ 
 



Ej is the error in output j: z୨
ଵ - tj 

 

Total error, by Mean Square Error, E = Ej
2 / N 

 
To adjust any particular weight wi,j, 

 we need to know what effect a change in wi,j would have on E: E/wi,j 
 
In this section, we are always talking about changes, not actual values: 
 The total error E due to wi,j depends on the output z୨

ଵ 

  E/wi,j = E/z୨ଵ × z୨ଵ/wi,j 

 The output z1,j depends on its weighted inputs vj 

  E/wi,j = E/z୨ଵ × z୨ଵ/vj × vj/wi,j 
 
E expanded = ((z଴

ଵ – t0)2 + (zଵ
ଵ – t1)2 + (zଶ

ଵ – t2)2 + (zଷ
ଵ – t3)2 …) / N 

 

E/z୨ଵ = z୨
ଵ – tj all terms except the jth are independent of z୨

ଵ so deriv. is 0 

 and (z୨
ଵ – tj)2 = z୨

ଵ2 – 2z୨
ଵtj + tj

2 

 and ignoring the constant 2/N 
 

z୨ଵ/vj = (vj)/vj = z୨
ଵ × (1 - z୨

ଵ) because  (x)/x = (x) × (1 - (x)) 
 

vj/wi,j = z୧
଴ because  vj = (z୧

଴ × wi,j)   and other terms are indep. of wi,j 
 
So the correction to wi,j should be proportional to (z୨

ଵ – tj) × z୨
ଵ × (1 - z୨

ଵ) × z୧
଴ 

 
wi,j becomes wi,j -  × (z୨

ଵ – tj) × z୨
ଵ × (1 - z୨

ଵ) × z୧
଴ 

 
 is the learning rate 
 
Do that for every single weight 
 
And repeat that many thousands of times through the training set. 
 
  



For a network with three inputs and two outputs, we would calculate 
 

E/w0,0 = E/z଴ଵ × z଴ଵ/v0 × v0/w0,0 
 

E/w1,0 = E/z଴ଵ × z଴ଵ/v0 × v0/w1,0 
 

E/w2,0 = E/z଴ଵ × z଴ଵ/v0 × v0/w2,0 
 

E/w0,1 = E/zଵଵ × zଵଵ/v1 × v1/w0,1 
 

E/w1,1 = E/zଵଵ × zଵଵ/v1 × v1/w1,1 
 

E/w2,1 = E/zଵଵ × zଵଵ/v1 × v1/w2,1 

 

Note that the first two terms remain the same for each neuron: precompute. 
 
 
 
 
 
 
  



Training with multiple layers 
 
Back Propagation: work backwards from the output error, 
 distributing the blame for that error amongst all the weights 
 and adjusting those weights proportionately. 
 
Each layer creates a different representation of the inputs 
Inner layers often discover meaningful features of the input 
The output layer usually has one neuron for each feature you want to detect or 
for each possible classification of the input. 
 

 
 
n୧
ℓ is the ith neuron in layer ℓ, layer 0 is just inputs not really neurons 

 
z୧
ℓ is the output from n୧

ℓ 
 
w୧,୨
ℓ  is the weight on the output from n୧

ℓିଵ as input to n୨
ℓ 

 
 is the activation function, (x) = 1 / (1 + e-x) 
 



z଴
ଶ = (z଴

ଵ×w଴,଴
ଶ  + zଵ

ଵ×wଵ,଴
ଶ  + zଶ

ଵ×wଶ,଴
ଶ ) 

 
in general ℓ represents any layer and L represents the last layer: 
 
z୨
ℓ = ((n୧

ℓିଵ × w୧,୨
ℓ )) for ℓ > 1 

 
And as before, we split this into two parts 

 

v୨
ℓ = (n୧

ℓିଵ × w୧,୨
ℓ ) 

z୨
ℓ = (v୨

ℓ) 

 

ti is the target value for output i, what v୨
୐ should be 

 
Ej is the error in output j 
 
E0 = z଴

୐ – t0 
 
E1 = zଵ

୐ – t1 
 
Total error, by Mean Square Error, E = (E0 + E1)

2 / 2 
 

Now for weights in the hidden layer, w୧,୨
ℓ , using E/w଴,ଵ

ଵ  as an example 
 
w଴,ଵ
ଵ  affects E by two different paths, 

  from n଴
଴ through w଴,ଵ

ଵ  to nଵ
ଵ then through wଵ,଴

ଶ  to n଴
ଶ, and 

  from n଴
଴ through w଴,ଵ

ଵ  to nଵ
ଵ then through wଵ,ଵ

ଶ  to nଵ
ଶ 

 
For the first path we get 

 0 = E/z଴ଶ × z଴ଶ/v଴ଶ × v଴ଶ/zଵଵ × zଵଵ/vଵଵ × vଵଵ/w଴,ଵ
ଵ  

and for the second path we get 

 1 = E/zଵ
ଶ × zଵଶ/vଵଶ × vଵଶ/zଵଵ × zଵଵ/vଵଵ × vଵଵ/w଴,ଵ

ଵ  
 
As before: 
 

E/z୨୐ = z୨
୐ – tj 

 

z୨୐/v୨ℓ = z୨
ℓ × (1 - z୨

ℓ) 
 

And a differential we haven’t seen before: v୨ℓ/z୧ℓିଵ = w୧,୨
ℓ  

 

v୨ℓ/w୧,୨
ℓ  = z୧

ℓିଵ 



 

0 and 1 must be added together to get E/w଴,ଵ
ଵ  

 
w଴,ଵ
ଵ  becomes w଴,ଵ

ଵ  -  × (0 + 1) 
 

  



Vision (just a little bit) 
 Given a megapixels-big RGB image with one input neuron per pixel 

and a fully connected design 
there would be trillions of weights to work with 

 And Locality matters 
Neighbouring pixels contribute to real features, distant ones don’t 
But a neuron’s position within a layer makes no difference 
Might as well just present the pixels in random order – can’t be right 

 Also Spatial Invariance 
A cat looks the same regardless of where it appears in an image 
Cats should be recognized the same way regardless of position 
So we expect there to be groups of neurons all with the same weights 

 Convolutional Neural Networks 
From studies of the Visual Cortex; the Receptive Field of a neuron 
Groups of neurons all connected to the same neighbouring pixels 
Those groups, Kernels, all have the same set of weights 
Kernels of size k, with a Stride of s 
The operation of such a layer can be treated as a Matrix operation 
 GPUs are good for them 

 
Memory 

 Recurrent neural networks 
 There can be loops back in the connections 

A delay is required at each step 
 A neuron’s new state can depend in some way on its previous state 

And those of its neighbours too 
 Just like building a flip-flop out of nand gates 
 Can analyse sequential data 

 

 
 
 
 
 
 


