Back Propagation: work backwards from the output error, distributing the blame for that error amongst all the weights and adjusting those weights proportionately.

Training with a single layer

$$
n_j
$$
 represents the j^{th} neuron in the output (only) layer.

N is the number of output neurons

f is the activation function, $f(x) = 1 / (1 + e^{-x})$

w_{ij} is the weight on the connection from input i to output j

 z^0 is the value of input i z^{1} is the value of output j

 v_i is the total weighted input to n_i : $\Sigma(z_i \times w_{ij})$

 t_j is the target, the correct value for z^1 _j

 E_j is the error in output i: z^1 _j - t_j

Total error, by Mean Square Error, $E = \sum E_j^2 / N$

To adjust any particular weight w_{ii} , we need to know what effect a change in w_{ij} would have on E: $\delta E/\delta w_{ij}$

In this section, we are always talking about changes, not actual values: The total error E due to w_{ij} depends on the output z^1 _i $\delta E/\delta w_{ij} = \delta E/\delta z_{j}^{i} \times \delta z_{j}/\delta w_{ij}$ The output z^{1} depends on its weighted inputs v_i

 $\delta E/\delta w_{ii} = \delta E/\delta z_{i}^{1} \times \delta z_{i}/\delta v_{i} \times \delta v_{i}/\delta w_{ii}$

 $\delta E/\delta z^1$ = z^1 - t_i ignoring the constant 2

 $\delta z^1_i/\delta v_i = \delta f(v_i)/\delta v_i = z^1_i \times (1 - z^1_i)$ $\delta f(x)/\delta x = f(x) \times (1 - f(x))$

 $\delta v_i/\delta w_{ii} = z^0_i$

So the correction to w_{ij} should be proportional to $(z^1j - t_j) \times z^1j \times (1 - z^1j) \times z^0i$

$$
w_{ij}
$$
 becomes $w_{ij} - \eta \times (z^1_j - t_j) \times z^1_j \times (1 - z^1_j) \times z^0_i$

is the learning rate

Do that for every single weight

And repeat that many thousands of times through the training set.

For a network with three inputs and two outputs, we would calculate

 $\delta E/\delta w_{00} = \delta E/\delta z^1_0 \times \delta z^1_0/\delta v_0 \times \delta v_0/\delta w_{00}$ $\delta E/\delta w_{10} = \delta E/\delta z_{10} \times \delta z_{10}/\delta v_{0} \times \delta v_{0}/\delta w_{10}$ $\delta E/\delta w_{20} = \delta E/\delta z_{10} \times \delta z_{10}/\delta v_{0} \times \delta v_{0}/\delta w_{20}$ $\delta E/\delta w_{01} = \delta E/\delta z^1$ ₁ × δz^1 ₁/ δv_1 × $\delta v_1/\delta w_{01}$ $\delta E/\delta w_{11} = \delta E/\delta z^1$ ₁ × δz^1 ₁/ δv_1 × $\delta v_1/\delta w_{11}$ $\delta E/\delta w_{21} = \delta E/\delta z^1$ ₁ × δz^1 ₁/ δv_1 × $\delta v_1/\delta w_{21}$

Note that the first two terms remain the same for each neuron: precompute.

Training with multiple layers

- Each layer creates a different representation of the inputs
- Inner layers often discover meaningful features of the input
- The output layer usually has one neuron for each feature you want to detect or for each possible classification of the input.

A slight change in the symbols is required:

the z^0 are the input values

f is the activation function, $f(x) = 1 / (1 + e^{-x})$

$$
z^2_0 = f(z^1_0 \times w^2_{00} + z^1_1 \times w^2_{10} + z^1_2 \times w^2_{20})
$$

in general, where ℓ represents any layer, and L represents the last layer:

$$
\mathbf{z}^{\ell} \mathbf{j} = f(\Sigma(\mathbf{z}^{\ell-1} \mathbf{i} \times \mathbf{w}^{\ell} \mathbf{ij})) \text{ for } \ell > 1
$$

And as before, we split this into two parts

 v^{ℓ} _j = $\Sigma(z^{\ell-1}$ _i×w $^{\ell}$ _{ij}) z^{ℓ} _j = $f(v^{\ell}$ _j)

 t_i is the target value for output i, what v_i should be

 E_i is the error in output i

$$
E_0 = z^L_0 - t_0
$$

 $E_1 = zL_1 - t_1$

Total error, by Mean Square Error, $E = (E_0 + E_1)^2 / 2$

Now for weights in the hidden layer, w^1 _{ij}, using $\delta E/w^1$ ₀₁ as an example

 $w¹_{01}$ affects E by two different paths, from n_0 through w_0 ¹₀₁ to n_1 ¹ then through w_0 ²₁₀ to n_0 ², and from n^{0} ₀ through w¹₀₁ to n^{1} ₁ then through w²₁₁ to n^{2} ₁, and

For the first path we get $\varepsilon_0 = \delta E/\delta z^2$ ₀ × δz^2 ₀/ δv^2 ₀ × δv^2 ₀/ δz^1 ₁ × δz^1 ₁/ δv^1 ₁ × δv^1 ₁/ δw^1 ₀₁ and for the second path we get $\epsilon_1 = \delta E / \delta z^2$ ₁ × δz^2 ₁/ δv^2 ₁ × δv^2 ₁/ δz^1 ₁ × δz^1 ₁/ δv^1 ₁ × δv^1 ₁/ δw^1 ₀₁

As before:

$$
\delta E/\delta z^{\rm L}{}_{\rm j}=z^{\rm L}{}_{\rm j}\,\text{-}\,\,t_{\rm j}
$$

 δz^{ℓ} _j/ δv^{ℓ} _j = z^{ℓ} _j × (1 - z^{ℓ} _j)

And a differential we haven't seen before: $\delta {\rm v}^{\ell}{}_{\rm j}/\delta {\rm z}^{\ell \text{-}1}{}_{\rm i}$ = ${\rm w}^{\ell}{}_{\rm ij}$

 δv^{ℓ} j/ δw^{ℓ} ij = $z^{\ell-1}$ i

 ε_0 and ε_1 must be added together to get $\delta E/\delta w^1$ ₀₁

 $w^{1}01 := w^{1}01 - \eta \times (\varepsilon_{0} + \varepsilon_{1})$