Back Propagation: work backwards from the output error,
distributing the blame for that error amongst all the weights
and adjusting those weights proportionately.

Training with a single layer

n;j represents the jth neuron in the output (only) layer.

N is the number of output neurons

f is the activation function, f(x) =1 / (1 + e¥)

wij is the weight on the connection from input i to output j

29 is the value of input i
zlj is the value of output j

vj is the total weighted input to nj: Z(zi x wy)

tj is the target, the correct value for zl;

E;is the error in output i: z}; - t;

Total error, by Mean Square Error, E = XE2 / N

To adjust any particular weight wij,
we need to know what effect a change in wj; would have on E: E/dwj;

In this section, we are always talking about changes, not actual values:
The total error E due to wij depends on the output zl;
OE/dwij = OE /821 x dz1j/ dwyj
The output z!; depends on its weighted inputs v;
OE /dwy = SE/dzlj x 8z1j/8vj x dvj/ dwij
0E/dzlj =zl - t; ignoring the constant 2
8z1j/dvj = 8f(vj)/8vj = z'j x (1 - z1)) 8f(x)/8x = f(x) x (1 - f(x))
5Vj / SWij =29
So the correction to wij should be proportional to (z!j - tj) x z}; x (1 - z1;) x z0;
wij becomes wy - n X (2l - tj) x zl x (1 - z1j) x z0;
n is the learning rate

Do that for every single weight

And repeat that many thousands of times through the training set.

For a network with three inputs and two outputs, we would calculate
OE /dwoo = 8E/dzlo x dzlo/dvo * dvo/dWoo
OE/dwio = 8E/dzlo x dzlo/dvo *x dvo/dWio
OE/dwoo = 8E /6210 x 8zl0/dvo *x dvo/dWao
OE/dwo1 = E/dzl1 x dzl1/dv1 x dvi/dwo1
OE/dwi1 = 0E/dzl1 x dzl1/dvi X dvi/OWi1
OE/6wa1 = 8E /8211 x 8z11/8v1 x dv1/dwa1

Note that the first two terms remain the same for each neuron: precompute.

Training with multiple layers
e Each layer creates a different representation of the inputs
e Inner layers often discover meaningful features of the input
e The output layer usually has one neuron for each feature you want to
detect or for each possible classification of the input.

ihpu‘ts, }“‘

Lo & lapes | outpy's,

Lowger 2

S Ch.ul@l Z{

Phe ovkpik Frowm Vg
© 1 Yhe (finpwt velra
D o 15 Vs

A slight change in the symbols is required:
the z% are the input values
f is the activation function, f(x) =1 / (1 + e¥)
720 = f(zloxwW?200 + zl1XW210 + ZzlaXW290)
in general, where { represents any layer, and L represents the last layer:

z4 = f(2(z"1; x why))for £ > 1

And as before, we split this into two parts

2 = f(v!)

ti is the target value for output i, what vl should be
Ei is the error in output i
Eo =zl - to
Ei=2zl -t
Total error, by Mean Square Error, E = (Eo + E1)2 / 2
Now for weights in the hidden layer, wl;, using 6E/wlo1 as an example
wlo; affects E by two different paths,
from n% through wlo: to n!; then through w20 to n2o, and
from n% through wlo: to n!; then through w2;: to n2;, and
For the first path we get
€0 = OE /0220 x 8z20/0v2p X dv20/0z11 x 8z11 /vl x dvli/dwlor
and for the second path we get
€1 = 0E/0z21 x 0z21/0v21 X d6v21/0zl1 x 8zl1/ovl x dvli/Owlor
As before:
OE/6zL = zL - ¢
dz'y/dv!y =zt x (1 - z4)
And a differential we haven’t seen before: ov!j/dzt1; = wl;
vl /owly = zt-1;
eo and &1 must be added together to get SE/dwlo:

wlor := wlor - m X (g0 + €1)

