
Back Propagation: work backwards from the output error, 
 distributing the blame for that error amongst all the weights 
 and adjusting those weights proportionately. 
 
Training with a single layer 
 
nj represents the jth neuron in the output (only) layer. 
 
N is the number of output neurons 
 
 is the activation function, (x) = 1 / (1 + e-x) 
 
wij is the weight on the connection from input i to output j 
 
z0i is the value of input i 
z1j is the value of output j 
 
vj is the total weighted input to nj: (zi × wij) 
 
tj is the target, the correct value for z1j 
 
Ej is the error in output i: z1j - tj 
 
Total error, by Mean Square Error, E = Ej2 / N 
 
To adjust any particular weight wij, 
 we need to know what effect a change in wij would have on E: E/wij 
 
In this section, we are always talking about changes, not actual values: 
 The total error E due to wij depends on the output z1j 
  E/wij = E/z1j × z1j/wij 
 The output z1j depends on its weighted inputs vj 
  E/wij = E/z1j × z1j/vj × vj/wij 
 
E/z1j = z1j - tj ignoring the constant 2 
 
z1j/vj = (vj)/vj = z1j × (1 - z1j)  (x)/x = (x) × (1 - (x)) 
 
vj/wij = z0i 
 
So the correction to wij should be proportional to (z1j - tj) × z1j × (1 - z1j) × z0i 
 
wij becomes wij -  × (z1j - tj) × z1j × (1 - z1j) × z0i 
 
 is the learning rate 
 
Do that for every single weight 
 
And repeat that many thousands of times through the training set. 
 
  



For a network with three inputs and two outputs, we would calculate 
 
E/w00 = E/z10 × z10/v0 × v0/w00 
 
E/w10 = E/z10 × z10/v0 × v0/w10 
 
E/w20 = E/z10 × z10/v0 × v0/w20 
 
E/w01 = E/z11 × z11/v1 × v1/w01 
 
E/w11 = E/z11 × z11/v1 × v1/w11 
 
E/w21 = E/z11 × z11/v1 × v1/w21 

 

Note that the first two terms remain the same for each neuron: precompute. 
 
 
 
 
  



Training with multiple layers 
 Each layer creates a different representation of the inputs 
 Inner layers often discover meaningful features of the input 
 The output layer usually has one neuron for each feature you want to 

detect or for each possible classification of the input. 
 

 
 
A slight change in the symbols is required: 
 
the z0i are the input values 
 
 is the activation function, (x) = 1 / (1 + e-x) 
 
z20 = (z10×w200 + z11×w210 + z12×w220) 
 
in general, where ℓ represents any layer, and L represents the last layer: 
 
zℓj = ((zℓ-1i × wℓij)) for ℓ > 1 
 



And as before, we split this into two parts 

 

vℓj = (zℓ-1i×wℓij) 
zℓj = (vℓj) 
 

ti is the target value for output i, what vLi should be 
 
Ei is the error in output i 
 
E0 = zL0 - t0 
 
E1 = zL1 - t1 
 
Total error, by Mean Square Error, E = (E0 + E1)2 / 2 
 
Now for weights in the hidden layer, w1ij, using E/w101 as an example 
 
w101 affects E by two different paths, 
  from n00 through w101 to n11 then through w210 to n20, and 
  from n00 through w101 to n11 then through w211 to n21, and 
 
For the first path we get 
  0 = E/z20 × z20/v20 × v20/z11 × z11/v11 × v11/w101 
and for the second path we get 
  1 = E/z21 × z21/v21 × v21/z11 × z11/v11 × v11/w101 
 
As before: 
 
E/zLj = zLj - tj 
 
zℓj/vℓj = zℓj × (1 - zℓj) 
 
And a differential we haven’t seen before: vℓj/zℓ-1i = wℓij 
 
vℓj/wℓij = zℓ-1i 
 
0 and 1 must be added together to get E/w101 
 
w101 := w101 -  × (0 + 1) 
 

 
 
 
 
 
 


