
Deep Learning – Neural Nets 
 
The McCulloch-Pitts Perceptron, 1943 

 “Perception” and “Electronic” 
 A very simplified model of how a real neuron works 
 “Perceptron” and “Neuron” used almost interchangably, 
  but Perceptron is a little bit old fashioned now 
 Any number of inputs, ai 

Sometimes on/off, sometimes continuous 
 Each input has an associated weight, wi 

Changing the weights is how it learns 
 Output or State computed from weighted inputs 

∑ ai×wi 
 But a non-linear Activation Function is applied to that sum 

ƒ(∑ ai×wi) 
 Could be (but usually isn’t) a cut-off function 

ƒ(x) = if x < k then 0 else 1 
each perceptron can have its own value for k 

 Or the Sigmoid (or Logistic) function, popular 
ƒ(x) = 1 / (1 + e-x) 
easy to differentiate, that will turn out to be useful 

 Or the Rectified Linear Unit (ReLU) function 
ƒ(x) = max(0, x) 

 Or the Softplus function, a continuous approximation to ReLU 
ƒ(x) = loge(1 + ex) 

 Or the Hyperbolic Tangent function tanh 
ƒ(x) = (e2x – 1) / (e2x + 1) 
but that gives a range of -1 to +1 

 There can also be a Bias 
  Typically a constant value -1 or +1 
  that is treated as an extra input with its own weight 
  it can shift the curve given by ƒ to the left or right 
 
Layers 

 One perceptron recognizes a straight-line/plane/hyperplane 
Separating one set of possible inputs from the other 

 Originally arranged in a single layer 
Usually all receiving the same inputs from sensors 
And all recognizing different Features 

 But that can’t recognize such a simple thing as exclusive or 
 Now usually arranged in multiple layers 

This is what Deep Learning refers to 
There is an input layer and an output layer, 
 any others are called Hidden Layers 

 Just two layers can compute any continuous function 
As close as you like, just add more perceptrons 



 Maybe softmax for final outputs when classifying 
  ethisoutput / ∑ ealloutputs 

  Suppose the actual outputs are 0.3, -0.4, 1.2, 0.2 
  the softmaxes are 0.21, 0.10, 0.51, 0.19 
  can use as probabilities, biggest tends to get exaggerated 
 Big things, vision, language, etc. can use many layers 
 Neurons in real brains are not really arranged in layers 

And are definitely not Fully Connected either 
 
Training with only two layers, inputs and outputs 

 Improve performance by adjusting weights throughout the network 
 Diminishing Returns – stop when it isn’t making much difference any more 
 Use a training set of course - large set of pairs (inputs, desired outputs) 
 adjust each link according to the amount of error it was responsible for 
 For each training point, work out the Local Error of the entire network 
  Just the difference between the actual output and the correct output 
  squared of course, negative errors are just as bad as positive ones 
  If there are multiple outputs, just average all their errors 
  That is Mean Squared Error, MSE 
  Sometimes Root Mean Square, RMS, is used instead 
 Repeat that for the entire training set, averaging all the errors 
 If that average error is small enough 

  the network has Converged. Training is over. 
 


