
Deep Learning – Neural Nets

The McCulloch-Pitts Perceptron, 1943

 “Perception” and “Electronic”
 A very simplified model of how a real neuron works
 “Perceptron” and “Neuron” used almost interchangably,
 but Perceptron is a little bit old fashioned now
 Any number of inputs, ai

Sometimes on/off, sometimes continuous
 Each input has an associated weight, wi

Changing the weights is how it learns
 Output or State computed from weighted inputs

∑ ai×wi
 But a non-linear Activation Function is applied to that sum

ƒ(∑ ai×wi)
 Could be (but usually isn’t) a cut-off function

ƒ(x) = if x < k then 0 else 1
each perceptron can have its own value for k

 Or the Sigmoid (or Logistic) function, popular
ƒ(x) = 1 / (1 + e-x)
easy to differentiate, that will turn out to be useful

 Or the Rectified Linear Unit (ReLU) function
ƒ(x) = max(0, x)

 Or the Softplus function, a continuous approximation to ReLU
ƒ(x) = loge(1 + ex)

 Or the Hyperbolic Tangent function tanh
ƒ(x) = (e2x – 1) / (e2x + 1)
but that gives a range of -1 to +1

 There can also be a Bias
 Typically a constant value -1 or +1
 that is treated as an extra input with its own weight
 it can shift the curve given by ƒ to the left or right

Layers

 One perceptron recognizes a straight-line/plane/hyperplane
Separating one set of possible inputs from the other

 Originally arranged in a single layer
Usually all receiving the same inputs from sensors
And all recognizing different Features

 But that can’t recognize such a simple thing as exclusive or
 Now usually arranged in multiple layers

This is what Deep Learning refers to
There is an input layer and an output layer,
 any others are called Hidden Layers

 Just two layers can compute any continuous function
As close as you like, just add more perceptrons

 Maybe softmax for final outputs when classifying
 ethisoutput / ∑ ealloutputs

 Suppose the actual outputs are 0.3, -0.4, 1.2, 0.2
 the softmaxes are 0.21, 0.10, 0.51, 0.19
 can use as probabilities, biggest tends to get exaggerated
 Big things, vision, language, etc. can use many layers
 Neurons in real brains are not really arranged in layers

And are definitely not Fully Connected either

Training with only two layers, inputs and outputs

 Improve performance by adjusting weights throughout the network
 Diminishing Returns – stop when it isn’t making much difference any more
 Use a training set of course - large set of pairs (inputs, desired outputs)
 adjust each link according to the amount of error it was responsible for
 For each training point, work out the Local Error of the entire network
 Just the difference between the actual output and the correct output
 squared of course, negative errors are just as bad as positive ones
 If there are multiple outputs, just average all their errors
 That is Mean Squared Error, MSE
 Sometimes Root Mean Square, RMS, is used instead
 Repeat that for the entire training set, averaging all the errors
 If that average error is small enough

 the network has Converged. Training is over.

