Other Machine Learning Methods

Bacon

	1	2	3	4	5	6
Planet	Length of day	Length of year	Distance from sun	Diameter	Mass	Number of moons
Mercury	58.00	0.24	0.39	0.38	0.05	0
Venus	244.00	0.62	0.72	0.95	0.82	0
Earth	1.00	1.00	1.00	1.00	1.00	1
Mars	1.03	1.88	1.52	0.53	0.11	2
Jupiter	0.41	11.86	5.20	11.19	318.35	16
Saturn	0.43	29.46	9.54	9.41	95.30	15
Uranus	0.67	84.01	19.19	4.06	14.60	5
Neptune	0.75	164.80	30.07	3.88	17.30	2
Pluto	6.38	248.40	39.52	0.24	0.08	1

- Try random mathematical operations until you find a correlation Almost exact equality is an easy one to detect
- Examples

Venus: Y=0.62; D=0.72; Y²=0.3844; D³=0.3732; Y²/D³=1.03 Mars: Y=1.88; D=1.52; Y²=3.5344; D³=3.5118; Y²/D³=1.01

• Bacon rediscovered Kepler's laws of planetary motion

Inductive learning

- Like decision tree learning, from specific facts induce general rules
- But here facts are logical predicates and rules are logical formulæ that are (supposed to be) true
- A bit like Prolog in reverse
- Background ∧ Hypothesis ∧ Descriptions ⊨ Classifications
- Background is the knowledge you already have, could be \emptyset
- Descriptions are the facts the training data is based on
- Classifications is the training examples we are to induce from
- Hypothesis is the thing we're trying to discover a new rule. Example: Background =

```
mother(X, Y) \lor father(X, Y) \Rightarrow parent(X, Y)
```

Descriptions =

father(phillip, charles), father(philip, anne), mother(elizabethb, margaret), mother(elizabethb, elizabethw), married(diana, charles), married(elizabethw, philip), male(philip), male(charles), female(beatrice), female(margaret), and many more, there are 20 people in the example

Classifications =

grandparent(elizabethb, charles), grandparent(elizabethw, beatrice), ¬grandparent(elizabethb, harry), ¬grandparent(philip, elizabethb) and some more.

There are 400 facts like this, but we don't know them all Hypothesis = the desired general rule for grandparent(X, Y)

Top-down method

• Start with the most general possible rule:

 $true \Rightarrow grandparent(X, Y)$

Everybody is everybody's grandparent

- Add conditions, one-by-one, to the left
- There are a lot we could try:

 $father(X, Y) \Rightarrow grandparent(X, Y)$

that gets many many things wrong

 $parent(X, Z) \Rightarrow grandparent(X, Y)$

much better, so we'll keep this one

- And carry on like that, adding extra conditions
- Maybe you'll try parent(Z, Y) at some point, giving parent(Z, Y) ∧ parent(X, Z) ⇒ grandparent(X, Y) which will work nicely, so you'll stop
- Of course, it gets much more complicated than that Some rules don't just have conjunctions as their conditions