
Decision Trees

Improving components of an agent by machine learning

 The components include
 Converting from state conditions to actions
 Inferring information on the state from percepts
 Knowledge of what effects actions have
 Knowledge of the desirability of states
 etc

 Assume no prior knowledge, everything has to be learned
 Induction: from observations develop a general rule

 can be wrong
 Not deduction which can’t be wrong
 The aim is to discover a function that

 maps inputs (percepts of the state of the world)
 to an output: a fact that we would like to know,
 or an action we should take, or similar

 If the output is discrete, this is Classification
 If the output is continuous, it is called Regression

Supervised learning

 Provided with samples of inputs
 pictures perhaps

 Together with correct Labels or classifications for them
 such as “kitten”, “puppy”, “stop sign”

 The Training Set
 Discover a function that will correctly map

 inputs that have not been seen before
 to their correct labels or classifications

Unsupervised learning

 Given many samples of inputs
 Maybe detects Clusters: subsets of the inputs that share features
 Perhaps from many images it may notice a cluster that happens to be cats

 but it would not know that they are cats,
 just that there is this unnamed phenomenon in the world

Reinforcement learning

 A bit like the way babies learn
 Start off acting almost at random
 Receive awards or punishments based on the effects of those actions
 Learn which actions are most responsible

Back to supervised learning

 Given a training set of input-output pairs
 (x1, y1), (x2, y2), (x3, y3), (x4, y4), ..., (xN, yN)

 they actually come from some unknown function yi = f(xi)
 Try to discover another function, h, that approximates f.

 That function, h, is called a Hypothesis about the world
 Or a Model of the data
 Underfitting: h does not match the data properly
 Overfitting: h is too specifically fitted to the training data

 It gets the test inputs right, but not new real-world inputs
 e.g. for any 12-point numeric data set,
 you can always find an 11th order polynomial that fits perfectly
 but it will have wild swings in it
 A simple straight line might not fit the training set so well
 but do a better job in the real world - less noise

Big example: Should you wait for a table at a restaurant?

 The result of this function is just yes or no.
 The inputs come from 10 discrete percepts:

 Alternate: is there an alternative near-by?
 Bar: is there a nice bar you could wait in?
 FriSat: true on Fridays and Saturdays
 Hungry: are we really hungry now?
 Patrons: none, some, or full.
 Price: cheap, middling, expensive
 Raining: is it raining?
 Reservation: have we got a reservation?
 Type: french, italian, thai, burger
 Time: greeter’s estimate of the wait time: 0-10, 10-30, 30-60, >60

 Training set is observed results of a person’s actual decisions:
 Alt Bar FS Hung Patr Price Rain Res Type Time Output

1 yes no no yes some exp no yes fre 0-10 yes
2 yes no no yes full che no no thai 30-60 no
3 no yes no no some che no no bur 0-10 yes
4 yes no yes yes full che yes no thai 10-30 yes
5 yes no yes no full exp no yes fre >60 no
6 no yes no yes some mid yes yes ital 0-10 yes
7 no yes no no none che yes no bur 0-10 no
8 no no no yes some mid yes yes thai 0-10 yes
9 no yes yes no full che yes no bur >60 no

10 yes yes yes yes full exp no yes ital 10-30 no
11 no no no no none che no no thai 0-10 no
12 yes yes yes yes full che no no bur 30-60 yes

Decision trees

 (example diagram: Patr, Time, Alt, Hung, Res, Fri, Alt, Bar, Rain)
 Sometimes an expert can just give you a decision tree

 But experts in one field are not necessarily experts in logic
 A Knowledge Engineer has to conduct Knowledge Elicitation
 But either way, machine learning is not involved here

 A particular sub-kind of supervised learning
 You get all the data all at once
 Taking into account new training items can be expensive

 Some alternatives:
 Type first would be bad
 But Patrons first does much better

 Learning Curve: num of training examples vs proportion correct
 How do you learn the tree from the training set?
 A seemingly simple method

 All remaining examples yes (or all no), then done.
 Some yes and some no: find best attribute to split them
 and continue with the split sets of examples
 No examples left: incomplete information
 This combination of attrs has never been observed
 Pick parent’s most common output value
 Some examples but no attrs left:
 These examples have same descrs but different labels
 Error or Noise in the data, nondeterministic, or unobservable

 But the second possibility leaves a lot unsaid. How do we find the best?

Entropy

 From Information Theory, not chemistry, sort of similar
 A measure of uncertainty
 Always called H
 Measured in bits
 Variable has only one possible value, a very very unfair coin?

 Entropy is zero - no uncertainty
 You learn nothing from seeing the actual result

 Two equally likely values, a fair coin
 From the result you learn yes or no
 Entropy is one bit

 Sixteen equally likely possibilities
 Four bits of entropy

 Two unequal possibilities, e.g. P(heads) = 0.99 and P(Tails) = 0.01
 There is less uncertainty
 You learn less from seeing the actual result
 If you just guessed you would almost always be right
 So the entropy should be very small

 For a variable V with possible values v1, v2, v3, v4, ...
 H(V) = P(vi) log2(1 / P(vi))
 = - P(vi) log2(P(vi))

 The fair coin
H(Toss) = - (0.5log20.5 + 0.5log20.5) = 1.0

 The very unfair coin
H(Toss) = - (0.99log20.99 + 0.01log20.01) = 0.08

 Define B(p), entropy of a boolean variable V with P(true) = p
B(V) = - (plog2p + (1-p)log2(1-p))

 A training set with Y yes results and N no results
H(Output) = B(Y / (Y + N))

 The result of a test (e.g. what is the value of Price?)
gives us some information

so it reduces our uncertainty of the overall output
so it reduces the entropy

 Going with the example table, call the training examples E1, E2, ..., E12
 Initially our set of examples is all of them, S = { E1, E2, ..., E12 }
 If all examples have the same outcome, then all done
 P = number of times in S that result is yes = 6
 N = number of times it is false = 6
 For each of the possible attributes A (Alternate, Bar, etc)
 For each possible value of that attribute V (yes, no, etc)
 PV = number of examples where A has value V
 and outcome is yes
 NV = number of examples where A has value V
 and outcome is no
 so PV + NV is the number of times A has value V
 and P + N is the total number of examples
 PA,V = (PV + NV) / (P + N) is the probability that A has value V
 PV / (PV + NV) is the prob that A being V leads to yes outcome
 so B(PV / (PV + NV)) is entropy left after finding that A equals V
 so PA,V that is entropy in a particular case
 weighted by probability of that case happening
 Add up all those weighted entropies to find the total entropy
 that would remain after discovering the value of A
 The entropy we had before all of this was B(P / (N + P))
 so the entropy lost (therefore information gained) by asking
 the question A is that original entropy minus the sum
 Pick the attribute that gave the highest information gain
 Let's say that attribute has possible values V1, V2, ..., VN,
 Split S into subsets of the examples S1, S2, ..., SN, where Si is the
 subset of examples where the chosen attribute equals Vi
 Analyse each of those subsets in exactly the same way.
 In practice

So the expected entropy remaining after testing A is
 Remainder(A) = ((PV + NV) / (P + N)) B(PV / (PV+NV))
The Information Gain is the loss in entropy
 Gain(A) = B(Y / (Y + N)) - Remainder(A)
Example: Gain(Patrons) =
 1 - ((2/12)B(0/2) + (4/12)B(4/4) + (6/12)B(2/6))
 = 0.541
Example: Gain(Type) =
 1 - ((2/12)B(1/2) + (2/12)B(1/2) + (4/12)B(2/4) + (4/12)B(2/4))
 = 0
The Best attribute to test when building a decision tree
 is the one with the highest information gain.

Possible problems with decision trees

 Might overfit
 Might make irrelevant tests, making it unnecessarily big
 Pruning - remove irrelevant tests - Statistical methods - Beyond us.
 Continuous attributes (Price, Time, etc)

 Discretise - like we did
 Split Point test - e.g. Time > 27

 Not continuous but still too many values (e.g. Zip code)
 Information Gain Ratio - Beyond us

 Continuous output value
 Regression Tree
 Decisions based on linear function of some attributes

 What if two training set examples are contradictory?

