
 

Probabilistic Reasoning 
 
Bayesian Networks 

 Directed Acyclic Graphs (DAGs) 
 Arrows link Parents to Children 
 Nodes represent random variables 
 Each node knows P(this-node | parents(this-node)) 

Conditional Probability Tables 
Sometimes programmed functions instead 

 Arrow means direct influence, causes are parents of effects 
Weather, Cavity, Toothache, Catch 

  Toothache and Catch are only conditionally independent given Cavity 
 
Burglar alarms and earthquakes, Judea Pearl 

 Burglary, P(B=true) = 0.001 
 Earthquake, P(E=true) = 0.002 
 Alarm, P(A=true | B, E) – note it isn’t  this time 

true true 0.95 
  true false 0.94 

false true 0.29 
false false 0.001 

 JohnCalls, P(J=true | A) 
true 0.90 
false 0.05 

 MaryCalls, P(M=true | A) 
true 0.70 
false 0.01 

 For true/false variables no need to state P(X=false) 
 No ListeningToLoudMusic node, some things we just don’t know 
 P(J=true  M=true  A=true  B=false  E=false) 

= P(J | A) × P(M | A) × P(A | B  E) × P(B) × P(E) 
 I left out all the “=true”s 
= 0.90 × 0.70 × 0.001 × 0.999 × 0.998  0.000628 
We’ve effectively got the full joint distribution 

 Direct influence only, Burglary does effect MaryCalls, but only indirectly 
 Locally structured – never too many parents 

Sometimes leave out very slight links 
 Wrong order puts you in a bad position 

Tables too big, probabilities difficult to discover 
Go for Causal rather than Diagnostic 
 

Utility Theory 
 May be uncertain about which state the world is actually in 

  For each possible state Si, we want a probability P(Si) 
 May be uncertain about actual outcomes of actions 

  P(S1  S2, a) 
 Define P(RESULT(a) = Sx) = Σ P(Si) × P(Si  Sx, a) 
 Utility function U(Sx) is the utility (niceness) of being in state Sx 
 Expected utility of an action EU(a) = Σ P(RESULT(a) = Sx) × U(Sx) 
 Maximum Expected Utility, MEU: action taken = argmax EU(ai) 
 Preferences: A, B two things that might be preferred one over the other 



 

  A > B - should be written curlily, the agent prefers A over B 
  A ~ B - Given a choice the agent wouldn’t care 
  A >~ B - should be curly and on top, same as (A > B) 

 Lottery - set of possible outcomes with their probabilities 
  [ p1,S1; p2,S2; p3,S3; ...; pN,SN ] 

 Axioms of utility theory, for a rational agent (A and B are lotteries) 
  Orderability: exactly one of A<B, A>B, A~B must be true 
  Transitivity: (A>B)  (B>C)  (A>C) 

  Continuity: A > B > C  ∃p: [ p,A; (1-p),C ] ~ B 
  Substitutability: A ~ B  [ p,A; (1-p),C ] ~ [ p,B; (1-p),C ] 
  Monotonicity: A > B  ( p>q  [ p,A; (1-p),B ] > [ q,A; (1-q),B ] ) 
  Decomposability: [ p,A; (1-p),[ q,B; (1-q),C ] ] ~ [ p,A; (1-p)×q,B; (1-p)×(1-q),C ] 

 If those axioms are obeyed, a sensible utility function U must exist 
  U(A) > U(B)  A > B      U(A) = U(B)  A ~ B 

 Expected Utility of a lottery: 
  U([ p1,S1; p2,S2; p3,S3; ...; pN,SN ]) = Σ pi×U(Si)  

 Utility Elicitation 
 
Certainty Factors, from Mycin (pub. 1978) 

 Mycin helped diagnose bacterial infections and recommend antibiotics 
 Instead of Ture/False, every predicate has a certainty factor 
 CF(P) = 1 means that P is certainly true 
 CF(P) = 0 means we are completely ignorant about P 
 CF(P) = -1 means that P is certainly false 
 and intermediate values of course 
 Basic facts come from observation and medical tests, all with CF’s assigned 
 CF(p1  p2  p3  ...  pn) = min(CF(pi)) 
 CF(p) = - CF(p) 
 if CF(p) = x and CF(p  q) = y then CF(q) = x×y if x>0, or 0 otherwise 
 Combining evidence: two rules lead to the same conclusion but with different CF’s 

  x and y are the two CF’s: 
  combined CF = x + y - x×y if x>=0  y>=0 
   0   if x=0  y=0 
   x + y + x×y if x<0  y<0 
   (x+y) / (1 - min(abs(x), abs(y))) otherwise 

 A tiny example: 
  CF(joe-was-hungry) = 0.5 
  CF(joe-was-hungry  joe-ate-something) = 0.8 
   therefore CF(joe-ate-something) = 0.4 
  CF(the-kitchen-is-messy  joe-ate-something) = 0.2 
   but the kitchen is not messy,  
   so CF(the-kitchen-is-messy) = -1.0, 
   therefore CF(joe-ate-something) = 0.0 
  All together CF(joe-ate-something) = (0.4 - 0.0) - (0.4 × 0.0) = 0.4 

 The difference between that and probability? 
  There is no probability that indicates ignorance, 
  CF’s apply to rules as well as facts. 
 
Dempster-Shafer theory 

 Another way of dealing with uncertainty 
 Example: A person has been murdered and there are three suspects: 



 

  Miss Scarlett 
  Reverend Green 
  Colonel Mustard 

 There are three possibilities: 
  MS - Miss Scarlett did it 
  RG - Reverend Green did it 
  CM - Colonel Mustard did it 
  exactly one of them must have done it 

 We consider all eight possible subsets 
  A Mass (subjective probability) as assigned to each 
   All are equally likely: m( { MS } ) = m( { RG } ) = m( { CM } ) = 0.3333 
   We have no idea means that m( { MS, RG, CM } ) = 1.0 
  The subsets with non-zero mass are called Focal Elements 
  All the masses must add up to 1.0 
  Might have some direct evidence: 
   someone 60% sure she saw RG somewhere else,  m( { MS, CM } ) = 0.6 
   leaving m( { MS, RG, CM } ) = 0.4, and all others = 0.0 
  Might have evidence that can’t distinguish between individuals: 
   A witness is 80% sure a man did it, so m( { RG, CM } ) = 0.8 
   leaving m( { MS, RG, CM } ) = 0.2, and all others = 0.0 

 Combining evidence, e.g. both of the examples above apply 
  m1(X) is the mass of X from case 1, m2(X) is from case 2 
  mC(X) is the combined mass from both pieces of evidence 
   mC(X) = sum of all possible m1(A) × m2(B), where A  B = X 
  mC( { CM } ) = 0.48 
  mC( { MS, CM } ) = 0.12 
  mC( { RG, CM } ) = 0.32 
  mC( { MS, RG, CM } ) = 0.08 
  all others are 0.0 

 Belief, B(X) is the sum of the masses of all the subsets of X 
  BC( { CM } ) = 0.48 
  BC( { MS, CM } ) = 0.6, that is mC( { MS } ) + mC( { CM } ) + mC( { MS, CM } ) 
  BC( { RG, CM } ) = 0.8, that is mC( { RG } ) + mC( { CM } ) + mC( { RG, CM } ) 
  BC( { MS, RG, CM } ) = 1.0 
  all others are 0.0 

 Plausibility, P(X) is 1 - B(X) 
  the sum of the masses of everything that contradicts X: it  X = Ø 
  PC( { CM } ) = 1.0 
  PC( { MS, CM } ) = 1.0 
  PC( { RG } ) = 0.4 
  etc. 

 Belief and Plausibility are claimed to be lower and upper bounds on probability 
  Belief(X) <= Probability(X) <= Plausibility(X) 
 
Fuzzy Sets 

 Represented as a Membership Function: m(item)  [0, 1] 
 For example, the fuzzy set BigNumbers might have 

  m(0) = 0, m(1) = 0, m(5) = 0.01, m(100) = 0.95, m(1000000) = 1 
  but of course m is a total function on all the real numbers 

 The complement of a fuzzy set uses 1 - m 
 A  B  mA(x) <= mB(X) for all X in the domain 
 The union of two sets is given by the maximum value of their m functions 



 

 The intersection of two sets is given by the minimum value of their m functions 


