Probabilistic Reasoning

Bayesian Networks

Directed Acyclic Graphs (DAGs)
Arrows link Parents to Children
Nodes represent random variables
Each node knows P(this-node | parents(this-node))
Conditional Probability Tables
Sometimes programmed functions instead
Arrow means direct influence, causes are parents of effects
Weather, Cavity, Toothache, Catch
Toothache and Catch are only conditionally independent given Cavity

Burglar alarms and earthquakes, Judea Pearl

Burglary, P(B=true) = 0.001
Earthquake, P(E=true) = 0.002
Alarm, P(A=true | B, E) — note it isn’t A this time
true true 0.95
true false 0.94
false true 0.29
false false 0.001
JohnCalls, P(J=true | A)
true 0.90
false 0.05
MaryCalls, P(M=true | A)
true 0.70
false 0.01
For true/false variables no need to state P(X=false)
No ListeningToLoudMusic node, some things we just don’t know
P(J=true A M=true A A=true A B=false A E=false)
=PJ | A)xPM | A) x P(A | =B A —E) x P(—B) x P(—E)
I left out all the “=true”s
=0.90 x 0.70 x 0.001 x 0.999 x 0.998 ~ 0.000628
We've effectively got the full joint distribution
Direct influence only, Burglary does effect MaryCalls, but only indirectly
Locally structured — never too many parents
Sometimes leave out very slight links
Wrong order puts you in a bad position
Tables too big, probabilities difficult to discover
Go for Causal rather than Diagnostic

Utility Theory

May be uncertain about which state the world is actually in

For each possible state Si, we want a probability P(S;)
May be uncertain about actual outcomes of actions

P(S1 — So, a)
Define P(RESULT(a) = Sx) = £ P(Si) x P(Si —» Sy, a)
Utility function U(Sx) is the utility (niceness) of being in state Sx
Expected utility of an action EU(a) = £ P(RESULT(a) = Sx) x U(Sx)
Maximum Expected Utility, MEU: action taken = argmax EU(aj)
Preferences: A, B two things that might be preferred one over the other



A > B - should be written curlily, the agent prefers A over B
A ~ B - Given a choice the agent wouldn’t care
A >~ B - should be curly and on top, same as —(A > B)
e Lottery - set of possible outcomes with their probabilities
[ P1,S1; P2,S2; P3,S3; ...; PN,SN |
e Axioms of utility theory, for a rational agent (A and B are lotteries)
Orderability: exactly one of A<B, A>B, A~B must be true
Transitivity: (A>B) A (B>C) = (A>C)
Continuity: A> B > C = dp: [ p,A; (1-p),C ] ~ B
Substitutability: A ~ B = [ p,A; (1-p),C ] ~ [ p,B; (1-p),C ]
Monotonicity: A > B = (p>q < [ p,A; (1-p),B | > [ q,A; (1-q),B ])
Decomposability: [ p,A; (1-p),[ g,B; (1-q),C | ] ~ [ p,A; (1-p)*q,B; (1-p)*(1-q),C ]
e If those axioms are obeyed, a sensible utility function U must exist
UA)>UB)<A>B A UA=UB)<A~B
e Expected Utility of a lottery:
U([ p1,S1; P2,S2; P3,S3; ...; PN,SN |) = Z pixU(Si)
e Utility Elicitation

Certainty Factors, from Mycin (pub. 1978)
e Mycin helped diagnose bacterial infections and recommend antibiotics
Instead of Ture/False, every predicate has a certainty factor
CF(P) = 1 means that P is certainly true
CF(P) = O means we are completely ignorant about P
CF(P) = -1 means that P is certainly false
and intermediate values of course
Basic facts come from observation and medical tests, all with CF’s assigned
CF(p1 A P2 A P3 A ... A Pn) = min(CF(py))
CF(p) = - CF(p)
if CF(p) = x and CF(p = q) = y then CF(q) = xxy if x>0, or O otherwise
Combining evidence: two rules lead to the same conclusion but with different CF’s
x and y are the two CF’s:
combined CF = x +y - xxy if x>=0 A y>=0
0 if x=0 A y=0
x+y+xxy ifx<0 Ay<O0
(x+y) / (1 - min(abs(x), abs(y))) otherwise

e A tiny example:
CF(joe-was-hungry) = 0.5
CF(joe-was-hungry = joe-ate-something) = 0.8
therefore CF(joe-ate-something) = 0.4
CF(the-kitchen-is-messy = joe-ate-something) = 0.2
but the kitchen is not messy,
so CF(the-kitchen-is-messy) = -1.0,
therefore CF(joe-ate-something) = 0.0
All together CF(joe-ate-something) = (0.4 - 0.0) - (0.4 x 0.0) = 0.4
e The difference between that and probability?
There is no probability that indicates ignorance,
CF’s apply to rules as well as facts.

Dempster-Shafer theory
e Another way of dealing with uncertainty
e Example: A person has been murdered and there are three suspects:



Miss Scarlett
Reverend Green
Colonel Mustard
e There are three possibilities:
MS - Miss Scarlett did it
RG - Reverend Green did it
CM - Colonel Mustard did it
exactly one of them must have done it
e We consider all eight possible subsets
A Mass (subjective probability) as assigned to each
All are equally likely: m({MS})=m({RG})=m({CM})=0.3333
We have no idea means that m({ MS, RG,CM })=1.0
The subsets with non-zero mass are called Focal Elements
All the masses must add up to 1.0
Might have some direct evidence:
someone 60% sure she saw RG somewhere else, m({MS, CM }) = 0.6
leaving m( { MS, RG, CM } ) = 0.4, and all others = 0.0
Might have evidence that can’t distinguish between individuals:
A witness is 80% sure a man did it, so m({RG, CM } ) = 0.8
leaving m( { MS, RG, CM } ) = 0.2, and all others = 0.0
Combining evidence, e.g. both of the examples above apply
m;1(X) is the mass of X from case 1, my(X) is from case 2
mc(X) is the combined mass from both pieces of evidence
mc(X) = sum of all possible m1(A) x ma(B), where A n B =X
mc({CM})=0.48
mc({MS,CM})=0.12
mc({RG,CM })=0.32
mc({MS, RG, CM } ) = 0.08
all others are 0.0
Belief, B(X) is the sum of the masses of all the subsets of X
Bc({CM})=0.48
Be({MS,CM })=0.6, thatis mc({MS})+ mc({CM})+ mc({MS, CM })
Bc({RG,CM})=0.8, thatismc({RG}) + mc({CM}) + mc({RG, CM})
Be({MS, RG,CM })=1.0
all others are 0.0
Plausibility, P(X) is 1 - B(—X)
the sum of the masses of everything that contradicts X: it " X =0
Pc({CM})=1.0
Pc({MS,CM})=1.0
Pc({RG})=0.4
etc.
Belief and Plausibility are claimed to be lower and upper bounds on probability
Belief(X) <= Probability(X) <= Plausibility(X)

Fuzzy Sets
e Represented as a Membership Function: m(item) € [O, 1]
e For example, the fuzzy set BigNumbers might have
m(0) = 0, m(1) = 0, m(5) = 0.01, m(100) = 0.95, m(1000000) = 1
but of course m is a total function on all the real numbers
e The complement of a fuzzy set uses 1 - m
e Ac B mAx <=mB(X) for all X in the domain
e The union of two sets is given by the maximum value of their m functions



e The intersection of two sets is given by the minimum value of their m functions



