
 

Probabilistic Reasoning 
 
Bayesian Networks 

 Directed Acyclic Graphs (DAGs) 
 Arrows link Parents to Children 
 Nodes represent random variables 
 Each node knows P(this-node | parents(this-node)) 

Conditional Probability Tables 
Sometimes programmed functions instead 

 Arrow means direct influence, causes are parents of effects 
Weather, Cavity, Toothache, Catch 

  Toothache and Catch are only conditionally independent given Cavity 
 
Burglar alarms and earthquakes, Judea Pearl 

 Burglary, P(B=true) = 0.001 
 Earthquake, P(E=true) = 0.002 
 Alarm, P(A=true | B, E) – note it isn’t  this time 

true true 0.95 
  true false 0.94 

false true 0.29 
false false 0.001 

 JohnCalls, P(J=true | A) 
true 0.90 
false 0.05 

 MaryCalls, P(M=true | A) 
true 0.70 
false 0.01 

 For true/false variables no need to state P(X=false) 
 No ListeningToLoudMusic node, some things we just don’t know 
 P(J=true  M=true  A=true  B=false  E=false) 

= P(J | A) × P(M | A) × P(A | B  E) × P(B) × P(E) 
 I left out all the “=true”s 
= 0.90 × 0.70 × 0.001 × 0.999 × 0.998  0.000628 
We’ve effectively got the full joint distribution 

 Direct influence only, Burglary does effect MaryCalls, but only indirectly 
 Locally structured – never too many parents 

Sometimes leave out very slight links 
 Wrong order puts you in a bad position 

Tables too big, probabilities difficult to discover 
Go for Causal rather than Diagnostic 
 

Utility Theory 
 May be uncertain about which state the world is actually in 

  For each possible state Si, we want a probability P(Si) 
 May be uncertain about actual outcomes of actions 

  P(S1  S2, a) 
 Define P(RESULT(a) = Sx) = Σ P(Si) × P(Si  Sx, a) 
 Utility function U(Sx) is the utility (niceness) of being in state Sx 
 Expected utility of an action EU(a) = Σ P(RESULT(a) = Sx) × U(Sx) 
 Maximum Expected Utility, MEU: action taken = argmax EU(ai) 
 Preferences: A, B two things that might be preferred one over the other 



 

  A > B - should be written curlily, the agent prefers A over B 
  A ~ B - Given a choice the agent wouldn’t care 
  A >~ B - should be curly and on top, same as (A > B) 

 Lottery - set of possible outcomes with their probabilities 
  [ p1,S1; p2,S2; p3,S3; ...; pN,SN ] 

 Axioms of utility theory, for a rational agent (A and B are lotteries) 
  Orderability: exactly one of A<B, A>B, A~B must be true 
  Transitivity: (A>B)  (B>C)  (A>C) 

  Continuity: A > B > C  ∃p: [ p,A; (1-p),C ] ~ B 
  Substitutability: A ~ B  [ p,A; (1-p),C ] ~ [ p,B; (1-p),C ] 
  Monotonicity: A > B  ( p>q  [ p,A; (1-p),B ] > [ q,A; (1-q),B ] ) 
  Decomposability: [ p,A; (1-p),[ q,B; (1-q),C ] ] ~ [ p,A; (1-p)×q,B; (1-p)×(1-q),C ] 

 If those axioms are obeyed, a sensible utility function U must exist 
  U(A) > U(B)  A > B      U(A) = U(B)  A ~ B 

 Expected Utility of a lottery: 
  U([ p1,S1; p2,S2; p3,S3; ...; pN,SN ]) = Σ pi×U(Si)  

 Utility Elicitation 
 
Certainty Factors, from Mycin (pub. 1978) 

 Mycin helped diagnose bacterial infections and recommend antibiotics 
 Instead of Ture/False, every predicate has a certainty factor 
 CF(P) = 1 means that P is certainly true 
 CF(P) = 0 means we are completely ignorant about P 
 CF(P) = -1 means that P is certainly false 
 and intermediate values of course 
 Basic facts come from observation and medical tests, all with CF’s assigned 
 CF(p1  p2  p3  ...  pn) = min(CF(pi)) 
 CF(p) = - CF(p) 
 if CF(p) = x and CF(p  q) = y then CF(q) = x×y if x>0, or 0 otherwise 
 Combining evidence: two rules lead to the same conclusion but with different CF’s 

  x and y are the two CF’s: 
  combined CF = x + y - x×y if x>=0  y>=0 
   0   if x=0  y=0 
   x + y + x×y if x<0  y<0 
   (x+y) / (1 - min(abs(x), abs(y))) otherwise 

 A tiny example: 
  CF(joe-was-hungry) = 0.5 
  CF(joe-was-hungry  joe-ate-something) = 0.8 
   therefore CF(joe-ate-something) = 0.4 
  CF(the-kitchen-is-messy  joe-ate-something) = 0.2 
   but the kitchen is not messy,  
   so CF(the-kitchen-is-messy) = -1.0, 
   therefore CF(joe-ate-something) = 0.0 
  All together CF(joe-ate-something) = (0.4 - 0.0) - (0.4 × 0.0) = 0.4 

 The difference between that and probability? 
  There is no probability that indicates ignorance, 
  CF’s apply to rules as well as facts. 
 
Dempster-Shafer theory 

 Another way of dealing with uncertainty 
 Example: A person has been murdered and there are three suspects: 



 

  Miss Scarlett 
  Reverend Green 
  Colonel Mustard 

 There are three possibilities: 
  MS - Miss Scarlett did it 
  RG - Reverend Green did it 
  CM - Colonel Mustard did it 
  exactly one of them must have done it 

 We consider all eight possible subsets 
  A Mass (subjective probability) as assigned to each 
   All are equally likely: m( { MS } ) = m( { RG } ) = m( { CM } ) = 0.3333 
   We have no idea means that m( { MS, RG, CM } ) = 1.0 
  The subsets with non-zero mass are called Focal Elements 
  All the masses must add up to 1.0 
  Might have some direct evidence: 
   someone 60% sure she saw RG somewhere else,  m( { MS, CM } ) = 0.6 
   leaving m( { MS, RG, CM } ) = 0.4, and all others = 0.0 
  Might have evidence that can’t distinguish between individuals: 
   A witness is 80% sure a man did it, so m( { RG, CM } ) = 0.8 
   leaving m( { MS, RG, CM } ) = 0.2, and all others = 0.0 

 Combining evidence, e.g. both of the examples above apply 
  m1(X) is the mass of X from case 1, m2(X) is from case 2 
  mC(X) is the combined mass from both pieces of evidence 
   mC(X) = sum of all possible m1(A) × m2(B), where A  B = X 
  mC( { CM } ) = 0.48 
  mC( { MS, CM } ) = 0.12 
  mC( { RG, CM } ) = 0.32 
  mC( { MS, RG, CM } ) = 0.08 
  all others are 0.0 

 Belief, B(X) is the sum of the masses of all the subsets of X 
  BC( { CM } ) = 0.48 
  BC( { MS, CM } ) = 0.6, that is mC( { MS } ) + mC( { CM } ) + mC( { MS, CM } ) 
  BC( { RG, CM } ) = 0.8, that is mC( { RG } ) + mC( { CM } ) + mC( { RG, CM } ) 
  BC( { MS, RG, CM } ) = 1.0 
  all others are 0.0 

 Plausibility, P(X) is 1 - B(X) 
  the sum of the masses of everything that contradicts X: it  X = Ø 
  PC( { CM } ) = 1.0 
  PC( { MS, CM } ) = 1.0 
  PC( { RG } ) = 0.4 
  etc. 

 Belief and Plausibility are claimed to be lower and upper bounds on probability 
  Belief(X) <= Probability(X) <= Plausibility(X) 
 
Fuzzy Sets 

 Represented as a Membership Function: m(item)  [0, 1] 
 For example, the fuzzy set BigNumbers might have 

  m(0) = 0, m(1) = 0, m(5) = 0.01, m(100) = 0.95, m(1000000) = 1 
  but of course m is a total function on all the real numbers 

 The complement of a fuzzy set uses 1 - m 
 A  B  mA(x) <= mB(X) for all X in the domain 
 The union of two sets is given by the maximum value of their m functions 



 

 The intersection of two sets is given by the minimum value of their m functions 


