Probability

In logic, every predicate is either true or false, and that’s that.
¢ In the real world, that is still true:
Every alleged fact is either true or false
Every possible percept either appears or it doesn’t
Every possible event either happens or doesn’t
But very often we just don’t know which it is, true or false
Standard logic can only handle certainty, true or false and nothing else
Probability theory is one way of dealing with that
The probability of a predicate, percept, or event
is a number on a continuous spectrum from O to 1
sometimes expressed as a percentage
P(event) = O means it is absolutely impossible for it to happen
P(event) = 1 means it is absolutely certain to happen
But what do numbers between O and 1 mean?
e.g. weather forecast says 40% chance of rain
e.g. P(unfair-coin-lands-heads-up) = 0.4
Average result of an “infinite” number of identical experiments
Proportion of possible worlds in which it is true
40¢ is a fair price to pay for a bet that would pay out $1
e Stochastic » probability-based

Basic laws (Venn diagrams)

P(A A B) = P(A) x P(B)

P(A v B) = P(A) + P(B) - P(A A B)
P(-A)=1-P(A)

Independent variables

Sometimes probabilities are Conditional
e The chances of an event happening depend on whether some other event
has happened
e | means "given" or roughly "if we know that"
e For example, tooth aches do not happen much (if you clean your teeth)
P(toothache) = 0.005
but
P(toothache | cavity) = 0.3
This does not denote cause and effect, it could also be that
P(cavity | toothache) = 0.75
Useful for diagnostic purposes
It is still true that P(toothache) = 0.005
even after cavity has been observed
e PA| B)=PAAB)/PB)
Observing B rules out all cases where B is false
leaving the set of possibilities with total probability of just P(B)
within those remaining possibilities,
for P(A | B) to be true, A must be true
so A and B is true



so the true probability of A | B must be P(A A B)
divided by P(B), to make all the probabilities add up to 1
e P(AAB)=PA | B) x P(B) is sometimes a more convenient form
For A and B to be true, we need B to be true, then given that B is true
we also need A to be true

Notation
o If the range of possible values for Weather is [ sunny, rainy, cloudy, snowy |
we might have
P(Weather = sunny) = 0.6
P(Weather = rainy) = 0.1
P(Weather = cloudy) = 0.29
P(Weather = snowy) = 0.01
(these are not independent, so the v rule doesn’t work)
this is often written as
P(Weather) = < 0.6, 0.1, 0.29, 0.01 >
Sometimes P(sunny) is written as an abbreviation for P(Weather = sunny)
For continuous variables, a Probability Density Function is used
Probability = the area under the curve
Numeric probabilities only really make sense for ranges of possible values

Joint distributions
e If we have three Boolean variables, Toothache, Cavity, and Catch

the joint distribution is a 2 x 2 x 2 table, all eight add up to exactly 1
Use a bold P to represent that
P(some possibility) can be found by adding up the relevant entries
Marginalisation - eliminate variable(s) by summing entries

P(some possibility) = Z for all possible x's of P(that possibility A X=x)
Conditioning

P(some possibility) = X for all possible x's of

P(that possibility | X=x) x P(X=x)

Bayes' rule
e From P(AAB)=PA | B) x P(B)and P(A A B) =P(B | A) x P(A)
we easily get Bayes' rule:
PB | A)=P(A | B) x P(B) / P(A)
e When diagnosing an illness, a doctor might know all of
P(effect | cause)
P(effect)
P(cause)
for a vast collection of different causes and effects,
just from hundreds of years of observations and studies
And from them P(cause | effect) can be calculated,
the probability of a particular disease being the cause of the
observed effects
e In an epidemic, P(cause) for one particular cause will increase a lot
previously observed values for P(cause | effect) will become invalid



Combining evidence
o If we observe both toothache and catch, what is the probability
distribution for Cavity?
e Assume this joint distribution:

Toothache —Toothache
Catch —Catch Catch —Catch
Cavity .108 .012 .072 .008
—Cavity .016 .064 .144 .576

(they all add up to 1)
o If we have a joint distribution we can just add up the right entries
P(Cavity | toothache A catch) = 04<0.108, 0.016> perhaps
o stands for Normalise:
multiply by something to make the probabilities add up to 1
so <0.108, 0.016> = <0.871, 0.129>
e Does not scale up if there are a lot of variables
e Using Bayes' rule
P(Cavity | toothache A catch) =
o P(toothache A catch | Cavity) x P(Cavity)
e Again, there are probably too many variables for this to be practical
e [f the variables were independent, we'd be better off
but they aren't. Toothache and Catch are not unrelated
e But if, given knowledge of Cavity, they become independent
e From P(toothache A catch | Cavity) =
P(toothache | Cavity) x P(catch | Cavity)
we get P(toothache A catch | Cavity) =
a P(toothache | Cavity) x P(catch | Cavity) x P(Cavity)
e Not so many combinations to worry about now
e Conditional independence allows scalability

Naive Bayes Models
o If all the effects are conditionally independent given Cause, then
P(Cause A Effect; A Effecta A ...) = P(Cause) x IT P(Effect; | Cause)
e Naive because it relies on independence, but is sometimes used when
there is none
e P(Cause | Effect=e) = a P(Cause) x II P(Effect=e; | Cause)
e Example: text classification
Given some text, work out which section of the newspaper it came from
We can know from prior observations these distributions
P(Section)
P(Haswordw | Section)
If 9% of all articles are in the weather section then
P(Section=weather) = 0.09
If 23% of all articles in the weather section use the word "rain" then
P(Haswordrin=true | Section=weather) = 0.23
From that and the current text itself, we can work out the probabilities
of the text being from any given section



