
Probability 
 
In logic, every predicate is either true or false, and that’s that. 

 In the real world, that is still true: 
  Every alleged fact is either true or false 
  Every possible percept either appears or it doesn’t 
  Every possible event either happens or doesn’t 

 But very often we just don’t know which it is, true or false 
 Standard logic can only handle certainty, true or false and nothing else 
 Probability theory is one way of dealing with that 
 The probability of a predicate, percept, or event 

  is a number on a continuous spectrum from 0 to 1 
   sometimes expressed as a percentage 
  P(event) = 0 means it is absolutely impossible for it to happen 
  P(event) = 1 means it is absolutely certain to happen 

 But what do numbers between 0 and 1 mean? 
  e.g. weather forecast says 40% chance of rain 
  e.g. P(unfair-coin-lands-heads-up) = 0.4 
  Average result of an “infinite” number of identical experiments 
  Proportion of possible worlds in which it is true 
  40¢ is a fair price to pay for a bet that would pay out $1 

 Stochastic  probability-based 
   
Basic laws (Venn diagrams) 

 P(A  B) = P(A) × P(B) 
 P(A  B) = P(A) + P(B) - P(A  B) 
 P( A) = 1 - P(A) 
 Independent variables 

 
Sometimes probabilities are Conditional 

 The chances of an event happening depend on whether some other event 
has happened 

 | means "given" or roughly "if we know that" 
 For example, tooth aches do not happen much (if you clean your teeth) 

   P(toothache) = 0.005 
  but 
   P(toothache | cavity) = 0.3 
  This does not denote cause and effect, it could also be that 
   P(cavity | toothache) = 0.75 
  Useful for diagnostic purposes 
  It is still true that P(toothache) = 0.005  
   even after cavity has been observed 

 P(A | B) = P(A  B) / P(B) 
  Observing B rules out all cases where B is false 
  leaving the set of possibilities with total probability of just P(B) 
  within those remaining possibilities,  
   for P(A | B) to be true, A must be true 
  so A and B is true 



 
  so the true probability of A | B must be P(A  B)  
   divided by P(B), to make all the probabilities add up to 1 

 P(A  B) = P(A | B) × P(B) is sometimes a more convenient form 
For A and B to be true, we need B to be true, then given that B is true 
we also need A to be true 

 
Notation 

 If the range of possible values for Weather is [ sunny, rainy, cloudy, snowy ] 
we might have 

P(Weather = sunny) = 0.6 
P(Weather = rainy) = 0.1 
P(Weather = cloudy) = 0.29 
P(Weather = snowy) = 0.01 
(these are not independent, so the  rule doesn’t work) 

 this is often written as 
  P(Weather) = < 0.6, 0.1, 0.29, 0.01 > 

 Sometimes P(sunny) is written as an abbreviation for P(Weather = sunny) 
 For continuous variables, a Probability Density Function is used 
 Probability = the area under the curve 
 Numeric probabilities only really make sense for ranges of possible values 

 
Joint distributions 

 If we have three Boolean variables, Toothache, Cavity, and Catch 
 the joint distribution is a 2 × 2 × 2 table, all eight add up to exactly 1 

 Use a bold P to represent that 
 P(some possibility) can be found by adding up the relevant entries 
 Marginalisation - eliminate variable(s) by summing entries 

  P(some possibility) = Σ for all possible x's of P(that possibility  X=x) 
 Conditioning 

  P(some possibility) = Σ for all possible x's of  
      P(that possibility | X=x) × P(X=x) 
 
Bayes' rule 

 From P(A  B) = P(A | B) × P(B) and P(A  B) = P(B | A) × P(A) 
 we easily get Bayes' rule: 
  P(B | A) = P(A | B) × P(B) / P(A) 

 When diagnosing an illness, a doctor might know all of 
  P(effect | cause) 
  P(effect) 
  P(cause) 
 for a vast collection of different causes and effects, 
  just from hundreds of years of observations and studies 
 And from them P(cause | effect) can be calculated, 

the probability of a particular disease being the cause of the 
observed effects 

 In an epidemic, P(cause) for one particular cause will increase a lot 
  previously observed values for P(cause | effect) will become invalid 



 
Combining evidence 

 If we observe both toothache and catch, what is the probability 
distribution for Cavity? 

 Assume this joint distribution: 
 Toothache Toothache 
 Catch Catch Catch Catch 

Cavity .108 .012 .072 .008 
Cavity .016 .064 .144 .576 

(they all add up to 1) 
 If we have a joint distribution we can just add up the right entries 

P(Cavity | toothache  catch) = <0.108, 0.016> perhaps 
 stands for Normalise:  
 multiply by something to make the probabilities add up to 1 
so <0.108, 0.016> = <0.871, 0.129> 

 Does not scale up if there are a lot of variables 
 Using Bayes' rule 

  P(Cavity | toothache  catch) =  
    P(toothache  catch | Cavity) × P(Cavity) 

 Again, there are probably too many variables for this to be practical 
 If the variables were independent, we'd be better off 

  but they aren't. Toothache and Catch are not unrelated 
 But if, given knowledge of Cavity, they become independent 
 From P(toothache  catch | Cavity) =  

   P(toothache | Cavity) × P(catch | Cavity) 
 we get P(toothache  catch | Cavity) = 
    P(toothache | Cavity) × P(catch | Cavity) × P(Cavity) 

 Not so many combinations to worry about now 
 Conditional independence allows scalability 

 
Naive Bayes Models 

 If all the effects are conditionally independent given Cause, then 
 P(Cause  Effect1  Effect2  ...) = P(Cause) × Π P(Effecti | Cause) 

 Naive because it relies on independence, but is sometimes used when 
there is none 

 P(Cause | Effect=e) =  P(Cause) × Π P(Effect=ei | Cause) 
 Example: text classification 

Given some text, work out which section of the newspaper it came from 
We can know from prior observations these distributions 
 P(Section) 
 P(Haswordw | Section) 
If 9% of all articles are in the weather section then  
 P(Section=weather) = 0.09 
If 23% of all articles in the weather section use the word "rain" then 
 P(Haswordrain=true | Section=weather) = 0.23 
From that and the current text itself, we can work out the probabilities 
of the text being from any given section 
 


