
Planning

A plan is a sequence of actions

 It should lead from an initial state to some desired target state.
 Actions can be represented like predicates, e.g.

 fly(g-avrl, sfo, jfk).
 But they aren’t predicates: they are clearly not true or false.
 States can be represented by logical formulæ, e.g.

 aboard(fred, g-avrl) at(g-avrl, sfo)
 Here the parts really are like predicates, but they are called Fluents
 They can change between true and false as events progress
 States are always just conjunctions

 No ’s: at this stage they can’t represent uncertainty

Actions have Preconditions

 The action can only be taken if the precondition is true
 e.g. for the action fly(P, From, To), the precondition might be
 at(P, From) is-aeroplane(P) is-airport(From) is-airport(To)
 Usually they only contain ‘s and ‘s.

 Actions also have Effects, which are also logical formulæ
 e.g. for the action fly(P, From, To), the effect might be
 at(P, From) at(P, To)
 The effect is always just a conjunction, maybe with some ‘s

 An Action Schema is used to connect everything together:
 Action(fly(P, From, To),
 PRECOND: at(P, From) aero(P) airpt(From) airpt(To)
 EFFECT: at(P, From) at(P, To))

 Ugly syntax, just to save work
 A Ground Action has all of its variables replaced by actual values, e.g.

 fly(g-avrl, sfo, jfk)
 A ground action is Applicable in a state

 If that state implies its precondition

A Problem in this world consists of

 A Goal: the state we want things in at the end
 An initial state: how things are before we start

 The goal and initial states must be Ground States:
 they contain no variables, only constants

 A list of the actions that can be used

The solution to a problem is a Plan, just a sequence of actions:
 [get-on(fred, g-avrl), fly(g-avrl, sfo, jfk), get-off(fred, g-avrl)]

A PDDL (Planning Domain Definition Language) example:
 Init(at(c1, sfo) at(c2, jfk) at(g-avrl, sfo) at(ja8089, jfk)
 is-cargo(c1) is-cargo(c2) is-plane(g-avrl) is-plane(ja8089)
 is-airport(sfo) is-airport(jfk))
 Goal(at(c1, jfk) at(c2, sfo))

 Action(load(Cargo, Plane, Airport),
 PRECOND: at(Cargo, Airport) at(Plane, Airport)
 is-cargo(Cargo) is-plane(Plane) is-airport(Airport),
 EFFECT: at(Cargo, Airport) inside(Cargo, Plane))
 Action(unload(Cargo, Plane, Airport),
 PRECOND: inside(Cargo, Plane) at(Plane, Airport)
 is-cargo(Cargo) is-plane(Plane) is-airport(Airport),
 EFFECT: inside(Cargo, Plane) at(Cargo, Airport))
 Action(fly(Plane, From, To),
 PRECOND: at(Plane, From) is-plane(Plane) is-airport(From)
 is-airport(To),
 EFFECT: at(Plane, From) at(Plane, To))

A very famous example

 The “blocks” world
 “Pick up a big red block”

 Init(on(a, table) on(b, table) on(c, a)
 is-block(a) is-block(b) is-block(c)
 clear(b) clear(c) clear(table))
 Goal(on(a, b) on(b, c))
 Action(move-to-block(Block, From, To),
 PRECOND: on(Block, From) clear(Block) clear(To)
 is-block(Block) is-block(To)
 BlockFrom BlockTo FromTo,
 EFFECT: on(Block, To) clear(From) on(Block, From) clear(To))
 Action(move-to-table(Block, From),
 PRECOND: on(Block, From) is-block(Block) is-block(From)
 clear(Block),
 EFFECT: on(Block, table) clear(From) on(Block, From))

Formulating a plan

 Finding a plan is just another search
 But we are searching for a big complicated thing this time: a plan
 For any real example, the state space will be very big

 We will need a good heuristic
 Closed World assumption: states don’t need to include things that are false

 but usually they do
 An effect including just removes that fluent from the state.

 Partially ordered plans?

Forward search

 Start at initial state
 Unify current state with preconditions for each action
 Whenever successful,

 Apply the substitution to the action to find a step in the plan
 Apply the substitution to the effects and
 add them to the current state to find the next state

Backward search, or Regression search

 Start at the goal state
 Unify current state with effects of each action

 but don’t allow any effects that negate any part of the goal
what if the successful plan involves a desired fluent being false for

just a little while?
 Whenever successful,

 Apply the substitution to the action to find a step in the plan
 Generate the next state by
 removing any positive fluents in the effect from the goal,
 adding any positive fluents in the precondition,
 removing any negative fluents in the effect,
 adding any negative fluents in the precondition.
 So in this case, states do have to include negative fluents too.

 Many times, a backward search can have far fewer next states to explore at
each step

Heuristics

 An admissible heuristic never over-estimates the remaining cost
 Sometimes relaxing the problem reveals a good heuristic:

 an exact cost in the relaxed problem can be a heuristic in the original
but for that to be practical, the relaxed problem must be very quick

and easy to solve.
 Maybe just ignore all the preconditions, that certainly won’t over-estimate
 Any goal fluent can be made true with just one action

 If it can be made true at all, that is
 Back to the eight puzzle for an example:

 Action(slide(Tile, From-square, To-square),
 PRECOND: is-tile(Tile) is-empty(To-square)
 in(Tile, From-square) adjacent(From-square, To-square),
 EFFECT: in(Tile, From-square) is-empty(From-square)
 in(Tile, To-square) is-empty(To-square))

 Ignoring all the preconditions is silly
 You’d even try moving things that aren’t tiles

 Ignore is-empty(To-square) adjacent(From-square, To-square)
 Any tile can move anywhere in one go
 The heuristic is the number of out-of-place tiles

 Only ignore is-empty(To-square)
 Any tile can move to any adjacent square even if it’s occupied
 The heuristic is the Manhattan Distance

High-level actions (HLAs)

 A complete plan for an autonomous robot can have very many actions
To get from one place to another, a robot must activate its tiny little
motors in exactly the right order for every single step taken

 Fortunately, plans in the real world tend to be very hierarchical
 One single very high-level action can be a complete plan

 [move-from-to(lab, repair-shop)]
 this can be resolved into a plan involving quite high-level actions

 [move-from-to(lab, corridor-outside-lab),
 move-from-to(corridor-outside-lab, corridor-outside-repair-shop),
 move-from-to(corridor-outside-repair-shop, repair-shop)]

 each of those actions are resolved by their own individual plans involving
slightly lower-level actions

 and so on, all the way down to plans involving the most basic actions which
the robot can actually physically do, e.g. activate or deactivate a motor

 All of those sub-plans can be discovered individually when the time comes
 and just concatenated together

Non-determinism

 Perhaps you can’t be sure what the state of the world is
 you haven’t got a sensor for that particular thing

 Or perhaps you can’t be sure what effect an action will actually cause
 turning the wheels might not move the vehicle, it might be muddy

 When a problem can be solved by more than one possible plan a choice must
be made

 Angelic selection: the agent can choose which plan to take
 Only requires that just one of the possible plans would work

 Dæmonic selection: something else, the environment, forces the choice
 Requires that every single possible plan must work

 But really, a plan isn’t a solution if it doesn’t achieve the goal
 A plan is a sequence of actions that solves a problem.

