
Prolog

Prolog is a programming language for PROgramming with LOGic
 It doesn’t mean just being sensible and making a logical design
 It means expressing your program in terms of facts and deduction rules
 No loops, no functions of the sort we’re used to
 Just predicates, terms, and definitions
 It makes use of

 Unification
 Resolution
 Predicate calculus (parts of it anyway) and
 Backtracking
 Available on rabbit.eng.miami.edu
 But download your own: https://www.swi-prolog.org/download/stable
 Under Settings menu select “User init file …”.
 If it asks about creating it, say yes.
 Insert into it
 :- working_directory(_, 'D:\\prolog').
 but of course choose your own working directory instead of C:\\prolog
 Save and exit. Exit from prolog and restart it.

Backward Chaining
 Instead of Forward Chaining which goes from known facts to conculsions
 We start from the Goal (the question) and work backwards
 Building an (almost) ever growing list of things that we need to be true
 e.g., the goal is Criminal(W)
 that becomes

 american(W)  weapon(Y)  hostile(Z)  sold(W, Y, Z)
 that becomes

 weapon(Y)  hostile(Z)  sold(colw, Y, Z)
 that becomes

 missile(Y)  hostile(Z)  sold(colw, Y, Z)
 that becomes

 hostile(Z)  sold(colw, m1, Z)
 that becomes

 enemy(Z, america)  sold(colw, m1, Z)
 that becomes

 sold(colw, m1, nk)
 that becomes

 missile(m1)  owns(nk, m1)
 that becomes

 owns(nk, m1)
 that becomes

 (nothing)
 Which means that we succeeded
 And along the way, we learned that

 { Wcolw, XW, Ym1, Znk }

 W is the only variable that appeared in the question, so the answer is
 W = colw

Syntax
 As before, little letters for predicates and functions, big letters for variables
 Predicates separated by commas are to be anded together

 each predicate must be made true in turn, left to right
 Predicates separated by semicolons are to be ored together

 try each in turn until one comes out as true
 Not doesn’t really work very well, but we get by without it
 Colon-dash :- means , it is how predicates are defined

 A dot . appears at the end of a definition (called a Rule)
 hates(X, Y) :- cat(Y), mouse(X).
 hates(X, Y) :- dog(Y).
 Two definitions for the same predicate means they are ored together

 that’s why we don’t see semicolons so much
 A predicate on its own is just a statement of fact

 cat(tom).
 is-something(X).

Here is a complete program:
 cat(tom).
 dog(spike).
 mouse(jerry).
 mouse(jerrys-nephew).
 would-eat(X, Y) :- cat(X), mouse(Y).
 hates(X, Y) :- would-eat(Y, X).
 hates(X, Y) :- cat(X), dog(Y).

We run it by entering a predicate, which is treated as a query
 hates(jerrys-nephew, tom).
 says Yes
 hates(tom, jerry)
 Fails
 hates(X, Y)
 lists all valuations for X and Y that make it true
 but we can never ask “who is what?”

But a simple change of style opens up things like that:
 isa(tom, cat).
 isa(spike, dog).
 isa(jerry, mouse).
 isa(jerrys-nephew, mouse).
 would-eat(X, Y) :- isa(X, cat), isa(Y, mouse).
 hates(X, Y) :- would-eat(Y, X).
 hates(X, Y) :- isa(X, cat), isa(Y, dog).

Or even more flexibly:
 fact(tom, isa, cat).

 fact(spike, isa, dog).
 fact(jerry, isa, mouse).
 fact(jerrys-nephew, isa, mouse).
 fact(X, would-eat, Y) :- fact(X, isa, cat), fact(Y, isa, mouse).
 fact(X, hates, Y) :- fact(Y, would-eat, X).
 fact(X, hates, Y) :- fact(X, isa, cat), fact(Y, isa, dog).

NOT doesn’t work at all well
 solutions consist of valuations of variables (maybe empty)
 a false predicate fails, it does not produce a valuation
 Predicates fail exactly because no valuation works
 changing a success into a failure is trivial
 changing a failure into a success doesn’t really work

 Successes are supposed to produce valuations
 but a failure give us nothing to work with.

To get in, type the command “prolog” or “prolog filename.pl”
To get out, type “halt.” Remember the dot at the end.
To enter definitions manually (not very good)
 type consult(user).
 and control-D when you’re done
 There is no way to save the definitions you type.
To read definitions from a file (much better)
 type consult(filename). Do not put the .pl at the end of the filename.
 ignore warnings about “Singleton variables”
To ask a query, just type it.
If there are multiple solutions, it will print the first then wait.
 press ; to see the next solution
 or press ENTER to stop and get back to the command prompt

Backtracking
 As before, Prolog maintains a list of predicates that must all be true

 and the current substitution
 It also maintains a stack of (predicate-list, substitution) pairs

 that could also lead to an answer
 When there is a choice (two or more rules match the same predicate)

 one is chosen to go into the current predicate list
 the others go onto the stack
 If the current predicate list turns out to be false

 just backtrack to the alternative on top of the stack
 Or if the user asks for another solution after one has been delivered

