
Predicate Calculus or First-Order Logic 
 
Propositional Logic is very restrictive. 
It can’t even describe the basic rules of arithmetic. 
That’s how it manages to be both complete and sound. 
 
We will depart here from the book’s way of saying things so that we don’t get 
confused later when we get to Logic programming. 
 
Predicate calculus adds quite a few things on top of propositional logic 

 Names beginning with little letters represent constants or functions or 
predicates 

 You can mostly tell which because a function name is always 
followed by (...), but functions look just like predicates. They just 
appear in different contexts. 

 Constants are the most basic things 
  Constants do not have values, they stand for themselves 
  x means x and nothing more, it is one of the values we work with. 
  But they can represent things: 
   tom is just tom, 
   but we can use tom to represent a particular cartoon cat. 

 Functions look like functions in programming languages, but they are not 
  Here’s some functions being used: f(x), father(tom), g(x, y) 
   Functions are not called,  
   they do not have definitions, 
   and they don’t return anything. 
  father(tom) = father(tom) and nothing else 
  but father(tom) can be used to represent the father of that cat 
  constants and functions are both kinds of Terms. 

 Predicates are what do all the work, 
  They are sort-of called, and 
  they sort-of have values. Every predicate is either true or false 
  prime(X) might be used to find out whether X is prime or not. 
  likes(X, toast) can be used to state that X likes toast. 

 Variables begin with capital letters 
  Variables can take on any value: constant or function. 

 Equality: term = term is also a predicate 
  Terms are equal if they look the same. 

 Universal quantification:  

  ∀ X, p(X) means that p(X) is true for all possible values of X 
 Existential qualification: 

 ∃ X: p(X) means that there is at least one possible value of X that 
makes p(X) true. 

 Here is a small but well-known example: 
   man(socrates) 

   ∀ X, man(X)  mortal(X) 
  from which we can deduce: 
   mortal(socrates) 



 
And there are some fairly obvious equivalences, for example: 

  ∃ X: something ≡ ∀ X,  something 

  ∀ X, something ≡ ∃ X:  something 

 ∀ X: something ≡  ∃ X:  something 

 ∃ X: something ≡  ∀ X:  something 
 
An example, Kinship 

 We have a collection of very basic facts: 
  female(marge) 
  female(lisa) 
  male(homer) 
  parent(marge, lisa) 
  spouse(marge, homer) 
   and so on 

 And some other axioms: 

  ∀ M, C, mother(M, C)  female(M)  parent(M, C) 

  ∀ H, W, husband(H, W)  male(H)  spouse(H, W) 

  ∀ A, B, spouse(A, B)  spouse(B, A) 

  ∀ P, C, parent(P, C)  child(C, P) 

  ∀ G, C, grandparent(G, C)  ∃ P: parent(G, P)  parent(P, C) 

  ∀ A, B, sibling(A, B)  AB  ∃ P: parent(P, A)  parent(P, B) 
 From these, we should, in principle, be able to prove some Theorems: 

  ∀ A, B, sibling(A, B)  sibling(B, A) for example 
 But how? Just another search? 

  Gödel again 
 
First-Order Definite Clauses 

 Can always be written in the form Antecedents  Consequence 
 Antecedents are just ands of predicates 
 Consequence is just a predicate 
  king(X)  greedy(X)  evil(X) 
 When something is always true the antecedents and the arrow are left out 
 A Datalog knowledge base: It is a crime for an American to sell weapons to 

a hostile nation; North Korea is an enemy of America; North Korea has 
some missiles; all of its missiles were sold to it by Colonel West; Colonel 
West is an American. 

  american(X)  weapon(Y)  hostile(Z)  sold(X, Y, Z)  criminal(X) 
  missile(X)  weapon(X) 
  enemy(northkorea, america) 
  enemy(X, america)  hostile(X) 
  owns(northkorea, m1) 
  missile(m1)   

   (m1 is a Skolem Constant, introduced because of ∃) 
  missile(X)  owns(northkorea, X)  sold(colonelwest, X, northkorea) 



  american(colonelwest) 
 
Unifying and Substituting 

 Function symbols are not used, just variables, constants, and predicates 
  so Unifying is very simple: 
   Unify(p(tom, X), p(Y, jerry)) = { Xjerry, Ytom } 
   Unify(p(tom, X), p(tom, Y)) = { XY } or maybe { YX } 
   Unify(p(tom), p(tom)) = { } 
   Unify(p(tom), p(jerry)) = fail 

 The result of unify is a Substitution or Unifier 
 Subst rewrites a formula F according to a substitution θ: 

  Subst({ Xjerry, Ytom }, hates(X, Y)) = hates(jerry, tom) 
  Subst({ Xjoe }, human(X)  wrong(Y)) = human(joe)  wrong(Y) 

 StandardiseVariables(F) renames all of F’s variables with totally new ones 
  StandardiseVariables(human(X)  hates(Y, X)) =  
        human(V179)  hates(V180, V179) 
 
A simple Forward Chaining Inference Procedure 

 KB is the Knowledge Base, all those facts above 
 Question is a predicate, we want to know if it’s true 

  while True: 
     inferences = { } 
     for rule in KB: 
        StandardiseVariables(rule) to get (p1  p2  p3  ...  pn)  q 
        find some facts r1, r2, r3, ..., rn in KB  
   such that Unify(p1  p2  p3  ...  pn, r1  r2  r3  ...  rn) = θ 
   and θ  fail 
        s = Subst(θ, q) 
        if s can not unify with anything in KB or inferences: 
           answer = Unify(s, Question) 
           if answer  Fail: 
              return answer 
           add s to inferences 
     if inferences = { }: 
        return False 
     add inferences to KB 

 Implied inner inner loop for the “find some ...” 
 Very inefficient indeed 
 Can be improved a bit: 

  Find a fact r1 that can be unified with p1 to give θ 
  Then find a fact r2 that unifies with p2 in a way consistent with θ 
  Continue doing that until all the pi’s are covered 
 
 
 
 
 
 



Cheapest First Heuristic 
 Find a carpenter whose father is a senator 
 carpenter(X)  father(Y, X)  senator(Y) 

Predicate Number of Bindings 
carpenter(X) 100,000 
senator(X) 100 
father(Y, X) 100,000,000 
father(Y, someconstant) 2.4 
father(someconstant, X) 1 

 
We can also define how numbers work: 

 number(z) 
  z, which stands for zero here, is a number 

 ∀ X, number(X)  number(s(X)) 
  here, s stands for “successor”: one after X 

 ∀ X, add(z, X, Y)  X = Y 
  if it is true that adding z and X gives Y then X and Y are the same 

 Zermelo-Fraenkel-Peano axioms 

 ∀ X, add(s(A), X, s(Y))  add(A, X, Y) 
 and so on. We can do something like this to define everything 

  Principia Mathematica, Russell and Whitehead 
 Because numbers can be represented, they are usually just taken for 

granted. We allow ourselves to write 7 instead of s(s(s(s(s(s(s(z))))))) and to 
use +, ×, and all the rest 

 
Syntactic Sugar 

 adds nothing real to the language 
 but makes things much easier to read 
 [a, b, c] can be used to represent a list containing a, b, and c 
 but we don’t need it 
 lists can also be defined, linked-list style, without adding anything 
 cons(a, cons(b, cons(c, nil))) 
 many other examples, most of them are completely obvious 

 
More on Unification 

 A kind of pattern matching, in a way 
 To unify two terms, you find values for all of their variables that make 

those terms equal 
 Unifying cat(tom) with cat(X) tells us that X = tom 
 Unifying add(s(A), X, s(Y)) with add(s(s(s(s(z)))), s(z), s(s(s(s(s(z)))))) 

  tells us that A is s(s(s(z))), X is s(z), and Y is s(s(s(s(z)))) 
 Unifying cat(Tom) with mortal(Tom) fails 
 We unify terms that are somehow supposed to be equal 

  To find out if they really can be equal (it doesn’t fail) 
  And what is required to make them equal: 
   An Instantiation of their variables 

 Instantiations can still have variables in them: 



  Unifying p(s(A)) with p(s(B)) tells us only that A = B 
  Unifying p(s(A)) with p(A) tells us that A = s(A), it should fail 
   The Occurs rule 


