
Predicate Calculus or First-Order Logic

Propositional Logic is very restrictive.
It can’t even describe the basic rules of arithmetic.
That’s how it manages to be both complete and sound.

We will depart here from the book’s way of saying things so that we don’t get
confused later when we get to Logic programming.

Predicate calculus adds quite a few things on top of propositional logic

 Names beginning with little letters represent constants or functions or
predicates

 You can mostly tell which because a function name is always
followed by (...), but functions look just like predicates. They just
appear in different contexts.

 Constants are the most basic things
 Constants do not have values, they stand for themselves
 x means x and nothing more, it is one of the values we work with.
 But they can represent things:
 tom is just tom,
 but we can use tom to represent a particular cartoon cat.

 Functions look like functions in programming languages, but they are not
 Here’s some functions being used: f(x), father(tom), g(x, y)
 Functions are not called,
 they do not have definitions,
 and they don’t return anything.
 father(tom) = father(tom) and nothing else
 but father(tom) can be used to represent the father of that cat
 constants and functions are both kinds of Terms.

 Predicates are what do all the work,
 They are sort-of called, and
 they sort-of have values. Every predicate is either true or false
 prime(X) might be used to find out whether X is prime or not.
 likes(X, toast) can be used to state that X likes toast.

 Variables begin with capital letters
 Variables can take on any value: constant or function.

 Equality: term = term is also a predicate
 Terms are equal if they look the same.

 Universal quantification:

 ∀ X, p(X) means that p(X) is true for all possible values of X
 Existential qualification:

 ∃ X: p(X) means that there is at least one possible value of X that
makes p(X) true.

 Here is a small but well-known example:
 man(socrates)

 ∀ X, man(X) mortal(X)
 from which we can deduce:
 mortal(socrates)

And there are some fairly obvious equivalences, for example:

 ∃ X: something ≡ ∀ X, something

 ∀ X, something ≡ ∃ X: something

 ∀ X: something ≡ ∃ X: something

 ∃ X: something ≡ ∀ X: something

An example, Kinship

 We have a collection of very basic facts:
 female(marge)
 female(lisa)
 male(homer)
 parent(marge, lisa)
 spouse(marge, homer)
 and so on

 And some other axioms:

 ∀ M, C, mother(M, C) female(M) parent(M, C)

 ∀ H, W, husband(H, W) male(H) spouse(H, W)

 ∀ A, B, spouse(A, B) spouse(B, A)

 ∀ P, C, parent(P, C) child(C, P)

 ∀ G, C, grandparent(G, C) ∃ P: parent(G, P) parent(P, C)

 ∀ A, B, sibling(A, B) AB ∃ P: parent(P, A) parent(P, B)
 From these, we should, in principle, be able to prove some Theorems:

 ∀ A, B, sibling(A, B) sibling(B, A) for example
 But how? Just another search?

 Gödel again

First-Order Definite Clauses

 Can always be written in the form Antecedents Consequence
 Antecedents are just ands of predicates
 Consequence is just a predicate
 king(X) greedy(X) evil(X)
 When something is always true the antecedents and the arrow are left out
 A Datalog knowledge base: It is a crime for an American to sell weapons to

a hostile nation; North Korea is an enemy of America; North Korea has
some missiles; all of its missiles were sold to it by Colonel West; Colonel
West is an American.

 american(X) weapon(Y) hostile(Z) sold(X, Y, Z) criminal(X)
 missile(X) weapon(X)
 enemy(northkorea, america)
 enemy(X, america) hostile(X)
 owns(northkorea, m1)
 missile(m1)

 (m1 is a Skolem Constant, introduced because of ∃)
 missile(X) owns(northkorea, X) sold(colonelwest, X, northkorea)

 american(colonelwest)

Unifying and Substituting

 Function symbols are not used, just variables, constants, and predicates
 so Unifying is very simple:
 Unify(p(tom, X), p(Y, jerry)) = { Xjerry, Ytom }
 Unify(p(tom, X), p(tom, Y)) = { XY } or maybe { YX }
 Unify(p(tom), p(tom)) = { }
 Unify(p(tom), p(jerry)) = fail

 The result of unify is a Substitution or Unifier
 Subst rewrites a formula F according to a substitution θ:

 Subst({ Xjerry, Ytom }, hates(X, Y)) = hates(jerry, tom)
 Subst({ Xjoe }, human(X) wrong(Y)) = human(joe) wrong(Y)

 StandardiseVariables(F) renames all of F’s variables with totally new ones
 StandardiseVariables(human(X) hates(Y, X)) =
 human(V179) hates(V180, V179)

A simple Forward Chaining Inference Procedure

 KB is the Knowledge Base, all those facts above
 Question is a predicate, we want to know if it’s true

 while True:
 inferences = { }
 for rule in KB:
 StandardiseVariables(rule) to get (p1 p2 p3 ... pn) q
 find some facts r1, r2, r3, ..., rn in KB
 such that Unify(p1 p2 p3 ... pn, r1 r2 r3 ... rn) = θ
 and θ fail
 s = Subst(θ, q)
 if s can not unify with anything in KB or inferences:
 answer = Unify(s, Question)
 if answer Fail:
 return answer
 add s to inferences
 if inferences = { }:
 return False
 add inferences to KB

 Implied inner inner loop for the “find some ...”
 Very inefficient indeed
 Can be improved a bit:

 Find a fact r1 that can be unified with p1 to give θ
 Then find a fact r2 that unifies with p2 in a way consistent with θ
 Continue doing that until all the pi’s are covered

Cheapest First Heuristic
 Find a carpenter whose father is a senator
 carpenter(X) father(Y, X) senator(Y)

Predicate Number of Bindings
carpenter(X) 100,000
senator(X) 100
father(Y, X) 100,000,000
father(Y, someconstant) 2.4
father(someconstant, X) 1

We can also define how numbers work:

 number(z)
 z, which stands for zero here, is a number

 ∀ X, number(X) number(s(X))
 here, s stands for “successor”: one after X

 ∀ X, add(z, X, Y) X = Y
 if it is true that adding z and X gives Y then X and Y are the same

 Zermelo-Fraenkel-Peano axioms

 ∀ X, add(s(A), X, s(Y)) add(A, X, Y)
 and so on. We can do something like this to define everything

 Principia Mathematica, Russell and Whitehead
 Because numbers can be represented, they are usually just taken for

granted. We allow ourselves to write 7 instead of s(s(s(s(s(s(s(z))))))) and to
use +, ×, and all the rest

Syntactic Sugar

 adds nothing real to the language
 but makes things much easier to read
 [a, b, c] can be used to represent a list containing a, b, and c
 but we don’t need it
 lists can also be defined, linked-list style, without adding anything
 cons(a, cons(b, cons(c, nil)))
 many other examples, most of them are completely obvious

More on Unification

 A kind of pattern matching, in a way
 To unify two terms, you find values for all of their variables that make

those terms equal
 Unifying cat(tom) with cat(X) tells us that X = tom
 Unifying add(s(A), X, s(Y)) with add(s(s(s(s(z)))), s(z), s(s(s(s(s(z))))))

 tells us that A is s(s(s(z))), X is s(z), and Y is s(s(s(s(z))))
 Unifying cat(Tom) with mortal(Tom) fails
 We unify terms that are somehow supposed to be equal

 To find out if they really can be equal (it doesn’t fail)
 And what is required to make them equal:
 An Instantiation of their variables

 Instantiations can still have variables in them:

 Unifying p(s(A)) with p(s(B)) tells us only that A = B
 Unifying p(s(A)) with p(A) tells us that A = s(A), it should fail
 The Occurs rule

