
Propositional Logic 
 We need to know some rules for making correct inferences 
 
Syntax, what the wffs look like 

 True 
 False 
 Proposition symbol: Capital letter first, represents a proposition, e.g. 

  W13 means there is a wumpus in room [1,3] 
  FacingEast means the agent is facing East 

 A wff in parentheses is also a wff 
 A wff preceded by  (not) is also a wff 

  Symbol or Symbol is called a literal 
  X and X are Complementary literals 

 Two wffs joined by  (and) is also a wff: Conjunction 
 Two wffs joined by  (or) is also a wff: Disjunction 
 Two wffs joined by  is also a wff: Implication or If 
 Also , A  B means exactly B  A 

 Two wffs joined by ⇔ is also a wff: If-and-only-if (iff) 

  A ⇔ B means that both A  B and B  A are true 
 
Semantics 

 A model gives truth values to every symbol 
  If three symbols are in use, there are 8 possible models 

 Semantics must show how to find truth of wff in any model 
  A simple recursive set of rules 
  Or maybe truth tables 
 
Wumpus world again 

 Symbols 
  Pij means there is a pit in room [i,j] 
  Wij means there is a wumpus in room [i,j] 
  Bij means you would feel a breeze in room [i,j] 
  Sij means you would smell a stench in room [i,j] 
  Lij (L = location) means the agent is in room [i,j] 

 It is a very small world, so we could write all the rules explicitly 
  P00 - there is no pit in the starting room, that is R1 

  B00 ⇔ P10  P01, that is R2 

  B01 ⇔ P00  P11  P02, that is R3 
  ... 

  B33 ⇔ P23  P32, that is R17 

  S00 ⇔ W10  W01, that is R18 

  S01 ⇔ W00  W11  W02, that is R19 
  ... 

  S33 ⇔ W23  W32, that is R33 
 And also for the facts that the agent learned at the beginning 

  B00, that is R34 



  B01, that is R35 
  ... 

 A very simple inference algorithm 
  e.g. want to know if P10 is false 
  Check every possible model one-by-one, 2number of rules models 
  Only in a few of them are all the rules true 
  In all of those P10 is false 
  Thereby we can deduce that there is no pit in room [1,0] 
 

A ≡ B is true if and only if both A ⊨ B and B ⊨ A are true 

The formulae are equivalent. ≡ makes a claim about wffs, ⇔ is part of them 
Equivalent wffs can be substituted for one another 
 A  B ≡ B  A - Commutativity 
 (A  B)  C ≡ A  (B  C) - Associativity 
 A ≡ A 

 A ⇔ B ≡ (A  B)  (B  A) - Equivalence elimination 
 A  B ≡ B  A 
 A  B ≡ B  A - Contrapositive 
 ... and a whole bunch more 
A wff is Valid if it is true in all possible models - Tautology 
A wff is Satisfiable if it is true in at least one possible model 

A ⊨ B is true if and only if A  B is valid - The deduction theorem 
 
Theorem proving 

 Never mind about checking all possible models 
 Apply inference rules to every fact already in the knowledge base 

 
Inference rules 

 Horizontal lines 
 If you know all the things above the line, you can deduce the 

thing below the line 
 A  B, A ______ B - Modus Ponens 
 A  B ______ A - And elimination 
 Equivalence rules too 

 
Example 

 Given 
  P00 - there is no pit in the starting room, that is R1 

  B00 ⇔ P10  P01, that is R2 

  B01 ⇔ P00  P11  P02, that is R3 
  B00, that is R34 
  B01, that is R35 

 We want to prove P01 
  Equivalence elimination to R2: 
   (B00  P10  P01)  ((P10  P01)  B00), that is Rn 
  And elimination to Rn: 



   (P10  P01)  B00, that is Rn+1 
  Contrapositive to Rn+1: 
   B00  (P10  P01), that is Rn+2 
  Modus Ponens on Rn+2 and R34: 
   (P10  P01), that is Rn+3 
  DeMorgan’s rule on Rn+3: 
   P10  P01, that is Rn+4 
  And elimination on Rn+4: 
   P01, Q.E.D. 

 How is it done? 
  We’ve got a search tree 
  States are sets of wffs that we already know to be true 
  The axioms are at the root, 
  The inference rules let us work out the next states 
  It is a big tree, 
   a lot of wffs are true, and 
   there are a lot of inference rules 
  Or a slightly different kind of search tree, 
   where the axioms are just taken for granted 
   and nodes only contain newly deduced facts 
  This example is Monotonic: 
   Once you discover something is true, it stays true for ever 
 
Resolution 

 A-lot-of-ORs  X, Another-lot-of-ORs  X 
  ______ A-lot-of-ORs  Another-lot-of-ORs 

 A Clause is a bunch of literals ORed together: X  Something  Cat 
  Resolution works on clauses 

 Remember when the agent first moved to [0,1] 
  The percepts are S01 but not B01. Can make a new fact: 
   B01, that is Rn+5 

  R3, which was B01 ⇔ P00  P11  P02, is equivalent to 

   B01 ⇔ (P00  P11  P02) 
  So with Rn+3, B01, we get 
   (P00  P11  P02) 
  De Morgan’s law gives 
   P00  P11  P02 
  And elimination gives us all three of 
   P00, which we already knew 
   P11, that is Rn+6 
   P02, that is Rn+7 

  The equivalence rule for ⇔ applied to R3 gives 
   (B01  P00  P11  P02)  (P00  P11  P02  B01) 
  Then using R35, which is B01, modus ponens gives 
   P00  P11  P02, that is Rn+8 
  Now the literal P11 from Rn+6 resolves with P11 from Rn+8 
   P00  P02, that is Rn+9 



  And P00 from R1 resolves with P00 from Rn+9 
   P02, that is Rn+10 
  Using resolution we have deduced that there is a fatal pit in [0,2] 
 
Resolution algorithm 

 If a knowledge base is in Conjunctive Normal Form (CNF) 
  Then resolution can tell us everything 

 Resolution algorithms work through proof by contradiction 

  To prove that KB ⊨ Conjecture, we prove that 
  KB  Conjecture is unsatisfiable, or impossible 

 Start with KB  Conjecture converted to CNF 
 Apply resolution, where possible, to pairs of clauses 

  Each time, the result is a new clause, which is added to KB 
 In the end, either 

  There is nothing left to resolve 
   therefore KB does not entail Conjecture, or 
  The resolution of two clauses produces nothing (i.e. False) 
   therefore KB does entail Conjecture 
   this can only happen when two contradictions 
    e.g. X and X are resolved 

 Example, start with KB = just two rules, R2 and R34 

   KB = (B00 ⇔ P10  P01)  (B00) 
  Want to prove P10, so convert KB  P10 into CNF 
 B00  P10  P01 - clause 1 
 P01  B00 - clause 2 
 P10  B00 - clause 3 
 B00 - clause 4 
 P10 - clause 5 
  Resolve clause 1 and clause 2 around P01 
 B00  P10  B00 - clause 6, ≡ True 
  Resolve clause 1 and clause 2 around B00 
 P10  P01  P01 - clause 7, ≡ True 
  Resolve clause 1 and clause 3 around P01 
 B00  P10  B00 - clause 8, ≡ True 
  Resolve clause 1 and clause 3 around B00 
 P10  P01  P01 - clause 9, ≡ True 
  Resolve clause 2 and clause 4 around B00 
 P01 - clause 10 
  Resolve clause 3 and clause 4 around B00 
 P10 - clause 11 
  Resolve clause 5 and clause 11 around P01 
 yields nothing 
 Therefore P10 is true 
 
The Horn clause 

 Any clause with at most one positive literal is a Horn clause 
  e.g. A  B  C  D 



 A Horn clause that actually has a positive literal is a Definite clause 
 A definite clause can be converted into an implication with all positives 

  A  C  D  B 
 With no positives, e.g. A  C  D, they are Goal clauses 
 Just one positive and nothing else is a Fact, e.g. X 
 This is the basis of Logic Programming 

 
An agent in the wumpus world 

 A huge number of basic facts stating the rules of the world ... 
 A breeze somewhere means a neighbouring pit: 

  B00 ⇔ P01  P10, and so on as before. 
 A stench somewhere means a neighbouring wumpus: 

  S00 ⇔ W01  W10, and so on as before. 
 There is at least one wumpus: 

  W00  W01  W02 ...  W33 
 There is at most one wumpus: 

  For every possible pair of locations, at least one has no wumpus 
   W00  W01 
   W00  W02 
   W00  W03 
   ... 
   W32  W33 

 Some things are Fluents: their truth value changes with time (# steps) 
 The percepts are fluents: 

  Stench3 = we perceive a stench at time 3 
  Breezet = we perceive a breeze at time t 
  Bumpt = we moved forward at time t-1 but there was a wall in the way 

 And some plain facts are fluents: 
  FacingEastt, HaveBullett, WumpusAlivet, and so on 
  Loc23t = were are in room [2,3] at time t 

 Our observations tell us some facts: 

  Loc00t  (Breezet ⇔ B00) 

  Loc01t  (Breezet ⇔ B01) 
  ... 

  Loc00t  (Stencht ⇔ S00) 

  Loc01t  (Stencht ⇔ S01 
  ... 

 The actions taken need to be represented too: 
  Forward6 = the action taken at time 6 is to move forward 
  TurnLeftt = the action taken at time t is to turn left 
  ... 

 Effect Axioms tell us what effects the different actions have: 
  Loc000  FacingEast0  Forward0  Loc011  Loc001 
  ... 
  an enormous number of rules like this 

 We also ned to specify when fluents don’t change: 



  Forward7  (HaveBullet7 ⇔ HaveBullet8) 

  TurnLeft22  (WumpusAlive22 ⇔ WumpusAlive23) 
  ... 

 And we initially know: 
  Loc000  HaveBullet0  FacingEast0  WumpusAlive0 

 This is completely unmanageable 
 
It is a bit better if we write axioms about fluents instead of actions 

 A fluent (becomes) true if 
  We do an action that makes it true,  
  Or it was already true and we didn’t do anything to make it false 

  HaveBullet8 ⇔ HaveBullet7  Shoot7 

 Loc004 ⇔ Loc003  (Forward3  Bump4) 
   Loc103  (FacingSouth3  Forward3) 
   Loc013  (FacingWest3  Forward3) 
  ... 

 And we want a way to work out whether a room is safe to move into: 

  OK23t ⇔ P23  (W23  WumpusAlivet) 
  ... 

 That is still a huge knowledge base. 
 
 
 


