
Propositional Logic
 We need to know some rules for making correct inferences

Syntax, what the wffs look like

 True
 False
 Proposition symbol: Capital letter first, represents a proposition, e.g.

 W13 means there is a wumpus in room [1,3]
 FacingEast means the agent is facing East

 A wff in parentheses is also a wff
 A wff preceded by  (not) is also a wff

 Symbol or Symbol is called a literal
 X and X are Complementary literals

 Two wffs joined by  (and) is also a wff: Conjunction
 Two wffs joined by  (or) is also a wff: Disjunction
 Two wffs joined by  is also a wff: Implication or If
 Also , A  B means exactly B  A

 Two wffs joined by ⇔ is also a wff: If-and-only-if (iff)

 A ⇔ B means that both A  B and B  A are true

Semantics

 A model gives truth values to every symbol
 If three symbols are in use, there are 8 possible models

 Semantics must show how to find truth of wff in any model
 A simple recursive set of rules
 Or maybe truth tables

Wumpus world again

 Symbols
 Pij means there is a pit in room [i,j]
 Wij means there is a wumpus in room [i,j]
 Bij means you would feel a breeze in room [i,j]
 Sij means you would smell a stench in room [i,j]
 Lij (L = location) means the agent is in room [i,j]

 It is a very small world, so we could write all the rules explicitly
 P00 - there is no pit in the starting room, that is R1

 B00 ⇔ P10  P01, that is R2

 B01 ⇔ P00  P11  P02, that is R3
 ...

 B33 ⇔ P23  P32, that is R17

 S00 ⇔ W10  W01, that is R18

 S01 ⇔ W00  W11  W02, that is R19
 ...

 S33 ⇔ W23  W32, that is R33
 And also for the facts that the agent learned at the beginning

 B00, that is R34

 B01, that is R35
 ...

 A very simple inference algorithm
 e.g. want to know if P10 is false
 Check every possible model one-by-one, 2number of rules models
 Only in a few of them are all the rules true
 In all of those P10 is false
 Thereby we can deduce that there is no pit in room [1,0]

A ≡ B is true if and only if both A ⊨ B and B ⊨ A are true

The formulae are equivalent. ≡ makes a claim about wffs, ⇔ is part of them
Equivalent wffs can be substituted for one another
 A  B ≡ B  A - Commutativity
 (A  B)  C ≡ A  (B  C) - Associativity
 A ≡ A

 A ⇔ B ≡ (A  B)  (B  A) - Equivalence elimination
 A  B ≡ B  A
 A  B ≡ B  A - Contrapositive
 ... and a whole bunch more
A wff is Valid if it is true in all possible models - Tautology
A wff is Satisfiable if it is true in at least one possible model

A ⊨ B is true if and only if A  B is valid - The deduction theorem

Theorem proving

 Never mind about checking all possible models
 Apply inference rules to every fact already in the knowledge base

Inference rules

 Horizontal lines
 If you know all the things above the line, you can deduce the

thing below the line
 A  B, A ______ B - Modus Ponens
 A  B ______ A - And elimination
 Equivalence rules too

Example

 Given
 P00 - there is no pit in the starting room, that is R1

 B00 ⇔ P10  P01, that is R2

 B01 ⇔ P00  P11  P02, that is R3
 B00, that is R34
 B01, that is R35

 We want to prove P01
 Equivalence elimination to R2:
 (B00  P10  P01)  ((P10  P01)  B00), that is Rn
 And elimination to Rn:

 (P10  P01)  B00, that is Rn+1
 Contrapositive to Rn+1:
 B00  (P10  P01), that is Rn+2
 Modus Ponens on Rn+2 and R34:
 (P10  P01), that is Rn+3
 DeMorgan’s rule on Rn+3:
 P10  P01, that is Rn+4
 And elimination on Rn+4:
 P01, Q.E.D.

 How is it done?
 We’ve got a search tree
 States are sets of wffs that we already know to be true
 The axioms are at the root,
 The inference rules let us work out the next states
 It is a big tree,
 a lot of wffs are true, and
 there are a lot of inference rules
 Or a slightly different kind of search tree,
 where the axioms are just taken for granted
 and nodes only contain newly deduced facts
 This example is Monotonic:
 Once you discover something is true, it stays true for ever

Resolution

 A-lot-of-ORs  X, Another-lot-of-ORs  X
 ______ A-lot-of-ORs  Another-lot-of-ORs

 A Clause is a bunch of literals ORed together: X  Something  Cat
 Resolution works on clauses

 Remember when the agent first moved to [0,1]
 The percepts are S01 but not B01. Can make a new fact:
 B01, that is Rn+5

 R3, which was B01 ⇔ P00  P11  P02, is equivalent to

 B01 ⇔ (P00  P11  P02)
 So with Rn+3, B01, we get
 (P00  P11  P02)
 De Morgan’s law gives
 P00  P11  P02
 And elimination gives us all three of
 P00, which we already knew
 P11, that is Rn+6
 P02, that is Rn+7

 The equivalence rule for ⇔ applied to R3 gives
 (B01  P00  P11  P02)  (P00  P11  P02  B01)
 Then using R35, which is B01, modus ponens gives
 P00  P11  P02, that is Rn+8
 Now the literal P11 from Rn+6 resolves with P11 from Rn+8
 P00  P02, that is Rn+9

 And P00 from R1 resolves with P00 from Rn+9
 P02, that is Rn+10
 Using resolution we have deduced that there is a fatal pit in [0,2]

Resolution algorithm

 If a knowledge base is in Conjunctive Normal Form (CNF)
 Then resolution can tell us everything

 Resolution algorithms work through proof by contradiction

 To prove that KB ⊨ Conjecture, we prove that
 KB  Conjecture is unsatisfiable, or impossible

 Start with KB  Conjecture converted to CNF
 Apply resolution, where possible, to pairs of clauses

 Each time, the result is a new clause, which is added to KB
 In the end, either

 There is nothing left to resolve
 therefore KB does not entail Conjecture, or
 The resolution of two clauses produces nothing (i.e. False)
 therefore KB does entail Conjecture
 this can only happen when two contradictions
 e.g. X and X are resolved

 Example, start with KB = just two rules, R2 and R34

 KB = (B00 ⇔ P10  P01)  (B00)
 Want to prove P10, so convert KB  P10 into CNF
 B00  P10  P01 - clause 1
 P01  B00 - clause 2
 P10  B00 - clause 3
 B00 - clause 4
 P10 - clause 5
 Resolve clause 1 and clause 2 around P01
 B00  P10  B00 - clause 6, ≡ True
 Resolve clause 1 and clause 2 around B00
 P10  P01  P01 - clause 7, ≡ True
 Resolve clause 1 and clause 3 around P01
 B00  P10  B00 - clause 8, ≡ True
 Resolve clause 1 and clause 3 around B00
 P10  P01  P01 - clause 9, ≡ True
 Resolve clause 2 and clause 4 around B00
 P01 - clause 10
 Resolve clause 3 and clause 4 around B00
 P10 - clause 11
 Resolve clause 5 and clause 11 around P01
 yields nothing
 Therefore P10 is true

The Horn clause

 Any clause with at most one positive literal is a Horn clause
 e.g. A  B  C  D

 A Horn clause that actually has a positive literal is a Definite clause
 A definite clause can be converted into an implication with all positives

 A  C  D  B
 With no positives, e.g. A  C  D, they are Goal clauses
 Just one positive and nothing else is a Fact, e.g. X
 This is the basis of Logic Programming

An agent in the wumpus world

 A huge number of basic facts stating the rules of the world ...
 A breeze somewhere means a neighbouring pit:

 B00 ⇔ P01  P10, and so on as before.
 A stench somewhere means a neighbouring wumpus:

 S00 ⇔ W01  W10, and so on as before.
 There is at least one wumpus:

 W00  W01  W02 ...  W33
 There is at most one wumpus:

 For every possible pair of locations, at least one has no wumpus
 W00  W01
 W00  W02
 W00  W03
 ...
 W32  W33

 Some things are Fluents: their truth value changes with time (# steps)
 The percepts are fluents:

 Stench3 = we perceive a stench at time 3
 Breezet = we perceive a breeze at time t
 Bumpt = we moved forward at time t-1 but there was a wall in the way

 And some plain facts are fluents:
 FacingEastt, HaveBullett, WumpusAlivet, and so on
 Loc23t = were are in room [2,3] at time t

 Our observations tell us some facts:

 Loc00t  (Breezet ⇔ B00)

 Loc01t  (Breezet ⇔ B01)
 ...

 Loc00t  (Stencht ⇔ S00)

 Loc01t  (Stencht ⇔ S01
 ...

 The actions taken need to be represented too:
 Forward6 = the action taken at time 6 is to move forward
 TurnLeftt = the action taken at time t is to turn left
 ...

 Effect Axioms tell us what effects the different actions have:
 Loc000  FacingEast0  Forward0  Loc011  Loc001
 ...
 an enormous number of rules like this

 We also ned to specify when fluents don’t change:

 Forward7  (HaveBullet7 ⇔ HaveBullet8)

 TurnLeft22  (WumpusAlive22 ⇔ WumpusAlive23)
 ...

 And we initially know:
 Loc000  HaveBullet0  FacingEast0  WumpusAlive0

 This is completely unmanageable

It is a bit better if we write axioms about fluents instead of actions

 A fluent (becomes) true if
 We do an action that makes it true,
 Or it was already true and we didn’t do anything to make it false

 HaveBullet8 ⇔ HaveBullet7  Shoot7

 Loc004 ⇔ Loc003  (Forward3  Bump4)
  Loc103  (FacingSouth3  Forward3)
  Loc013  (FacingWest3  Forward3)
 ...

 And we want a way to work out whether a room is safe to move into:

 OK23t ⇔ P23  (W23  WumpusAlivet)
 ...

 That is still a huge knowledge base.

