
Logic based agents

Example: the Wumpus world

 Apparently a wumpus is supposed to be some kind of dangerous monster
 A 4×4 grid or “rooms” representing a dark cave
 We (the agent) are exploring it
 Gold to be found in one room
 Some rooms (prob = 0.2) will contain deep pits: fatal to fall into

 but never at the start room [0, 0], facing East.
 One room (never the start) contains the wumpus: fatal to encounter
 Agent has a gun but only one bullet
 That is the Environment, for example:

3 Pit
2 Wumpus Gold Pit
1
0 Start Pit

 0 1 2 3
 Actions:

 Forward
 TurnLeft90
 TurnRight90
 Shoot, only in a straight line
 Grab, to pick up the gold, when you are in the same room as it
 Exit, only from [0, 0] to get out of the cave

 Sensors give these percepts
 If adjacent to the wumpus: Stench
 If adjacent to a pit: Breeze
 If in the same room as the gold: Glitter
 If you walk into a wall: Bump
 If you kill the wumpus: Scream

 Performance measure
 +1000 for escaping with the gold
 -1000 for getting killed
 -1 for each action taken
 -10 for firing the gun
At start [r=0,c=0], inputs = { }, deduce [0,1] and [1,0] must be safe. Forward
at [0,1], inputs = {Breeze}, deduce [1,1] or [0,2] must have pit, Left Left Forward
back at [0,0], only safe room reachable is [1,0], Left Forward
at [1,0], inputs = {Stench}, deduce wumpus in [2,0] and no pit in [1,1],
 therefore pit in [0,2]. So [1,1] is safe, Right Forward

 The facts don’t change but our knowledge of them does, monotonically

Fundamental logic
 Syntax defines what the Well-Formed Formulæ (always wff) are
 Semantics defines the truth of each wff in each Model
 Model = possible world
 Every wff is either true of false in every model
 If a wff w is true in a model m, then m Satisfies w
 Entailment: ⊢syntactic, ⊨ semantic

 A ⊨ B means in every model where A is true, B must also be true

 A ⊢ B means that B can be derived from A by following the rules
 Inference discovers wffs that are entailed by existing known wffs.
 Soundness: inference algorithm can only find true things
 Completeness: anything that’s true can be inferred
 Gödel (or Goedel)

Propositional Logic
 We need to know some rules for making correct inferences

Syntax, what the wffs look like

 True
 False
 Proposition symbol: Capital letter first, something that is either true or false
 A wff in parentheses is also a wff
 A wff preceded by (not) is also a wff

 Symbol or Symbol is called a literal
 X and X are Complementary literals

 Two wffs joined by (and) is also a wff: Conjunction
 Two wffs joined by (or) is also a wff: Disjunction
 Two wffs joined by is also a wff: Implication or If
 Also , A B means exactly B A
 Two wffs joined by ⇔ is also a wff: If-and-only-if (iff)

 A ⇔ B means that both A B and B A are true

Specific to the example (4x4 Wumpus cave in general, not the specific positions):

 Symbols
 Pij means there is a pit in room [i,j]
 Wij means there is a wumpus in room [i,j]
 Bij means you would feel a breeze in room [i,j]
 Sij means you would smell a stench in room [i,j]
 Lij (L = location) means the agent is in room [i,j]
 Ri (R = rule) gives names to established facts

 It is a very small world, so we could write all the rules explicitly
 P00 - there is no pit in the starting room, that is R1
 B00 ⇔ P10 P01, that is R2

 B01 ⇔ P00 P11 P02, that is R3
 ...
 B33 ⇔ P23 P32, that is R17

 S00 ⇔ W10 W01, that is R18

 S01 ⇔ W00 W11 W02, that is R19
 ...
 S33 ⇔ W23 W32, that is R33

 And also for the facts that the agent learned at the beginning
 B00, that is R34
 B01, that is R35
 ...

 A very simple inference algorithm
 e.g. want to know if P10 is false
 Check every possible model one-by-one, 2number of rules models
 Only in a few of them are all the rules true
 In all of those P10 is false
 Thereby we can deduce that there is no pit in room [1,0]

A ≡ B is true if and only if both A ⊨ B and B ⊨ A are true

The formulae are equivalent. ≡ makes a claim about wffs, ⇔ is part of them
Equivalent wffs can be substituted for one another
 A B ≡ B A - Commutativity
 (A B) C ≡ A (B C) - Associativity
 A ≡ A
 A ⇔ B ≡ (A B) (B A) - Equivalence elimination
 A B ≡ B A
 A B ≡ B A - Contrapositive
 ... and a whole bunch more
A wff is Valid if it is true in all possible models - Tautology
A wff is Satisfiable if it is true in at least one possible model
A ⊨ B is true if and only if A B is valid - The deduction theorem

Theorem proving

 Never mind about checking all possible models
 Apply inference rules to every fact already in the knowledge base

Inference rules

Horizontal lines
If you know all the things above the line, you can deduce the thing
below the line

A B
A

B - Modus Ponens

A B

A - And elimination

A B
B

A - Modus Tolens

A B
B C

A C - Transitivity of implication

A B

B A - Contrapositive

A

A B - Not especially useful

(A B)

A B - DeMorgan

(A B)

A B - DeMorgan

A (B C)

(A B) C - Associativity

A B

A B - Reflexive / Commutative

A (B C)

(A B) (A C) - Distributivity

A (B C)

(A B) (A C) - Distributivity again

Example
 Given

 P00 - there is no pit in the starting room (R1)
 B00 ⇔ P10 P01 (R2)

 B01 ⇔ P00 P11 P02 (R3)
 B00 (R34)
 B01 (R35)

 We want to prove P01
 Equivalence elimination to R2:
 (B00 P10 P01) ((P10 P01) B00), that is Rn
 And elimination to Rn:
 (P10 P01) B00, that is Rn+1
 Contrapositive to Rn+1:
 B00 (P10 P01), that is Rn+2
 Modus Ponens on Rn+2 and R34:
 (P10 P01), that is Rn+3
 DeMorgan’s rule on Rn+3:
 P10 P01, that is Rn+4
 And elimination on Rn+4:
 P01, Q.E.D.

 How is it done?
 We’ve got a search tree
 States are sets of wffs that we already know to be true
 The axioms are at the root,
 The inference rules let us work out the next states
 It is a big tree,
 a lot of wffs are true, and
 there are a lot of inference rules
 Or a slightly different kind of search tree,
 where the axioms are just taken for granted
 and nodes only contain newly deduced facts
 This example is Monotonic:
 Once you discover something is true, it stays true for ever

Resolution
A-lot-of-ORs X
Another-lot-of-ORs X

 A-lot-of-ORs Another-lot-of-ORs

Doesn't seem obvious until you realise where it comes from (and all we really need):
A X
X

A

 A Clause is a bunch of literals ORed together: X Something Cat

 Resolution works on clauses
 Remember when the agent first moved to [0,1]

 The percepts are S01 but not B01. Can make a new fact:
 B01, that is Rn+5
 R3, which was B01 ⇔ P00 P11 P02, is equivalent to

 B01 ⇔ (P00 P11 P02)
 So with Rn+3, B01, we get
 (P00 P11 P02)
 De Morgan’s law gives
 P00 P11 P02
 And elimination gives us all three of
 P00, which we already knew
 P11, that is Rn+6
 P02, that is Rn+7
 The equivalence rule for ⇔ applied to R3 gives
 (B01 P00 P11 P02) (P00 P11 P02 B01)
 with and elimination again
 B01 P00 P11 P02
 Then using R35, which is B01, modus ponens gives
 P00 P11 P02, that is Rn+8
 Now the literal P11 from Rn+6 resolves with P11 from Rn+8
 P00 P02, that is Rn+9
 And P00 from R1 resolves with P00 from Rn+9
 P02, that is Rn+10
 Using resolution we have deduced that there is a fatal pit in [0,2]

Resolution algorithm
 If a knowledge base is in Conjunctive Normal Form (CNF)

 Then resolution can tell us everything
 Resolution algorithms work through proof by contradiction

 To prove that KB ⊨ Conjecture, we prove that
 KB Conjecture is unsatisfiable, or impossible

 Start with KB Conjecture converted to CNF
 Apply resolution, where possible, to pairs of clauses

 Each time, the result is a new clause, which is added to KB
 In the end, either

 There is nothing left to resolve
 therefore KB does not entail Conjecture, or
 The resolution of two clauses produces nothing (i.e. False)
 therefore KB does entail Conjecture
 this can only happen when two contradictions
 e.g. X and X are resolved

 Example, start with KB = just two rules, R2 and R34
 KB = (B00 ⇔ P10 P01) (B00)
 Want to prove P10, so convert KB P10 into CNF
 B00 P10 P01 - clause 1
 P01 B00 - clause 2
 P10 B00 - clause 3
 B00 - clause 4
 P10 - clause 5
 Resolve clause 1 and clause 2 around P01
 B00 P10 B00 - clause 6, ≡ True
 Resolve clause 1 and clause 2 around B00
 P10 P01 P01 - clause 7, ≡ True
 Resolve clause 1 and clause 3 around P01
 B00 P10 B00 - clause 8, ≡ True
 Resolve clause 1 and clause 3 around B00
 P10 P01 P01 - clause 9, ≡ True
 Resolve clause 2 and clause 4 around B00
 P01 - clause 10
 Resolve clause 3 and clause 4 around B00
 P10 - clause 11
 Resolve clause 5 and clause 11 around P01
 yields nothing
 Therefore P10 is true

The Horn clause

 Any clause with at most one positive literal is a Horn clause
 e.g. A B C D

 A Horn clause that actually has a positive literal is a Definite clause
 A definite clause can be converted into an implication with all positives

 A C D B
 With no positives, e.g. A C D, they are Goal clauses
 Just one positive and nothing else is a Fact, e.g. X
 This is the basis of Logic Programming

An agent in the wumpus world
 A huge number of basic facts stating the rules of the world ...
 A breeze somewhere means a neighbouring pit:

 B00 ⇔ P01 P10, and so on as before.
 A stench somewhere means a neighbouring wumpus:

 S00 ⇔ W01 W10, and so on as before.
 There is at least one wumpus:

 W00 W01 W02 ... W33
 There is at most one wumpus:

 For every possible pair of locations, at least one has no wumpus
 W00 W01
 W00 W02
 W00 W03
 ...
 W32 W33

 Some things are Fluents: their truth value changes with time (# steps)
 The percepts are fluents:

 Stench3 = we perceive a stench at time 3
 Breezet = we perceive a breeze at time t
 Bumpt = we moved forward at time t-1 but there was a wall in the way

 And some plain facts are fluents:
 FacingEastt, HaveBullett, WumpusAlivet, and so on
 Loc23t = were are in room [2,3] at time t

 Our observations tell us some facts:
 Loc00t (Breezet ⇔ B00)

 Loc01t (Breezet ⇔ B01)
 ...
 Loc00t (Stencht ⇔ S00)

 Loc01t (Stencht ⇔ S01
 ...

 The actions taken need to be represented too:
 Forward6 = the action taken at time 6 is to move forward
 TurnLeftt = the action taken at time t is to turn left
 ...

 Effect Axioms tell us what effects the different actions have:
 Loc000 FacingEast0 Forward0 Loc011 Loc001
 ...
 an enormous number of rules like this

 We also ned to specify when fluents don’t change:
 Forward7 (HaveBullet7 ⇔ HaveBullet8)

 TurnLeft22 (WumpusAlive22 ⇔ WumpusAlive23)
 ...

 And we initially know:
 Loc000 HaveBullet0 FacingEast0 WumpusAlive0

 This is completely unmanageable

It is a bit better if we write axioms about fluents instead of actions
 A fluent (becomes) true if

 We do an action that makes it true,
 Or it was already true and we didn’t do anything to make it false
 HaveBullet8 ⇔ HaveBullet7 Shoot7

 Loc004 ⇔ Loc003 (Forward3 Bump4)
 Loc103 (FacingSouth3 Forward3)
 Loc013 (FacingWest3 Forward3)
 ...

 And we want a way to work out whether a room is safe to move into:
 OK23t ⇔ P23 (W23 WumpusAlivet)
 ...

 That is still a huge knowledge base.

