
Logic based agents 
 
Example: the Wumpus world 

 Apparently a wumpus is supposed to be some kind of dangerous monster 
 A 4×4 grid or “rooms” representing a dark cave 
 We (the agent) are exploring it 
 Gold to be found in one room 
 Some rooms (prob = 0.2) will contain deep pits: fatal to fall into 

  but never at the start room [0, 0], facing East. 
 One room (never the start) contains the wumpus: fatal to encounter 
 Agent has a gun but only one bullet 
 That is the Environment, for example: 

3    Pit 
2 Wumpus Gold Pit  
1     
0 Start  Pit  

 0 1 2 3 
 Actions: 

  Forward 
  TurnLeft90 
  TurnRight90 
  Shoot, only in a straight line 
  Grab, to pick up the gold, when you are in the same room as it 
  Exit, only from [0, 0] to get out of the cave 

 Sensors give these percepts 
  If adjacent to the wumpus: Stench 
  If adjacent to a pit: Breeze 
  If in the same room as the gold: Glitter 
  If you walk into a wall: Bump 
  If you kill the wumpus: Scream 

 Performance measure 
  +1000 for escaping with the gold 
  -1000 for getting killed 
  -1 for each action taken 
  -10 for firing the gun 
At start [r=0,c=0], inputs = { }, deduce [0,1] and [1,0] must be safe. Forward 
at [0,1], inputs = {Breeze}, deduce [1,1] or [0,2] must have pit, Left Left Forward 
back at [0,0], only safe room reachable is [1,0], Left Forward 
at [1,0], inputs = {Stench}, deduce wumpus in [2,0] and no pit in [1,1], 
 therefore pit in [0,2]. So [1,1] is safe, Right Forward 

 The facts don’t change but our knowledge of them does, monotonically 
 

 
 
 
 
 
 
 
 
 
 
 



Fundamental logic 
 Syntax defines what the Well-Formed Formulæ (always wff) are 
 Semantics defines the truth of each wff in each Model 
 Model = possible world 
 Every wff is either true of false in every model 
 If a wff w is true in a model m, then m Satisfies w 
 Entailment: ⊢syntactic, ⊨ semantic 

 A ⊨ B means in every model where A is true, B must also be true 

 A ⊢ B means that B can be derived from A by following the rules 
 Inference discovers wffs that are entailed by existing known wffs. 
 Soundness: inference algorithm can only find true things 
 Completeness: anything that’s true can be inferred 
 Gödel (or Goedel) 

 
Propositional Logic 
 We need to know some rules for making correct inferences 
 
Syntax, what the wffs look like 

 True 
 False 
 Proposition symbol: Capital letter first, something that is either true or false 
 A wff in parentheses is also a wff 
 A wff preceded by  (not) is also a wff 

  Symbol or Symbol is called a literal 
  X and X are Complementary literals 

 Two wffs joined by  (and) is also a wff: Conjunction 
 Two wffs joined by  (or) is also a wff: Disjunction 
 Two wffs joined by  is also a wff: Implication or If 
 Also , A  B means exactly B  A 
 Two wffs joined by ⇔ is also a wff: If-and-only-if (iff) 

  A ⇔ B means that both A  B and B  A are true 
 
Specific to the example (4x4 Wumpus cave in general, not the specific positions): 

 Symbols 
  Pij means there is a pit in room [i,j] 
  Wij means there is a wumpus in room [i,j] 
  Bij means you would feel a breeze in room [i,j] 
  Sij means you would smell a stench in room [i,j] 
  Lij (L = location) means the agent is in room [i,j] 
  Ri (R = rule) gives names to established facts 

 It is a very small world, so we could write all the rules explicitly 
  P00 - there is no pit in the starting room, that is R1 
  B00 ⇔ P10  P01, that is R2 

  B01 ⇔ P00  P11  P02, that is R3 
  ... 
  B33 ⇔ P23  P32, that is R17 

  S00 ⇔ W10  W01, that is R18 

  S01 ⇔ W00  W11  W02, that is R19 
  ... 
  S33 ⇔ W23  W32, that is R33 



 And also for the facts that the agent learned at the beginning 
  B00, that is R34 
  B01, that is R35 
  ... 

 A very simple inference algorithm 
  e.g. want to know if P10 is false 
  Check every possible model one-by-one, 2number of rules models 
  Only in a few of them are all the rules true 
  In all of those P10 is false 
  Thereby we can deduce that there is no pit in room [1,0] 
 
A ≡ B is true if and only if both A ⊨ B and B ⊨ A are true 

The formulae are equivalent. ≡ makes a claim about wffs, ⇔ is part of them 
Equivalent wffs can be substituted for one another 
 A  B ≡ B  A - Commutativity 
 (A  B)  C ≡ A  (B  C) - Associativity 
 A ≡ A 
 A ⇔ B ≡ (A  B)  (B  A) - Equivalence elimination 
 A  B ≡ B  A 
 A  B ≡ B  A - Contrapositive 
 ... and a whole bunch more 
A wff is Valid if it is true in all possible models - Tautology 
A wff is Satisfiable if it is true in at least one possible model 
A ⊨ B is true if and only if A  B is valid - The deduction theorem 
 
Theorem proving 

 Never mind about checking all possible models 
 Apply inference rules to every fact already in the knowledge base 

 
Inference rules 

Horizontal lines 
If you know all the things above the line, you can deduce the thing 
below the line 

 
A  B 
A 
______ 
B                   - Modus Ponens 
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______ 
A                   - And elimination 
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A                  - Modus Tolens 
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B  C 
________ 
A  C              - Transitivity of implication 

 
 

A  B 
_________ 
B  A          - Contrapositive 
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______ 
A  B                - Not especially useful 

 
 

(A  B) 
_________ 
A  B          - DeMorgan 

 
 

(A  B) 
__________ 
A  B          - DeMorgan 

 
 

A  (B  C) 
____________ 
(A  B)  C               - Associativity 

 
 

A  B 
______ 
A  B               - Reflexive / Commutative 

 
 

A  (B  C) 
____________ 
(A  B)  (A  C)               - Distributivity 

 
 

A  (B  C) 
____________ 
(A  B)  (A  C)               - Distributivity again 

 
 
 
 
 
 
 
 
 



Example 
 Given 

 P00 - there is no pit in the starting room (R1) 
 B00 ⇔ P10  P01 (R2) 

 B01 ⇔ P00  P11  P02 (R3) 
 B00 (R34) 
 B01 (R35) 

 We want to prove P01 
  Equivalence elimination to R2: 
   (B00  P10  P01)  ((P10  P01)  B00), that is Rn 
  And elimination to Rn: 
   (P10  P01)  B00, that is Rn+1 
  Contrapositive to Rn+1: 
   B00  (P10  P01), that is Rn+2 
  Modus Ponens on Rn+2 and R34: 
   (P10  P01), that is Rn+3 
  DeMorgan’s rule on Rn+3: 
   P10  P01, that is Rn+4 
  And elimination on Rn+4: 
   P01, Q.E.D. 

 How is it done? 
  We’ve got a search tree 
  States are sets of wffs that we already know to be true 
  The axioms are at the root, 
  The inference rules let us work out the next states 
  It is a big tree, 
   a lot of wffs are true, and 
   there are a lot of inference rules 
  Or a slightly different kind of search tree, 
   where the axioms are just taken for granted 
   and nodes only contain newly deduced facts 
  This example is Monotonic: 
   Once you discover something is true, it stays true for ever 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Resolution 
A-lot-of-ORs  X 
Another-lot-of-ORs  X 
___________________________________ 
 A-lot-of-ORs  Another-lot-of-ORs 
 

Doesn't seem obvious until you realise where it comes from (and all we really need): 
A  X 
X 
________ 
A 
 
 
 A Clause is a bunch of literals ORed together: X  Something  Cat 

  Resolution works on clauses 
 Remember when the agent first moved to [0,1] 

  The percepts are S01 but not B01. Can make a new fact: 
   B01, that is Rn+5 
  R3, which was B01 ⇔ P00  P11  P02, is equivalent to 

   B01 ⇔ (P00  P11  P02) 
  So with Rn+3, B01, we get 
   (P00  P11  P02) 
  De Morgan’s law gives 
   P00  P11  P02 
  And elimination gives us all three of 
   P00, which we already knew 
   P11, that is Rn+6 
   P02, that is Rn+7 
  The equivalence rule for ⇔ applied to R3 gives 
   (B01  P00  P11  P02)  (P00  P11  P02  B01) 
  with and elimination again 
   B01  P00  P11  P02 
  Then using R35, which is B01, modus ponens gives 
   P00  P11  P02, that is Rn+8 
  Now the literal P11 from Rn+6 resolves with P11 from Rn+8 
   P00  P02, that is Rn+9 
  And P00 from R1 resolves with P00 from Rn+9 
   P02, that is Rn+10 
  Using resolution we have deduced that there is a fatal pit in [0,2] 
 
 
 
 
 
 
 
 
 
 
 
 
 



Resolution algorithm 
 If a knowledge base is in Conjunctive Normal Form (CNF) 

  Then resolution can tell us everything 
 Resolution algorithms work through proof by contradiction 

  To prove that KB ⊨ Conjecture, we prove that 
  KB  Conjecture is unsatisfiable, or impossible 

 Start with KB  Conjecture converted to CNF 
 Apply resolution, where possible, to pairs of clauses 

  Each time, the result is a new clause, which is added to KB 
 In the end, either 

  There is nothing left to resolve 
   therefore KB does not entail Conjecture, or 
  The resolution of two clauses produces nothing (i.e. False) 
   therefore KB does entail Conjecture 
   this can only happen when two contradictions 
    e.g. X and X are resolved 

 Example, start with KB = just two rules, R2 and R34 
   KB = (B00 ⇔ P10  P01)  (B00) 
  Want to prove P10, so convert KB  P10 into CNF 
 B00  P10  P01 - clause 1 
 P01  B00 - clause 2 
 P10  B00 - clause 3 
 B00 - clause 4 
 P10 - clause 5 
  Resolve clause 1 and clause 2 around P01 
 B00  P10  B00 - clause 6, ≡ True 
  Resolve clause 1 and clause 2 around B00 
 P10  P01  P01 - clause 7, ≡ True 
  Resolve clause 1 and clause 3 around P01 
 B00  P10  B00 - clause 8, ≡ True 
  Resolve clause 1 and clause 3 around B00 
 P10  P01  P01 - clause 9, ≡ True 
  Resolve clause 2 and clause 4 around B00 
 P01 - clause 10 
  Resolve clause 3 and clause 4 around B00 
 P10 - clause 11 
  Resolve clause 5 and clause 11 around P01 
 yields nothing 
 Therefore P10 is true 
 
The Horn clause 

 Any clause with at most one positive literal is a Horn clause 
  e.g. A  B  C  D 

 A Horn clause that actually has a positive literal is a Definite clause 
 A definite clause can be converted into an implication with all positives 

  A  C  D  B 
 With no positives, e.g. A  C  D, they are Goal clauses 
 Just one positive and nothing else is a Fact, e.g. X 
 This is the basis of Logic Programming 

 
 
 



An agent in the wumpus world 
 A huge number of basic facts stating the rules of the world ... 
 A breeze somewhere means a neighbouring pit: 

  B00 ⇔ P01  P10, and so on as before. 
 A stench somewhere means a neighbouring wumpus: 

  S00 ⇔ W01  W10, and so on as before. 
 There is at least one wumpus: 

  W00  W01  W02 ...  W33 
 There is at most one wumpus: 

  For every possible pair of locations, at least one has no wumpus 
   W00  W01 
   W00  W02 
   W00  W03 
   ... 
   W32  W33 

 Some things are Fluents: their truth value changes with time (# steps) 
 The percepts are fluents: 

  Stench3 = we perceive a stench at time 3 
  Breezet = we perceive a breeze at time t 
  Bumpt = we moved forward at time t-1 but there was a wall in the way 

 And some plain facts are fluents: 
  FacingEastt, HaveBullett, WumpusAlivet, and so on 
  Loc23t = were are in room [2,3] at time t 

 Our observations tell us some facts: 
  Loc00t  (Breezet ⇔ B00) 

  Loc01t  (Breezet ⇔ B01) 
  ... 
  Loc00t  (Stencht ⇔ S00) 

  Loc01t  (Stencht ⇔ S01 
  ... 

 The actions taken need to be represented too: 
  Forward6 = the action taken at time 6 is to move forward 
  TurnLeftt = the action taken at time t is to turn left 
  ... 

 Effect Axioms tell us what effects the different actions have: 
  Loc000  FacingEast0  Forward0  Loc011  Loc001 
  ... 
  an enormous number of rules like this 

 We also ned to specify when fluents don’t change: 
  Forward7  (HaveBullet7 ⇔ HaveBullet8) 

  TurnLeft22  (WumpusAlive22 ⇔ WumpusAlive23) 
  ... 

 And we initially know: 
  Loc000  HaveBullet0  FacingEast0  WumpusAlive0 

 This is completely unmanageable 
 
 
 
 
 
 



It is a bit better if we write axioms about fluents instead of actions 
 A fluent (becomes) true if 

  We do an action that makes it true,  
  Or it was already true and we didn’t do anything to make it false 
  HaveBullet8 ⇔ HaveBullet7  Shoot7 

 Loc004 ⇔ Loc003  (Forward3  Bump4) 
   Loc103  (FacingSouth3  Forward3) 
   Loc013  (FacingWest3  Forward3) 
  ... 

 And we want a way to work out whether a room is safe to move into: 
  OK23t ⇔ P23  (W23  WumpusAlivet) 
  ... 

 That is still a huge knowledge base. 
 
 
 

 


