
Adversarial Search 
 
“Simple games” e.g. chess 

 Deterministic 
 Two player 
 Turn taking 
 Perfect information ≡ fully observable 
 Zero sum 
 Action = a move 
 A state contains: 

  Complete representation of the “board” 
  Whose turn it is to move next 

 A terminal state is where the game is over 
 Utility function measures value of a terminal state 
  But useful to also have one for intermediate states 
 State graph or search tree may be enormous, chess > 1040 

  But not always - noughts and crosses 362880 
 
Things to have 

 S0 - the initial state 
 ToMove(s) - whose go is it? 
 Actions(s) - set of possible actions 
 Result(s, a) - state an action will result in 
 IsTerminal(s) - is the game over? 
 Utility(s, p) - goodness from p’s point of view 

 
Names of players taken from one particular player’s point of view 

 “Max” is that player, he/she is trying to maximise his/her final score 
 “Min” is the other player, he/she is trying to minimise Max’s score 
 Max’s strategy must be conditional - depends on Min’s moves 

 
Minimax search 

 Minimax value of a state: 
  Max’s value of being in that state, assuming both play perfectly 
  Terminal node: just its utility function value 
  Internal node:  
   Max’s go: maximum value for all children 
   Min’s go: minimum value for all children 
  Often tree is too deep and some estimation is substituted instead 

 Simple recursive algorithm, two functions - minmove and maxmove 
 More than two players, same idea works 

  Utility function returns list of values, one from each player’s view 
  But (temporary) alliances 
 
Alpha-beta pruning 

 As each subtree is explored, keep range of possible values, init. -∞ to +∞ 
  e.g. max(min(bigs, ...), min(small, ...), min(others, ...)) 

 Alpha = looking for best, beta = looking for worst 



 Effectiveness depends on order of subtrees: what if small didn’t come first? 
 Again, estimate when the tree is too deep 

 
Monte-Carlo Tree Search 

 Too branchy or no good evaluation function 
 Playout = simulation of complete game from current state 
 Try a lot of random playouts, take average final score 
 How many? impose a time limit 
 Tree - each node has #wins, #playouts so far 

  Select the node with the best ratio? 
  Select the node that has been least explored? 
  After playout from node n, back-propagate to all ancestors 

 Example utility UCB1(n) = U(n)/ N(n) + C × (log(N(Parent(n)) / N(n)) 
  U(n) = total utility of playouts from n 
  N(n) = number of playouts from n 
  U(n) / N(n) is the exploitation term, average utility 
   ... is the exploration term, higher for less-explored 
  C is a constant to balance the two, often  2 
 
Stochastic games 

 There is an element of chance 
 Don’t know what opponent’s possible moves will be 
 Tree must include Chance Nodes 

  Each arc labelled with outcome (e.g. dice roll) and probability 
 Expectimax - just like minimax but uses expected value 

 
 
  



Go 
 Branching factor initially 361 
 No known good evaluation/heuristic function 
 Monte-Carlo search: 

  Do a bunch of whole-game simulations from current state 
   Random moves 
   Use expert-guided playout policies 
  Take average of all their final scores 
 
Stochastic means randomness is involved, e.g. dice, shuffled cards, etc 
 
 


