
Adversarial Search

“Simple games” e.g. chess

 Deterministic
 Two player
 Turn taking
 Perfect information ≡ fully observable
 Zero sum
 Action = a move
 A state contains:

 Complete representation of the “board”
 Whose turn it is to move next

 A terminal state is where the game is over
 Utility function measures value of a terminal state
 But useful to also have one for intermediate states
 State graph or search tree may be enormous, chess > 1040

 But not always - noughts and crosses 362880

Things to have

 S0 - the initial state
 ToMove(s) - whose go is it?
 Actions(s) - set of possible actions
 Result(s, a) - state an action will result in
 IsTerminal(s) - is the game over?
 Utility(s, p) - goodness from p’s point of view

Names of players taken from one particular player’s point of view

 “Max” is that player, he/she is trying to maximise his/her final score
 “Min” is the other player, he/she is trying to minimise Max’s score
 Max’s strategy must be conditional - depends on Min’s moves

Minimax search

 Minimax value of a state:
 Max’s value of being in that state, assuming both play perfectly
 Terminal node: just its utility function value
 Internal node:
 Max’s go: maximum value for all children
 Min’s go: minimum value for all children
 Often tree is too deep and some estimation is substituted instead

 Simple recursive algorithm, two functions - minmove and maxmove
 More than two players, same idea works

 Utility function returns list of values, one from each player’s view
 But (temporary) alliances

Alpha-beta pruning

 As each subtree is explored, keep range of possible values, init. -∞ to +∞
 e.g. max(min(bigs, ...), min(small, ...), min(others, ...))

 Alpha = looking for best, beta = looking for worst

 Effectiveness depends on order of subtrees: what if small didn’t come first?
 Again, estimate when the tree is too deep

Monte-Carlo Tree Search

 Too branchy or no good evaluation function
 Playout = simulation of complete game from current state
 Try a lot of random playouts, take average final score
 How many? impose a time limit
 Tree - each node has #wins, #playouts so far

 Select the node with the best ratio?
 Select the node that has been least explored?
 After playout from node n, back-propagate to all ancestors

 Example utility UCB1(n) = U(n)/ N(n) + C × (log(N(Parent(n)) / N(n))
 U(n) = total utility of playouts from n
 N(n) = number of playouts from n
 U(n) / N(n) is the exploitation term, average utility
 ... is the exploration term, higher for less-explored
 C is a constant to balance the two, often 2

Stochastic games

 There is an element of chance
 Don’t know what opponent’s possible moves will be
 Tree must include Chance Nodes

 Each arc labelled with outcome (e.g. dice roll) and probability
 Expectimax - just like minimax but uses expected value

Go
 Branching factor initially 361
 No known good evaluation/heuristic function
 Monte-Carlo search:

 Do a bunch of whole-game simulations from current state
 Random moves
 Use expert-guided playout policies
 Take average of all their final scores

Stochastic means randomness is involved, e.g. dice, shuffled cards, etc

