
Adversarial Search

“Simple games” e.g. chess

 Deterministic
 Two player
 Turn taking
 Perfect information ≡ fully observable
 Zero sum
 Action = a move
 A state contains:

 Complete representation of the “board”
 Whose turn it is to move next

 A terminal state is where the game is over
 Utility function measures value of a terminal state
 But useful to also have one for intermediate states
 State graph or search tree may be enormous, chess > 1040

 But not always - noughts and crosses 362880

Things to have

 S0 - the initial state
 ToMove(s) - whose go is it?
 Actions(s) - set of possible actions
 Result(s, a) - state an action will result in
 IsTerminal(s) - is the game over?
 Utility(s, p) - goodness from p’s point of view

Names of players taken from one particular player’s point of view

 “Max” is that player, he/she is trying to maximise his/her final score
 “Min” is the other player, he/she is trying to minimise Max’s score
 Max’s strategy must be conditional - depends on Min’s moves

Minimax search

 Minimax value of a state:
 Max’s value of being in that state, assuming both play perfectly
 Terminal node: just its utility function value
 Internal node:
 Max’s go: maximum value for all children
 Min’s go: minimum value for all children
 Often tree is too deep and some estimation is substituted instead

 Simple recursive algorithm, two functions - minmove and maxmove
 More than two players, same idea works

 Utility function returns list of values, one from each player’s view
 But (temporary) alliances

Alpha-beta pruning

 As each subtree is explored, keep range of possible values, init. -∞ to +∞
 e.g. max(min(bigs, ...), min(small, ...), min(others, ...))

 Alpha = looking for best, beta = looking for worst

 Effectiveness depends on order of subtrees: what if small didn’t come first?
 Again, estimate when the tree is too deep

Monte-Carlo Tree Search

 Too branchy or no good evaluation function
 Playout = simulation of complete game from current state
 Try a lot of random playouts, take average final score
 How many? impose a time limit
 Tree - each node has #wins, #playouts so far

 Select the node with the best ratio?
 Select the node that has been least explored?
 After playout from node n, back-propagate to all ancestors

 Example utility UCB1(n) = U(n)/ N(n) + C × (log(N(Parent(n)) / N(n))
 U(n) = total utility of playouts from n
 N(n) = number of playouts from n
 U(n) / N(n) is the exploitation term, average utility
  ... is the exploration term, higher for less-explored
 C is a constant to balance the two, often  2

Stochastic games

 There is an element of chance
 Don’t know what opponent’s possible moves will be
 Tree must include Chance Nodes

 Each arc labelled with outcome (e.g. dice roll) and probability
 Expectimax - just like minimax but uses expected value

Go
 Branching factor initially 361
 No known good evaluation/heuristic function
 Monte-Carlo search:

 Do a bunch of whole-game simulations from current state
 Random moves
 Use expert-guided playout policies
 Take average of all their final scores

Stochastic means randomness is involved, e.g. dice, shuffled cards, etc

