
Search Trees

Applies best to fully observable, deterministic, unchanging environments.
 but still used for just about everything

A search tree is not the same as the state space
 each state may appear multiple times.

The tree doesn’t necessarily exist.

Nodes are states. Edges are actions.

Exploration methods:

 Open List, Closed List
 Depth-first search
 Breadth-first search
 Best-first search: minimum value of an evaluation function
 Heuristic search:

 Rule of thumb, e.g.
 Straight line distance
 Number of out-of-place tiles
 Sum of distances from desired position
 Manhattan distance
 Admissible - never overestimate
 A* search - eval. fn = cost so far (g) + est. cost of rest of path (h)
 Dijkstra’s is A* with h always = 0
 Finding an heuristic - sometimes consider a relaxed problem

 Bidirectional search
 Frontier set
 Beam search - limit size of frontier set
 Land marks - short cuts

Redundant paths - a waste of memory

 Remember all reached states - closed set
 Don’t worry about them
 Only check for cycles - easier

Performance

 Completeness - always get solution or signal failure
 e.g. DFS for chess: moving back and forth

 Optimality - does solution have optimal cost?
 Time complexity
 Space complexity

