
The Compiler Language: Syntax and Semantics

Everything is case in-sensitive: while is the same as WHILE; cat, Cat, and CAT are all
the same thing. It is also free-form: any sequence of spaces, newlines, and comments is
considered to be exactly the same as a single space

Statements

As usual, statements may only appear inside function bodies. A semicolon is not
part of a statement, it is a separator for statements, so is not required before a }.
For convenience, it is also not required immediately after a } either.

IF statement

Syntax syntax_element node representation.

IF expression1
THEN statemen1
ELSE statement2

Code = S_IF
Part[0] = ptr to node for expression1
Part[1] = ptr to node for statement1
Part[2] = ptr to node for statement2

IF expression1
THEN statement1

Code = S_IF
Part[0] = ptr to node for expression1
Part[1] = ptr to node for statement1

Rules are as normal, except for one improvement. To prevent ambiguity (the

dangling else problem), statement1 may not be another IF statement. This is not a
restriction: statement1 may be an IF inside { }, which makes it a block.

WHILE statement
Syntax syntax_element node representation.

WHILE expression1
DO statement1

Code = S_WHILE
Part[0] = ptr to node for expression1
Part[1] = ptr to node for statement1

Rules are as normal. The expression is tested every time before the statement is

executed. If the expression is initially false, the statement is not executed at all.

FOR statement
Syntax syntax_element node representation.

FOR variable = expression1
TO expression2
DO statement1

Code = S_FOR
Info = +1
Sym = ptr to symbol descr. for variable
Part[0] = ptr to node for expression1
Part[1] = ptr to node for expression2
Part[2] = ptr to node for statement1

FOR variable = expression1
DOWNTO expression2
DO statement1

Code = S_FOR
Info = -1
Sym = ptr to symbol descr. for variable
Part[0] = ptr to node for expression1
Part[1] = ptr to node for expression2
Part[2] = ptr to node for statement1

The variable must already be declared, this loop does not introduce a new local

variable.
Before the loop starts, the variable is given the value of expression1.
Each time around the loop, before executing statement1, expression2 is re-

evaluated, and variable is compared with it.
In the case of TO, the loop terminates if variable is greater than expression2
In the case of DOWNTO, the loop terminates if variable is less than expression2
Each time around the loop, immediately after executing statement1, the variable

is updated. In the case of TO, it is incremented by 1; in the case of DOWNTO, it is
decremented by 1.

When the loop is finished, the controlling variable retains its last value. If the
loop terminated because of a BREAK or a RETURN, it keeps the value it had at that
time. If the loop terminated because of comparison with expression2, the variable
has the value it had when that comparison was made – that is, the value that made
the loop stop.

Modifying the controlling variable inside the loop has no surprising effects.

BREAK statement
Syntax syntax_element node representation.

BREAK

Code = S_BREAK

Rules are as normal. The BREAK statement is only allowed inside a loop which is

itself inside the current function. It causes the immediate termination of the smallest
enclosing loop, having no effect on any outer loops. In the case of a FOR loop, the
controlling variable is unaffected by a BREAK.

CONTINUE statement
Syntax syntax_element node representation.

CONTINUE

Code = S_CONTINUE

Rules are as normal. The CONTINUE statement is only allowed inside a loop

which is itself inside the current function. The current iteration of that loop is
terminated, but the loop itself is continued.

In the case of a WHILE loop, the test is performed again immediately, and the
loop ends if the condition is false.

In the case of a FOR loop, the controlling variable is incremented or decremented
in the normal way, and the comparison with the end value performed again. The
loop terminates if the end value has been passed.

EXIT statement
Syntax syntax_element node representation.

EXIT

Code = S_EXIT

The program is immediately terminated, regardless of any loops or functions

that may be active.

RETURN statement
Syntax syntax_element node representation.

RETURN

Code = S_RETURN

RETURN expression1

Code = S_RETURN
Part[0] = ptr to node for expression1

If there is an expression, it is evaluated, the enclosing function call is terminated,

and the value of the expression is used as the value of the function.
If there is no expression, the enclosing function call is terminated, and its value is

indeterminate.

OUTPUT statements
Syntax syntax_element node representation.

OUTN expression1

Code = S_OUT
Info = ‘N’
Part[0] = ptr to node for expression1

OUTCH expression1

Code = S_OUT
Info = ‘C’
Part[0] = ptr to node for expression1

OUTS expression1

Code = S_OUT
Info = ‘S’
Part[0] = ptr to node for expression1

The expression is evaluated, and its value is displayed on the controlling

terminal in one of these three way:
OUTN The value is printed as a decimal integer
OUTCH One character is printed, the one whose ASCII code is given by the value
OUTS The value is assumed to be the address of a string somewhere in memory.

Characters starting from that position are printed as with OUTCH, until a
zero code is reached. The zero code is not printed.

ASSIGNMENT statement
Syntax syntax_element node representation.

lvalue1 = expression1

Code = S_ASSIGN
Part[0] = ptr to node for lvalue1
Part[1] = ptr to node for expression1

An Lvalue is an expression that represents a location in memory, such as a
variable name or an array access. The expression is evaluated and stored as a single
word in the memory location denoted by the lvalue. An assignment will not copy an
array or a string, just a single word value.

FUNCTION CALL statement
Syntax syntax_element node representation.

expression1()

Code = S_FUNCTION_CALL
Part[0] = ptr to node for expression1

expression1(expression2)

Code = S_FUNCTION_CALL
Part[0] = ptr to node for expression1
Part[1] = ptr to node for expression2

expression1(e2, e3)

Code = S_FUNCTION_CALL
Part[0] = ptr to node for expression1
Part[1] = ptr to node for e2
Part[1] = ptr to node for e3

expression1(e2, e3 e4,, en)

Code = S_FUNCTION_CALL
Part[0] = ptr to node for expression1
Part[1] = ptr to node for e2
Part[2] = ptr to node for e3
Part[3] = ptr to node for e4
.....
Part[n-1] = ptr to node for en

Expression1 provides the function to be called. Usually it will simply be the

name of a function, but it may be a variable that contains the address of a function,
or any other expression whose value is the address of a function.

The parameters are passed using value semantics. That is, they are all evaluated
exactly once, and their values are used to initialise local variables inside the function
itself.

If the function returns a value, it is ignored.

BLOCK statement
Syntax syntax_element node representation.

{ }

Code = S_BLOCK

{ statement1 }

Code = S_BLOCK
Part[0] = ptr to node for statement1

{ statement1 ;
 statement2 }

Code = S_BLOCK
Part[0] = ptr to node for statement1
Part[1] = ptr to node for statement2

{ statement1 ;
 statement2 ;
 statement3 ;

 statementn }

Code = S_BLOCK
Part[0] = ptr to node for statement1
Part[1] = ptr to node for statement2
Part[2] = ptr to node for statement3
.....
Part[n-1] = ptr to node for statementn

The statements are executed in order. Anything declared within a block is local

and temporary, there is no effect on similarly named variables already in existence,
and no residual effect after the end of the block. All exactly as usual,

LOCAL declaration

See the description of variable declarations.

In-line ASSEMBLY code

Syntax syntax_element node representation.

[[assemblycode]]

Code = S_ASSEMBLY
Info = index number in vector

The assemblycode may be absolutely anything. The compiler does not process it

except as follows:

Any appearance of]], even in a comment, marks the end.
Any text within [and] is replaced as shown below.
The content is pasted by the compiler directly in the output (assembly) file. Any

errors must be detected by the assembler when the whole file is assembled.

Inside the assemlycode, [and] may surround a single simple name. If that name

refers to a local variable or a parameter in the current context, the whole is replaced
by the correct frame-pointer-relative address (e.g. $FP – 2). If the name is that of a
function or global variable, it is replaced by the correct internal name. It is for the
programmer to remember to use * as necessary.

Declarations

Declarations define local and global variables and arrays, and functions.
Functions may only be declared at the top level, i.e. not inside any other function.
The standard scope rules apply.

Local declarations are performed when they are executed.

Global declarations are performed simultaneously. This means that functions can
be defined in any order without the need for prototypes. The declare-before-use
rule does not apply to globals. Functions may refer to global variables that have
not yet been declared. The initialising values of globals, if any are provided, must
be static constants.

CONSTANT declarations

Syntax syntax_element node representation.

CONST name1=val1;
CONST name1=val1, name2=val2;
etc.

similar to variable, below.

Const declarations, as expected, define named constants. They may be declare

both globally and locally. The initial value must be a static constant, that is a
number, another named constant, or an expression consisting only of such things.

Named constants occupy no memory in a running program, thus they do not
have addresses. They may be used as array sizes in declarations.

VARIABLE declarations

Syntax syntax_element node representation.
LOCAL item1
LOCAL item1, item2

Code = S_VAR_DECL

LOCAL item1, item2, ..., itemn Info = _LOCAL
Part[0] = ptr to node for item1
Part[1] = ptr to node for item2
.....
Part[n-1] = ptr to node for itemn

GLOBAL item1
GLOBAL item1, item2
GLOBAL item1, item2, ..., itemn

Code = S_VAR_DECL
Info = _GLOBAL
Part[0] = ptr to node for item1
Part[1] = ptr to node for item2
.....
Part[n-1] = ptr to node for itemn

Local and global declarations have exactly the same form. The word LOCAL

may only be used inside a function. The word GLOBAL may only be used at the top
level, i.e. not in any function.

There are three possible forms for the individual declaration items:

Syntax syntax_element node representation.

name

Code = S_VAR_DECL_ITEM
Sym = ptr to symbol descr. for name
Info = 0

name = expression1

Code = S_VAR_DECL_ITEM
Sym = ptr to symbol descr. for name
Info = 0
Part[0] = ptr to node for expression1

name [number]

Code = S_VAR_DECL_ITEM
Sym = ptr to symbol descr. for name
Info = the number

The first form, just a name, introduces a new variable. It occupies one word and

is not initialised.
The second form, name=value, introduces a new variable. It occupies one word

and is initialised to the given value. In the case of a local variable, it is initialised

every time its enclosing block is entered. In the case of a global variable, it is only
initialised once, when the program is loaded.

The third form, name[N], introduces a new array. It is of size N (valid indices run
from 0 to N-1), but it occupies N+1 words of memory. The name refers directly to the
first word, as though it were a simple variable. This first word contains the address
of the next word, which is where the array proper begins. The result is that array
variables may be passed to functions and used normally, and they may be assigned
to, to make them refer to different arrays. The size N must be a static constant.

The second and third forms may not be combined: arrays can not be given initial
values, they must be assigned values in the normal way.

FUNCTION declarations
Syntax syntax_element node representation.

FUNCTION name(a, b, ..., c)
{ statements }

Code = S_FUNC_DEF
Sym = ptr to symbol descr. for name
Part[0] = ptr to node parameter names
Part[1] = ptr to node for the block

Function definitions may only be at the global scope; there are no prototypes, nor

is there any need for them.
The list of parameters is represented internally by an S_PARAM_NAMES node.

The list may be empty, just (followed by), but even then it is represented by an
S_PARAM_NAMES node.

As there are no types, nothing can be checked when a function is called. A
function may safely be called with any number of parameters, regardless of how
many appeared in the function’s declaration, but care must be taken not to attempt
to access parameters that were not passed. There is no way to tell how many
parameters were actually passed.

A function that returns a value is no different from one that doesn’t.

A parameter-names node has Code=S_PARAM_NAMES. The only other
information is in its Part vector. For the nth parameter name, Part[n-1] is a pointer to
a syntax_element representing the name itself:

Code = S_IDENTIFIER
Sym = pointer to symbol_description for the name

MAIN declarations
Syntax syntax_element node representation.

MAIN
{ statements }

Code = S_FUNC_DEF
Sym = ptr to symbol description for “main”
Part[0] = ptr to empty param names node
Part[1] = ptr to node for the block

MAIN is very much like a function, but its declaration is made to stand out. The

word FUNCTION is not used, MAIN is a reserved word. MAIN has no parameters,
it will not even accept an empty (). MAIN may be defined anywhere in the program
(at global scope, of course), top, bottom or in the middle.

Arrays

Arrays are created as in these examples:

LOCAL arr[5] GLOBAL ray[2+3]
CONST length = 5
...
LOCAL list[length]

In each of these example cases, an array large enough to hold 5 words is created. The
correct indexes are from 0 to 4. Possible accesses include:

FOR i=0 TO 4 DO
 arr[i] = i*i

ray[3]=2+ray[2] OUTN list[x]

Although the arrays have space for 5 words, they occupy 6 words in memory. The
first of those 6 always contains the address of (or a pointer to) the rest. This means
that the name of an array refers to the whole array, not one element of it. For
example, the third example happened to occupy memory locations 361 to 366, the
arrangement in memory would be:

address content accessed as
366 uninitialised list[4]
365 uninitialised list[3]
364 uninitialised list[2]
363 uninitialised list[1]
362 uninitialised list[0]
361 362 list

When an array access such as A[x] is performed, the values of A and X are simply
added together to find the address of the appropriate array item.

The significance of this is that storing and array variable in another variable, such
as with the assignment B=list, makes the new variable behave like the whole array.
B[x] will be exactly the same thing as list[x]. That means that arrays may be passed

as parameters to functions without any need for pointer operations or type
declarations.

Structures and selectors

Structures or objects should be implemented as ordinary arrays of the right size to
hold everything, together with pre-defined selectors for the fields. These selectors
would normally be named constants.

As an example, a struct that contains a pointer to a string (1 word), two sixteen
bit values, and a normal (1 word) number, would occupy 3 words, and may be set
up like this:

CONST object_size = 3;
CONST object_str = WORD 0;
CONST object_x = BITS 32 TO 47;
CONST object_y = BITS 48 to 63;
CONST object_num = WORD 2;

There are three ways of creating a selector:
 BIT n is equivalent to BITS n TO n
 WORD n is equivalent to BITS 32*n TO 32*n+31
The result of a BITS, BIT, or WORD expression is an ordinary number, in which the
most significant 8 bits and the least significant 24 bits play separate parts. The first
contains the length in bits of the item being described; the second contains the
number of bits between the beginning of the object and the beginning of this item.
 BITS 6 TO 13 = 0x08000006 (length is 8, start bit is 6)
Items inside objects may be accessed using the FROM operator. “A FROM B” may
be used both as a value and as a destination for assignment. In either case, A must
be a well-formed selector value, and B must be the address of an object (which is
most likely to be an array variable). Continuing the example, an object may be
created and used like this:
 LOCAL item[object_size];
 object_x FROM item = 123;
 OUTS object_str FROM item;
 BITS 64 TO 67 FROM item = 5;

The FROM operator expects its right operand to be the address of a (potentially
large) area of memory. The OF operator works in the same way, but expects its right
operand to be a simple value.
 BITS 16 TO 27 FROM 0x926B4A7F
would extract its 12 bits from the contents of memory location 0x926B4A7F.
 BITS 16 TO 27 OF 0x926B4A7F

would extract its 12 bits from the value 0x926B4A7F, yielding 0x4A7. The OF
operator may also be used in a destination. BIT 31 OF x = 0; would ensure that the
value of variable x is even (it sets the least significant bit to zero).

For convenience, the dot and arrow operators are also provided:
 A . B is equivalent to B OF A
 A ‐> B is equivalent to B FROM A

Expressions in order of priority

Atomic expressions:

name variable name, function name, array name, etc
numeric constant 0, 12345, -7, etc
 numbers may begin with 0x or 0h for base 16,
 0b for base 2,
 0o for base 8.
 in all other cases, a leading zero is meaningless.
string constant “cat”, “”, “aefj vw3ukl fjr”, etc
(expression) another expression in parentheses.
true equivalent to 1
false equivalent to 0
null equivalent to 0

Priority 1:
expression ()
expression (expression)
expression (expression , expression) and so on: function calls
expression [expression] array access
expression . expression see structs desciption, above
expression ‐> expression see structs desciption, above

Priority 2: byte selector expressions
BITS expression TO expression
BIT expression
WORD expression

Priority 3:
expression OF expression
expression FROM expression

Priority 4:
* expression follow pointer
& lvalue find address / make pointer to
@ lvalue identical to &

Priority 5: unary arithmetic

‐ expression
+ expression

Priority 6:
expression * expression
expression / expression
expression % expression

Priority 7:
expression + expression
expression ‐ expression

Priority 8:
expression = expression
expression == expression equivalent to =
expression < expression
expression <= expression
expression > expression
expression >= expression
expression != expression
expression <> expression equivalent to !=
expression < expression

Priority 9:
NOT expression
! expression equivalent to NOT

Priority 10:
expression AND expression
expression && expression equivalent to AND
expression & expression equivalent to AND

Priority 11:
expression OR expression
expression || expression equivalent to OR
expression | expression equivalent to OR

