EEN 521 – Operating Systems
3 credits

CE Program: Required
IT Program: Elective
	2001-02

Catalog Data:
	Multi-programming and resource allocation, process communications and scheduling, resource allocation methods, memory management, data protection, file control and considerations for parallel/distributed environments. Case analysis of two systems such as: OS/2, DOS/Windows, Unix, and VM.

	
	

	Prerequisite:
	EEN 218 – Intermediate Computer Programming

	
	

	Textbook:
	Operating Systems, 3rd ed., Stallings, ISBN 0-13-887407-7, Prentice-Hall.

	
	

	Reference:
	

	
	

	Course Objectives:
	This course is designed so that successful students will gain:

1. Sufficient understanding of the theory and practical concerns to successfully contribute to the implementation and maintenance of any of the major operating system components.

2. Sufficient understanding of the theory and practical concerns to design and implement their own working versions of any of the major components of a standard operating system,

3. Understanding of the tasks of an operating system,

4. Knowledge of the modi operandi of modern systems.

	
	

	Topics:
	1.
Memory:

1. Segmentation and paging, access protection

2. Virtual memory and memory mapping

3. Page faults, Page replacement strategies

2.
Files:

1. Disc and Tape systems, physical organisation

2. Blocks, error detection and correction

3. Logical organization of disc systems

4. File structures: I-nodes and others, directories and links

5. Disc structures: Partitions, allocation tables, free lists, recovery.

3.
CPU Internals:

1. Interrupts, IPL, masking, and handling

2. Privilege- and mode-based protection

3. Volatile state and context switching

4.
Operating System Organisation:

1. Layering: User, Supervisor, Executive, and Kernel

2. Modular Design and Interaction of Components

3. Micro-Kernels and related design techniques

4. The Boot-up process

5.
Processes:

1. Implementation: creation, representation, and manipulation

2. Life-cycle: states, suspension, swapping in and out, termination

3. Scheduling

4. Resources: allocation, quotas

6.
Input and Output Subsystem:

1. Communications between layers

2. I/O processing and scheduling

3. Blocking and Non-blocking

4. I/O Request Packet life cycle

5. Device Drivers

7.
Concurrency and Inter-Process Communications:

1. Shared memory, pipes, messages, mailboxes, ASTs, callbacks

2. Resource Allocation, peripherals and off-lining, resource locks

3. Deadlock: causes, detection, prevention, avoidance, and cures.

8.
Networking and Data Protection

1. Network protocols: TCP and IP, network configurations

2. Application protocols: SMTP, FTP, HTTP

3. Encryption systems

	
	

	Class schedule:
	3 lectures a week / 50 minutes long OR 2 lectures a week / 75 minutes long

	
	

	Professional

Component:
	Engineering Topics: 3 credits

Students design and implement working operating system components.

	
	

	Relationship to Program

Outcomes:
	
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k

	
	EE Program
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	
	CE Program
	3
	3
	4
	2
	4
	2
	2
	1
	3
	0
	3

	
	4=Very strong relationship, 3= Strong relationship 2=Some relationship, 1=Weak relationship, 0=No relationship

For more information, see the supplemental to the class syllabus, located in the class folder.

	

	Relationship to the Computer Engineering Program Outcomes: (see note below).

	a
	3/4
	an ability to apply knowledge of mathematics, science and engineering in the analysis and solution of computer engineering problems: Students need a working knowledge of mathematics and science, and a strong knowledge of (computer) engineering in order to design and implement their own operating system components.

	b
	3/4
	an ability to specify, design and conduct experiments, as well as to observe, collect, analyze and interpret data: Many software design techniques are essentially an experimental science, and debugging programs is essentially designing and observing experiments. A lot of programming (and therefore debugging) is required in this course.

	c
	4/4
	an ability to design hardware and software systems, components, and processes to meet desired specifications: Operating systems are case studies in the design of software systems, components, and processes.

	d
	2/4
	an ability to work independently and on peer-comprised and multi-disciplinary project teams: students work on a very large design and implementation project. The modularity of components and their implementation is vital to the design of an operating system, and an essential part of successful team work.

	e
	4/4
	an ability to identify, specify and solve computer engineering problems: Designing and implementing operating system components is a perfect example of identifying, specifying, and solving a computer engineering problem.

	f
	2/4
	an understanding of professional, ethical and social responsibility issues: The importance of the reliable operation of software and the wider consequences of failure becomes abundantly clear when studying (and using) operating systems.

	g
	2/4
	an ability to communicate effectively both orally and in writing: Students have to explain and document their projects.

	h
	1/4
	the broad education necessary to understand the impact of computer engineering solutions in a global and societal context: The consequences of bad engineering and inappropriate programming practice are discussed, and often discovered by the students for themselves.

	i
	3/4
	a recognition of the need for, and an ability to engage in life-long learning: Operating system technology at first sight seems to have stagnated; a thorough study of the subject reveals that real progress does occur, and not actively keeping up with developments means actively falling behind.

	j
	0/4
	a knowledge of contemporary social and environmental issues: not relevant.

	k
	3/4
	an ability to use the techniques, skills, and modern tools used in computer engineering practice: The design and implementation of an operating system and/or its components is a big case study in software engineering.

	
	

	Prepared by:
	Stephen Murrell February 27, 2002

