
 2007-09-11

void printdigit(int n)
{ if (n<0 || n>9)
 cout << “ERROR\n”;
 if (n==0)
 cout << “-O-“;
 else
 cout << “-“ << n << “-“; }

 The compiler notes that printdigit has
only one local variable.

A stack frame for printdigit will only
need space for one int, plus the return
address, plus one extra bookkeeping int.
That is just 3 ints in total.

‘n’ will always be at position +2 in the
frame, although the frame itself could be
anywhere.

void printbackwards(int num)
{ int q = num/10;
 int r = num%10;
 if (q>0)
 printbackwards(q);
 printdigit(r);
 int z=r*17+q; }

 The compiler notes that printbackwards
has four local variables: num, q, r, z.

A stack frame for printdigit contain a
total of 6 ints

‘q’ will always be at position -1 in the
frame, ‘r’ at position -2, etc. although the
frame itself could be anywhere.

‘num’ will be at position +2.

void main()
{ int ant=372;
 printbackwards(ant);
 cout << “\n”; }

 Main’s stack frame will be just 3 ints
long, with ‘ant’ at position -1.

The location of the currently active stack frame is always stored in the special
purpose CPU register called the Frame Pointer (FP). The exact location of a stack frame
in memory can not be predicted until the program is running.

Just suppose that when printbackwards is called, its 6 element stack frame just
happens to be allocated to memory locations 1371 to 1376. While printbackwards is
running, its area of memory looks like this:

memory compiler’s personal notes

1377: (not for our use)
1376: num is stored here The address of ‘num’ is $FP + 2
1375: return address here
1374: extra special int here ← FP points here The value of $FP is 1374
1373: q is stored here The address of ‘q’ is $FP - 1
1372: r is stored here The address of ‘r’ is $FP - 2
1371: z is stored here The address of ‘z’ is $FP - 3
1370: (not for our use)

Only the compiler knows these addresses, it generates executable instructions with
them built in.

For example, q=num/10; might be translated to this:
 LOAD $1 * $FP + 2
 DIV $1 10
 STORE $1 $FP - 1

when the program is running, only the Frame Pointer is needed.

A CPU can be expected to have a few more special purpose registers: the Program
Counter (PC), and the Stack Pointer (SP). For simplicity, the three special registers may
be treated as just different names for ordinary registers, perhaps $PC≡$15, $SP≡$14,
$FP≡$13, something like that.

The frame pointer just tells us where the currently active stack frame is. The stack
pointer keeps track of how much memory has been used for stack frames, and therefore
tells us exactly where the next one should be created. Everything with an address higher
than $SP is part of the stack, and won’t be used for anything else. Everything with an
address lower than $SP is not part of the stack, and is not safe. One day the stack might
extend into it.

With this, the scheme for creating new stack frames is easy. To allocate space for 6
ints, simply subtract 6 from the value of $SP. Then the 6 locations immediately above
$SP are protected from accidental re-use, and can become the stack frame. To destroy a
stack frame (when a function exits/returns) all that is needed is to add 6 back to $SP, and
everything will be as it was before.

The compiler knew exactly how big each function’s stack frame would need to be, so
it easily inserts the appropriate SUB instruction to the beginning of the function’s code,
and the matching ADD to the end.

As memory would be, just before the program prints the digit 3:

999999 0 fake return address
999998 0 fake saved FP
999997 372

main’s stack frame
ant

999996 372 num
999995 xxxxx return address
999994 999998 saved FP
999993 37 q
999992 2 r
999991 ??

printbackwards’ first
stack frame

z not set yet
999990 37 num
999989 yyyyy return address
999988 999994 saved FP
999987 3 q
999986 7 r
999985 ??

printbackwards’
second stack frame

z not set yet
999984 3 num
999983 yyyyy return address
999982 999988 saved FP
999981 0 q
999980 3 r
999979 ??

printbackwards’ third
stack frame

z not set yet
999978 3 n
999977 zzzzz return address
999976 999982

printdigit’s stack
frame save FP

At this point, the frame pointer register (FP) would contain the number 999976.

The number xxxxx represents the address of the executable instruction in main,
immediately following the CALL to printbackwards.

The number yyyyy represents the address of the executable instruction in printbackwards,
immediately following the (recursive) CALL to printbackwards.

The number zzzzz represents the address of the executable instruction in printbackwards,
immediately following the CALL to printdigit.

Of course, the diagram above is based on the assumption that we have exactly 1,000,000
memory locations.

Now you can try it.
999999
999998
999997
999996
999995
999994
999993
999992
999991
999990
999989
999988
999987
999986
999985
999984
999983
999982
999981
999980
999979
999978
999977
999976
999975
999974
999973
999972
999971
999970
999969
999968
999967
999966
999965
999964
999963
999962
999961
999960
999959
999958
999957

