

2007-09-11
	void printdigit(int n)

{ if (n<0 || n>9)

 cout << “ERROR\n”;

 if (n==0)

 cout << “-O-“;

 else

 cout << “-“ << n << “-“; }

	
	The compiler notes that printdigit has only one local variable.

A stack frame for printdigit will only need space for one int, plus the return address, plus one extra bookkeeping int. That is just 3 ints in total.

‘n’ will always be at position +2 in the frame, although the frame itself could be anywhere.

	
	
	

	void printbackwards(int num)

{ int q = num/10;

 int r = num%10;

 if (q>0)

 printbackwards(q);

 printdigit(r);

 int z=r*17+q; }

	
	The compiler notes that printbackwards has four local variables: num, q, r, z.

A stack frame for printdigit contain a total of 6 ints

‘q’ will always be at position -1 in the frame, ‘r’ at position -2, etc. although the frame itself could be anywhere.

‘num’ will be at position +2.

	
	
	

	void main()

{ int ant=372;

 printbackwards(ant);

 cout << “\n”; }

	
	Main’s stack frame will be just 3 ints long, with ‘ant’ at position -1.

	
	
	

The location of the currently active stack frame is always stored in the special purpose CPU register called the Frame Pointer (FP). The exact location of a stack frame in memory can not be predicted until the program is running.
Just suppose that when printbackwards is called, its 6 element stack frame just happens to be allocated to memory locations 1371 to 1376. While printbackwards is running, its area of memory looks like this:

	memory
	
	compiler’s personal notes
	

	1377:
	(not for our use)
	
	
	

	1376:
	num is stored here
	
	The address of ‘num’ is $FP + 2
	

	1375:
	return address here
	
	
	

	1374:
	extra special int here
	← FP points here
	The value of $FP is 1374
	

	1373:
	q is stored here
	
	The address of ‘q’ is $FP - 1
	

	1372:
	r is stored here
	
	The address of ‘r’ is $FP - 2
	

	1371:
	z is stored here
	
	The address of ‘z’ is $FP - 3
	

	1370:
	(not for our use)
	
	
	

Only the compiler knows these addresses, it generates executable instructions with them built in.
For example, q=num/10; might be translated to this:

LOAD
$1
* $FP + 2

DIV
$1
10

STORE
$1
$FP - 1

when the program is running, only the Frame Pointer is needed.

A CPU can be expected to have a few more special purpose registers: the Program Counter (PC), and the Stack Pointer (SP). For simplicity, the three special registers may be treated as just different names for ordinary registers, perhaps $PC≡$15, $SP≡$14, $FP≡$13, something like that.
The frame pointer just tells us where the currently active stack frame is. The stack pointer keeps track of how much memory has been used for stack frames, and therefore tells us exactly where the next one should be created. Everything with an address higher than $SP is part of the stack, and won’t be used for anything else. Everything with an address lower than $SP is not part of the stack, and is not safe. One day the stack might extend into it.

With this, the scheme for creating new stack frames is easy. To allocate space for 6 ints, simply subtract 6 from the value of $SP. Then the 6 locations immediately above $SP are protected from accidental re-use, and can become the stack frame. To destroy a stack frame (when a function exits/returns) all that is needed is to add 6 back to $SP, and everything will be as it was before.

The compiler knew exactly how big each function’s stack frame would need to be, so it easily inserts the appropriate SUB instruction to the beginning of the function’s code, and the matching ADD to the end.
As memory would be, just before the program prints the digit 3:
	999999
	0
	main’s stack frame
	fake return address

	999998
	0
	
	fake saved FP

	999997
	372
	
	ant

	999996
	372
	printbackwards’ first stack frame
	num

	999995
	xxxxx
	
	return address

	999994
	999998
	
	saved FP

	999993
	37
	
	q

	999992
	2
	
	r

	999991
	??
	
	z not set yet

	999990
	37
	printbackwards’ second stack frame
	num

	999989
	yyyyy
	
	return address

	999988
	999994
	
	saved FP

	999987
	3
	
	q

	999986
	7
	
	r

	999985
	??
	
	z not set yet

	999984
	3
	printbackwards’ third stack frame
	num

	999983
	yyyyy
	
	return address

	999982
	999988
	
	saved FP

	999981
	0
	
	q

	999980
	3
	
	r

	999979
	??
	
	z not set yet

	999978
	3
	printdigit’s stack frame
	n

	999977
	zzzzz
	
	return address

	999976
	999982
	
	save FP

At this point, the frame pointer register (FP) would contain the number 999976.

The number xxxxx represents the address of the executable instruction in main, immediately following the CALL to printbackwards.

The number yyyyy represents the address of the executable instruction in printbackwards, immediately following the (recursive) CALL to printbackwards.

The number zzzzz represents the address of the executable instruction in printbackwards, immediately following the CALL to printdigit.

Of course, the diagram above is based on the assumption that we have exactly 1,000,000 memory locations.

Now you can try it.
	999999
	
	
	

	999998
	
	
	

	999997
	
	
	

	999996
	
	
	

	999995
	
	
	

	999994
	
	
	

	999993
	
	
	

	999992
	
	
	

	999991
	
	
	

	999990
	
	
	

	999989
	
	
	

	999988
	
	
	

	999987
	
	
	

	999986
	
	
	

	999985
	
	
	

	999984
	
	
	

	999983
	
	
	

	999982
	
	
	

	999981
	
	
	

	999980
	
	
	

	999979
	
	
	

	999978
	
	
	

	999977
	
	
	

	999976
	
	
	

	999975
	
	
	

	999974
	
	
	

	999973
	
	
	

	999972
	
	
	

	999971
	
	
	

	999970
	
	
	

	999969
	
	
	

	999968
	
	
	

	999967
	
	
	

	999966
	
	
	

	999965
	
	
	

	999964
	
	
	

	999963
	
	
	

	999962
	
	
	

	999961
	
	
	

	999960
	
	
	

	999959
	
	
	

	999958
	
	
	

	999957
	
	
	

