HALT

in system mode, stop the processor

in user mode, trigger the HALT interrupt

LOAD

register = operand

remember numeric operands are 16 bits only.

anything >32767 or <-32768 won’t work. See LOADH for the solution

LOADH

the least significant 16 bits of the register are left untouched,

the most significant 16 bits are set equal to the operand, so:

LOAD R1, 0x5678

LOADH R1, 0x1234

sets R1 to 0x12345678

STORE

set operand to value of register.

operand may be a register or anything in [...]

INC

operand+=1

DEC

operand-=1

ADD

register=register+operand

SUB

register=register-operand

MUL

register=register*operand

DIV

register=register/operand

smallest integer <= true result, interrupt DIVZERO if operand is zero

MOD

register=register%operand

interrupt DIVZERO if operand is zero

RSUB

register=operand-register

RDIV

register=operand/register

smallest integer <= true result, interrupt DIVZERO if register is zero

RMOD

register=operand%register

interrupt DIVZERO if register is zero

AND

bit-by-bit, register=register and operand

OR

bit-by-bit, register=register or operand

XOR

bit-by-bit, register=register exclusive-or operand

NOT

bit-by-bit, register=not operand

SHL

register is shifted left by operand bits.

Z flag set if all lost bits are zero, cleared otherwise

SHR

register is shifted right by operand bits.

Z flag set if all lost bits are zero, cleared otherwise

COMP

Z flag set if register = operand, cleared of not equal

N flag set if register < operand, cleared otherwise

COMPZ

Z flag set if register is zero, cleared otherwise

N flag set if register is negative, cleared otherwise

TBIT

Test bit: bit 0 is rightmost or least significant, bit 31 is leftmost

Z flag set if operand-th bit of register is zero, cleared otherwise

SBIT

Set bit:
set operand-th bit of register to 1

CBIT

Clear bit: set operand-th bit of register to 0

JUMP

PC = operand

JZER

if register is zero then PC = operand. otherwise nothing happens.

JPOS

if register>=zero then PC = operand. otherwise nothing happens.

JNEG

if register<zero then PC = operand. otherwise nothing happens.

JCOND

register is replaced by a condition code:

COND EQL, x

PC = x if Z flag is on

COND NEQ, x

PC = x if Z flag is off

COND LSS, x

PC = x if N flag is on

COND LEQ, x

PC = x if Z flag is on or N flag is on

COND GTR, x

PC = x if Z flag is off and N flag is off

COND GEQ, x

PC = x if N flag is off

COND ERR, x

PC = x if ERR flag is on

GETFL Rn, flag

operand is a flag number, e.g. $N, $Z, $ERR, $SYS

if that flag is on, register and Z flag set to 1, 0 otherwise

SETFL Rn, flag

operand is a flag number, e.g. $N, $Z, $ERR, $SYS

if register is zero, that flag is set to zero

if register is not zero, that flag is set to 1

GETSR Rn, specialreg

operand is a special register number, e.g. $PDBR, $INTVEC

register Rn is set to value of that special register

SETSR Rn, specialreg

operand is a special register number, e.g. $PDBR, $INTVEC

that special register is set to value of register Rn

PUSH

SP-=1

memory[SP]=operand

POP

operand=memory[SP]

SP+=1

CALL

SP-=1

memory[SP]=PC (already incremented to reference next instruction)

PC=operand

RET

PC=memory[SP]

SP+=1

LDCH
 Rn, addr

load character from string into register

The Rn-th byte of the string starting at 'addr' is loaded into Rn

Each memory location is 32 bits or 4 bytes long, so this happens:

word = memory[addr + Rn/4]

Rn = (Rn%4)-th byte of word

STCH
 Rn, addr

The counterpart of LDCH, store character from register into string.

The 8-bit value in R0 is stored in the position indeicated above

DOIO

This is the instruction that interacts with the non-CPU hardware

The operand must be the address of a series of words, the first of which is a control code. the words are transmitted to the hardware device which does its thing. Any return code is put in the register.

Individual operations are documented separately.

FAKEIT

Work towards software that does not use this instruction.

The operand is one of the following fake operation codes:

$PRINTCHAR

value of register, interpreted as ascii code for one char, is printed.

$PRINTINT

value of register is printed in decimal

$PRINTHEX

value of register is printed in 8 digit hexadecimal

$PRINTSTR

Thhe register is assumed to contain the address of a string, which

is packed 4 characters to the word. This string is printed.

Zero termination of the string is assumed.

$READCHAR

One character of keyboard input is taken,

its ascii code is stored in the register.

FLAGSJ Rn, operand

The flags register is set equal to Rn, and PC to operand, in a single operation.

This is how to turn virtual memory on:

GETSR
R1, $FLAGS

SBIT
R1, $VM

FLAGSJ
R1, virtual-address

WAIT

This is how to wait for something to happen without hogging all of the real CPU

power. WAIT just sleeps until an interrupt occurs.

PAUSE

An alternative way for a system to idle.

This "idle: JUMP idle" is very bad. It is a greedy busy loop.

This:

idle:
PAUSE

JUMP
 idle

is nice and will not make your class-mates hate you.

BREAK

Interrupts a running program and returns it to debug (single-step) mode.

IRET

The equivalent to RET, but for use at the end of an interrupt handler.

It reverses the actions automatically caused when an interrupt occurs, thus:

POP flags

POP and discard three items

POP PC

POP FP

POP SP

POP R12

POP R11

...

...

POP R1

POP R0

This is also the correct instruction for returning from a syscall function

SYSCALL Rn, code

Protected jump to system-mode function.

Interrupt if code<0 or code>=$CGLEN

PUSH R0

PUSH R1

...

...

PUSH R11

PUSH R12

PUSH SP

PUSH FP

PUSH PC

PUSH value of Rn

PUSH n (i.e. register number)

PUSH code

PUSH flags

PC = memory[$CGBR + code]

flag SYS turned on.

ATAS

Atomic Test And Set

register = operand

set operand to 1

two steps performed indivisibly, without possibility of interrupts.

PHLOAD

register = contents of physical memory location given by operand.

virtual memory operations are bypassed.

PHSTORE

write register value to physical memory location given by operand.

virtual memory operations are bypassed.

VTRAN

Translate virtual address (operand value) to physical address, result

stored in register.

example, sets R1 = physical address of first parameter

VTRAN
R1, FP+2

MOVE

Transfer multiple words from one area of memory to another

register = source, address of memory area to be copied

operand value = destination, address of memory area to be overwritten

R0 = number of words to copy

operand MUST be a register.

example, copies the six words of data to a safe place:

LOAD
R3, info

LOAD
R5, saved

LOAD
R0, 6

MOVE
R3, R5

...

info:
.DATA
34, 764, 12, 999, 8, 55

saved:
.SPACE
6

FADD

floating point addition:
register = register + operand

floating point numbers occupy one 32-bit word.

The normal registers are used, there is no separate set of float registers.

All floating point instructions assume that the values they operate on really are in floating point format. There is no way to check. Floating point numbers look just like very large integers, it is just a matter of how the bits are interpreted.

FSUB

floating point subtraction:
register = register - operand

FMUL

floating point multiplication:
register = register * operand

FDIV

floating point division:
register = register / operand

FCOMP

Register and operand are interpreted as floating point numbers.

Z flag set if register = operand, cleared of not equal

N flag set if register < operand, cleared otherwise

FLOAT

Operand is is a normal integer value.

converted to floating point format,

result stored in the register.

FIX

Operand is treated as floating point number.

Operand is truncated (same as typecast to int in C/C++)

Result stored in register as a normal int.

example, sets R1 to the normal integer value 314, not 314.0:

LOAD
R2, [pi]

FLOAT
R3, 100

FMUL
R2, R3

FIX
R1, R2

...

pi:
.DATA
3.14159265

FRND

Operand and result are both floating point.

Operand rounded to closest whole number, still a float, and stored in register

FEXP

Operand is a normal int, but register and result are both floating point.

register = operandregister

if operand is 0, natural (base e) exponential is taken.

FFO

Find First One.

This is a normal integer operation, it just happens to begin with an 'F'.

The individual bits of the operand are scanned, starting at the most significant end, until a 1 is found. The register is set equal to the position of that 1. The most significant bit is at position 31, and the least significant bit is at position 0. The Z and N flags are cleared.

If the operand is zero (no bits are 1), the register is set to -1, and the Z and N flags are set.

FLZ

Find Last Zero.

This is a normal integer operation, it just happens to begin with an 'F'.

The individual bits of the operand are scanned, starting at the least significant end, until a 0 is found. The register is set equal to the position of that 0. The most significant bit is at position 31, and the least significant bit is at position 0. The Z and N flags are cleared.

If the operand is -1 (no bits are 0), the register is set to -1, and the Z and N flags are set.

RAND

The register is set to a 31-bit (i.e. guaranteed positive) random number.

