
Hardware Registers are named
 $0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12, $FP, $SP, $PC. and are represented by 4 bit values in the range 0 to 15 The processor flags are RUN, ZERO, NEG, INTR conditions based on these flags are named $Z (0) The ZERO flag is 1. $EQ (0) The ZERO flag is 1. $NZ (1) The ZERO flag is 0. $NE (1) The ZERO flag is 0. $LT (2) The NEG flag is 1, and the ZERO flag is 0. $NEG (2) The NEG flag is 1, and the ZERO flag is 0. $LE (3) The NEG flag is 1, or the ZERO flag is 1. $GT (4) The NEG flag is 0, and the ZERO flag is 0. $GE (5) The NEG flag is 0. $POS (5) The NEG flag is 0. $INTR (6) The INTR flag is 1. and are represented by the four bit values shown in parentheses. The flags register contains all of the flags in one word, as follows: 0 1 2 3 24 25 26 27 28 29 30 31

not used INTR NEG ZERO RUN The format of a 32 bit instruction is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31P P P P P P P S R R R R A A A A N N N N N N N N N N N N N N N N P represents the 7 bit operation code S represents the star, a 1 bit indirect flag R represents the register to be used, or in some cases the condition to be tested, 4 bits A represents the auxilliary register in 4 bits; 0 indicates “none” N represents the 16 bit numeric part of the operand bit 16 (bit 0 of N) is N’s sign bit. In use, N is expanded to a 32 bit value, by filling its first 16 bits with copies of bit 16. This preserves the sign for positive and negative values. Effective address calculation, performed before each instruction is executed. The result is called OV, for Operand Value. 1. OV = N, extended to 32 bits by extending the sign bit. 2. if A is not zero, then OV += register[A] 3. if S is 1, then OV = memory[OV] Instructions arranged in functionally similar groups (details in later sections) data transfer 1 LOAD register = OV 2 LOADH most significant 16 bits of register = OV

 50 LDVRZ load value of register 0: register[R] = register[0] 3 STORE memory = register 35 STOREH memory = most significant 16 bits of register 4 ZERO set memory location to zero arithmetic 5 ADD add OV to register 6 SUB subtract OV from register 10 RSUB register = OV minus register 7 MUL register = register times OV 8 DIV divide register by OV 11 RDIV register = OV divided by register 9 MOD register = register modulo OV 12 RMOD register = OV modulo register 13 INC increment memory[OV] 51 INCR increment register[R] 14 DEC decrement memory[OV] 52 DECR decrement register[R] 31 NEG register[R] = ‐ OV shifts 40 SHL shift register left 43 SHR shift register right 41 ASHL arithmetic shift left, preserving sign bit 44 ASHR arithmetic shift right, preserving sign bit 42 ROTL rotate register left 45 ROTR rotate register right comparisons 15 CMP compare register with OV, set flags accordingly 16 RCMP compare OV with register, set flags accordingly 17 CMPZ compare OV with 0, set flags accordingly 49 MAX register = maximum of register and OV 48 MIN register = minimum of register and OV bitwise logic 27 AND register = register & OV, bitwise and 28 OR register = register | OV, bitwise or 30 NOT register = ~ OV, bitwise not 29 XOR register = register ^ OV, bitwise exclusive or flags and conditions 34 ANDTF and to flags: set flags according to result of register[R] & OV 32 LDFLS load OV into flags 33 STFLS save flags into memory jumps 18 JUMP unconditional jump 19 JCOND jump if condition is true

 20 JCNDF jump if condition is false 25 CALL push PC and jump 26 RET pop PC stack 22 POP pop into register 24 POPA pop all: registers and flags 21 PUSH push OV 23 PUSHA push all: flags and all registers bit and byte manipulation 46 MKSEL make bit or byte selector 37 GTBFR get byte from (from simple value) 36 GTBOF get byte of (from array) 39 PTBFR put byte from (into array) 38 PTBOF put byte of (into single memory location). input and output 124 INCH input character to memory 123 INN input number to memory 125 OUT output OV in detauil for debugging 121 OUTCH output character 120 OUTN output number 122 OUTS output string other 0 BAD Error, set RUN=0 127 HALT RUN = 0 Instructions in numeric order on opcode 0 BAD Error, set RUN=0 1 LOAD register[R] = OV 2 LOADH most significant 16 bits of register[R] = OV; other 16 unmodified 3 STORE memory[OV] = register[R] 4 ZERO memory[OV] = 0 5 ADD register[R] = register[R] + OV 6 SUB register[R] = register[R] ‐ OV 7 MUL register[R] = register[R] * OV 8 DIV if OV=0 then RUN=0, else register[R] = register[R] / OV 9 MOD if OV=0 then RUN=0, else register[R] = register[R] % OV 10 RSUB register[R] = OV ‐ register[R] 11 RDIV if register[R]=0 then RUN=0, else register[R] = OV / register[R] 12 RMOD if register[R]=0 then RUN=0, else register[R] = OV / register[R] 13 INC memory[OV] = memory[OV] + 1 14 DEC memory[OV] = memory[OV] + 1 15 CMP if register[R] = OV, then ZERO=1 else ZERO=0; if register[R] < OV, then NEG=1 else NEG=0;

 16 RCMP if OV = register[R], then ZERO=1 else ZERO=0; if OV < register[R], then NEG=1 else NEG=0; 17 CMPZ if OV = 0, then ZERO=1 else ZERO=0; if OV < 0, then NEG=1 else NEG=0; 18 JUMP PC = OV 19 JCOND if condition encoded in R is true, then PC = OV 20 JCNDF if condition encoded in R is false, then PC = OV 21 PUSH SP = SP – 1; memory[SP] = OV 22 POP register[R] = memory[SP]; SP = SP + 1 23 PUSHA flags then registers 1 to 12 pushed, as above 24 POPA registers 12 to 1 then flags popped, as above 25 CALL SP = SP – 1; memory[SP] = PC; PC = OV 26 RET if SP = 0 then RUN = 0, else { PC = memory[SP]; SP = SP + 1 } 27 AND register[R] = register[R] & OV, bitwise and 28 OR register[R] = register[R] | OV, bitwise or 29 XOR register[R] = register[R] ^ OV, bitwise exclusive or 30 NOT register[R] = ~ OV, bitwise not 31 NEG register[R] = ‐ OV, numeric negation 32 LDFLS flags = OV 33 STFLS memory[OV] = flags 34 ANDTF NEG = 0; if register[R] & OV (bitwise and) = 0 then ZERO=1 else ZERO=0 35 STOREH memory[OV] = register[R] shifted right by 16 bits 36 GTBOF See bytes and selectors, below. 37 GTBFR See bytes and selectors, below. 38 PTBOF See bytes and selectors, below. 39 PTBFR See bytes and selectors, below. 40 SHL register[R] = register[R] shifted left by OV bits. if all OV bits lost at left were 0, then ZERO=1 else ZERO=0 41 ASHL register[R] = register[R] shifted left by OV bits. Sign bit is not changed. if all OV bits lost at left were 0, then ZERO=1 else ZERO=0 42 ROTL register[R] = register[R] shifted left by OV bits. simultaneously, the bits lost at the left are shifted in from the right. if all OV of those bits were 0, then ZERO=1 else ZERO=0 43 SHR register[R] = register[R] shifted right by OV bits. if all OV bits lost at right were 0, then ZERO=1 else ZERO=0 44 ASHR register[R] = register[R] shifted right by OV bits. Sign bit is not changed. if all OV bits lost at right were 0, then ZERO=1 else ZERO=0 45 ROTR register[R] = register[R] shifted right by OV bits. simultaneously, the bits lost at the right are shifted in from the left. if all OV of those bits were 0, then ZERO=1 else ZERO=0 46 MKSEL most significant 8 bits of register[R] = OV – register[R] + 1, least significant 24 bits of register[R] = OV. See bytes and selectors. 47 not used 48 MIN register[R] = minimum of register[R] and OV 49 MAX register[R] = maximum of register[R] and OV 50 LDVRZ register[R] = register[0] 51 INCR register[R] = register[R] + 1 52 DECR register[R] = register[R] ‐ 1 53 ‐ 119 not used 120 OUTN OV printed in decimal 121 OUTCH character with ascii value = OV printed

 122 OUTS eight bit bytes starting from most significant 8 bits of memory[OV] are printed as characters until a zero byte is encountered 123 INN memory[OV] = number entered in decimal at keyboard 124 INCH memory[OV] = ascii code of character typed at keyboard 125 OUT prints PC and OV in hexadecimal, decimal, and as characters 127 HALT RUN = 0 Instructions in alphabetic order on mnemonic 5 ADD register[R] = register[R] + OV 27 AND register[R] = register[R] & OV, bitwise and 34 ANDTF NEG = 0; if register[R] & OV (bitwise and) = 0 then ZERO=1 else ZERO=0 41 ASHL register[R] = register[R] shifted left by OV bits. Sign bit is not changed. if all OV bits lost at left were 0, then ZERO=1 else ZERO=0 44 ASHR register[R] = register[R] shifted right by OV bits. Sign bit is not changed. if all OV bits lost at right were 0, then ZERO=1 else ZERO=0 0 BAD Error, set RUN=0 25 CALL SP = SP – 1; memory[SP] = PC; PC = OV 15 CMP if register[R] = OV, then ZERO=1 else ZERO=0; if register[R] < OV, then NEG=1 else NEG=0; 17 CMPZ if OV = 0, then ZERO=1 else ZERO=0; if OV < 0, then NEG=1 else NEG=0; 14 DEC memory[OV] = memory[OV] + 1 52 DECR register[R] = register[R] ‐ 1 8 DIV if OV=0 then RUN=0, else register[R] = register[R] / OV 37 GTBFR See bytes and selectors, below. 36 GTBOF See bytes and selectors, below. 127 HALT RUN = 0 124 INCH memory[OV] = ascii code of character typed at keyboard 123 INN memory[OV] = number entered in decimal at keyboard 13 INC memory[OV] = memory[OV] + 1 51 INCR register[R] = register[R] + 1 20 JCNDF if condition encoded in R is false, then PC = OV 19 JCOND if condition encoded in R is true, then PC = OV 18 JUMP PC = OV 32 LDFLS flags = OV 50 LDVRZ register[R] = register[0] 1 LOAD register[R] = OV 2 LOADH most significant 16 bits of register[R] = OV; other 16 unmodified 49 MAX register[R] = maximum of register[R] and OV 48 MIN register[R] = minimum of register[R] and OV 46 MKSEL most significant 8 bits of register[R] = OV – register[R] + 1, least significant 24 bits of register[R] = OV. See bytes and selectors. 9 MOD if OV=0 then RUN=0, else register[R] = register[R] % OV 7 MUL register[R] = register[R] * OV 31 NEG register[R] = ‐ OV, numeric negation 30 NOT register[R] = ~ OV, bitwise not 28 OR register[R] = register[R] | OV, bitwise or 125 OUT prints PC and OV in hexadecimal, decimal, and as characters 121 OUTCH character with ascii value = OV printed

 120 OUTN OV printed in decimal 122 OUTS eight bit bytes starting from most significant 8 bits of memory[OV] are printed as characters until a zero byte is encountered 22 POP register[R] = memory[SP]; SP = SP + 1 24 POPA registers 12 to 1 then flags popped, as above 39 PTBFR See bytes and selectors, below. 38 PTBOF See bytes and selectors, below. 21 PUSH SP = SP – 1; memory[SP] = OV 23 PUSHA flags then registers 1 to 12 pushed, as above 16 RCMP if OV = register[R], then ZERO=1 else ZERO=0; if OV < register[R], then NEG=1 else NEG=0; 11 RDIV if register[R]=0 then RUN=0, else register[R] = OV / register[R] 26 RET if SP = 0 then RUN = 0, else { PC = memory[SP]; SP = SP + 1 } 12 RMOD if register[R]=0 then RUN=0, else register[R] = OV / register[R] 42 ROTL register[R] = register[R] shifted left by OV bits. simultaneously, the bits lost at the left are shifted in from the right. if all OV of those bits were 0, then ZERO=1 else ZERO=0 45 ROTR register[R] = register[R] shifted right by OV bits. simultaneously, the bits lost at the right are shifted in from the left. if all OV of those bits were 0, then ZERO=1 else ZERO=0 10 RSUB register[R] = OV ‐ register[R] 40 SHL register[R] = register[R] shifted left by OV bits. if all OV bits lost at left were 0, then ZERO=1 else ZERO=0 43 SHR register[R] = register[R] shifted right by OV bits. if all OV bits lost at right were 0, then ZERO=1 else ZERO=0 33 STFLS memory[OV] = flags 3 STORE memory[OV] = register[R] 35 STOREH memory[OV] = register[R] shifted right by 16 bits 6 SUB register[R] = register[R] ‐ OV 29 XOR register[R] = register[R] ^ OV, bitwise exclusive or 4 ZERO memory[OV] = 0 Bytes and Selectors The five instructions MKSEL, GTBOF, PTBOF, GTBFR, PTBFR, are provided to simplify the use of data items smaller than a whole 32 bit word. A byte is defined to be any group of consecutive bits in memory, a byte may start in one word and end in the next. To completely describe a particular byte within a region of memory, only two numbers are needed: the length of the byte (in bits), and its beginning position, the number of bits before its start. These are called start and length. The description of a byte that they jointly define is called a selector. As the length must be no more than 32 bits, a whole selector may (almost reasonably) be stored in a normal 32 bit word as follows. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31L L L L L L L L S The eight bits labelled L are the length, the 24 bits labelled S are the starting position. The restriction of the starting position to 24 bits means that a non‐array data structure may be no more than 224 bits, or 217 words (that is 16,777,216 bits or 131,072 words) long. Array accesses have no such restriction.

MKSEL r, opd uses register[r] as the starting position, and OV as the ending position, to create a selector (start=register[r], length=OV – register[r] + 1) which is stored in register [r].
GTBOF r, opd takes the selector already stored in register[0] to describe a range of bits inside the 32 bit value OV. Those bits are extracted and shifted right into the least significant bits of a 32 bit word, and stored in register[r].
PTBOF r, opd takes the selector already stored in register[0] to describe a range of bits inside the 32 bit value memory[OV]. Those bits are replaced by the value of register[r], and the result is stored back in memory[OV].
GTBFR r, opd takes the selector already stored in register[0] to describe a range of bits in memory starting from memory[OV]. Those bits are extracted and shifted right into the least significant bits of a 32 bit word, and stored in register[r].
PTBFR r, opd takes the selector already stored in register[0] to describe a range of bits in memory starting from memory[OV]. Those bits are replaced by the value of register[r], and the result is stored back into the memory locations that it originally came from. Examples LOAD $7, 0x5678 LOADH $7, 0x1234 ; makes register[7] = 0x12345678 LOAD $2, 12 MKSEL $2, 19 ; creates a selector for 8 bits starting from bit 12 GTBOF $1, $7 ; The overall effect is to set register[1] to 0x45 LOAD $1, 0x5678 LOAD $1, 0x1234 LOAD $0, 148 MKSEL $0, 160 ; creates a selector for 16 bits starting from bit 144 PTBFR $1, array ; The overall effect is to set the least significant 12 bits of memory[array+3] to 0x678 ; ‘array’ is probably the address of an array at least 4 words long.

