LEXEME: one of the atomic components of a program. This little piece of C:

while (cat<=dog) cat=cat+123;

consists of 12 lexemes - ‘while’, ‘(‘, ‘cat’, ‘<=’, ‘dog’, ‘)’, ‘cat’, ‘=’, ‘cat’, ‘+’, ‘123’, ‘;’. Note that ‘<=’ is a single lexeme even though ‘<’ and ‘=’ would also be complete lexemes in their own right.

The real purpose of the reader object is to provide individual lexemes one at a time. This process is called Lexical Analysis.

SYMBOL: a lexeme that follows the rules for a variable name. Includes function names, and technically speaking, reserved words like ‘while’ and spelled out operators like ‘and’.
SYMBOL TABLE: a structure that records all important information about all the symbols. Normally reserved words are pre-installed in the symbol table; this vastly speeds up the recognition process and removes the need for the long chains of if (s==”while”) else if (s==”if”) that appear in the in-class examples.

For our purposes, the important things about a symbol are all determined by its declarations. The struct symbolinfo serves this purpose:
struct symbolinfo

 { char kind;

 // 'l' = local variable, 'L' = local array,

 // 'g' = global variable, 'G' = global array,

 // 'f' = function,

 // 'u' = unknown

 int info;

 symbolinfo * prev;

‘kind’ says what kind of thing the symbol represents:

f
= function name

l
= local variable or parameter name

g
= global variable

L
= local array

G
= global array

u
= unknown

Locals and globals must be distinguished because they are accessed in different ways - globals may appear in the assembly language is normal names, whereas locals must be accessed as [FP-n] or [FP+n] in the case of parameters. The value ±n is stored in the int info.

Arrays must be distinguished from simple variables because they are used in different ways. We expect a variable’s name to represent that variable’s value when it appears in a program, but it is traditional for the name of an array to represent a pointer to the beginning of that array, i.e. its address.
When the translator processes a declaration, the appropriate information is added to the symbol table. When it later sees a variable or other symbol in use, the symbol table entry is the only source of information available for working out how to produce the correct assembly language.

When the translator finishes translating a function definition or an enclosed { ... } block, it must remove all information about local declarations from the symbol table. For an example, consider this bit of code:

global a, b;

... (
function f(b, c)

{ local a;

 ... (
 if (b>c) then

 { local b:10, d;

 ... (}

 ... (}
... (
At point (, the symbol table will record that a and b are simple global variables. something like b+=1 would be translated as INC [B].
At point (, the symbol table will record that a is a local variable (FP-1), b is a parameter (FP+2), c is a parameter (FP+3), and f is a function. something like b+=1 would be translated as INC [FP+2]. It is essential that the fact that b used to be a global variable because by the time the function is finished, it will revert to that state.
That is why symbolinfo structures also have a pointer called prev. This always points to the previous information on a symbol that is still valid, but temporarily obscured by a more local declaration. Symbolinfos are really linked lists of all currently valid declarations of a symbol, with the newest always first.

By the time the translator reaches point (, the meaning of b will have changed again, and its symbolinfo list will look like this:

[image: image1.png][image: image2.png]
	
	L
	
	l
	
	g

	
	-11
	
	+2
	
	0

	
	
	
	
	
	NULL

The symbol table itself is just a simple hash table, for rapid access. The struct symbol represents the entries in the table, and there is exactly one for each different symbol in a program. The info pointer gives access to the list of symbolinfos, and the next pointer links together all symbols with the same hash value into a linked list.
ADDING TO THE LANGUAGE: Remember that there are two independent components, the parser and the translator. The parser is responsible for reading the whole program and building a tree of node structs to properly represent its structure. The translator is only responsible for producing the correct assembly code, it knows nothing of the syntax or appearance of the language. Usually, the parser is completely finished before the translator begins; it is a bad idea to mix up their duties at all.
Strict separation of functionality makes design experiments much easier too. Imagine that you want to prevent two common C++ accidents: using “=” instead of “==” in a condition, and letting the extra semicolon slip in to produce “while (xxx);”. One problem could be solved by abandoning the single “=” altogether and using “a:=b” for assignments and “a==b” for tests. Accidentally using the wrong one would stand out quite clearly then, and it would only be a matter of telling the parser to look out for a different symbol in an assignment. The second problem is solved by deciding that a lone semicolon is not a valid statement: just remove the part of the parser that accepts a semicolon as the first symbol.
You can completely change the look of a language without any great effort just by modifying the parser’s rules. On the other hand, you could also make major changes to the way a language works just by changing the translator’s rules. For example, if you want to take advantage of hardware improvements and decide that the types int and float should now represent 64 bit quantities, just change the code that the translator produces. Old programs will be automatically upgraded just by recompiling.
And always remember that you have the old square-brackets notation available. When you are adding the equivalent of an if statement, you can concentrate on the real substance (i.e. getting the translator right) first by typing “if a<b then c=2 else c=3” as [if, (a<b), c=2, c=3]. Then, only when it all works, would you have to be concerned with syntax and teach the parser how to read an if.
Remember also that separating the parser into two parts, one for statements and one for expressions, was a very helpful trick (the same for the translator too). In order to work satisfactorily, the parser must be able to tell what kind of thing it is dealing with just from its first lexeme. Most of the time, that was easy: the only thing that can begin with “while” is a loop, the only thing that can begin with a “{” is a sequence of statements. But when an identifier (a variable name) appears, it could indicate some kind of expression, or it could indicate an assignment statement. Initially we had to make up some irritating syntax to make the distinction possible, having to write “set a = b;” for an assignment. Having one parsing function for statements and another for expressions solved the problem. If the statement parser sees an identifier, it knows it must be the beginning of an assignment; if the expression parser sees an identifier, it knows the opposite. A few more subdivisions may also prove useful.
MAKING COMPLETE PROGRAMS: It isn’t going to be possible to write useful programs unless we can define and use functions. Then we’ll also be able to make proper use of stack frames and frame pointers and all those things.

I propose the design illustrated by this example:
function compute(x)

{ local a, b;

 a=(x+1);

 b=(x-1);

 return (a*b) }

global sum;

function pqrs(a, b, c)
{ local y, z;

 y=(call compute(a) * call compute(b));

 z=(call compute(b) * call compute(c));

 if (y<z) then

 sum=(sum+y)

 else

 sum=(sum+z) fi }

main

{ sum=0;

 call pqrs(3, 7, 2);

 call pqrs(5, 6, 7);

 call pqrs(5, 3, 11);

 print sum }
end
It should be fairly obvious what it is supposed to mean, although you should note that it is just a code sample and doesn’t compute anything meaningful.
The new reserved word “call” has been added, because without it, both assignments and function calls would begin with the same thing, an identifier. Don’t worry if it looks ugly, we’ll be able to fix it fairly easily. Also, “main” doesn’t even pretend to be a function, but what difference does that make? You may wonder why I’d want to require “end” at the end. It is just a simplification that will disappear easily.
Observation: The program consists of four top-level definitions. Two for functions, one for a global variable, and one for main. These are not statements, but a new kind of creature. These things would not make sense where statements usually appear, and statements would not make sense here at the top level, outside of any function. This strongly suggests another helpful subdivision within the compiler.

Let’s now have three parsing functions, adding parse_top_level() to the existing parse_statement() and parse_expression(). At the very least, this means that we won’t have make any changes to the existing functions at all.
What should parse_top_level do? It is very much like a simpler version of parse_statement.

node * parse_top_level(reader & input)

 { string s;

 input >> s;
 if (s == "function")

 { node *n = N("functiondef");

 ...
 return n; }

 if (s == "global")

 { node *n = N("global");

 ...
 return n; }

 if (s == "main")

 { node *n = N("main");

 ...
 return n; }

 if (s == "end")

 return N("end");
 input.error("Invalid beginning for a top level def"); }

The format of a global variable declaration is exactly the same as that of a local, so the code for “local” can simply be copied from parse_statement and re-used here, but don’t forget that you’ll need to swallow up the terminating semicolon, which local didn’t need to worry about.
The two remaining, “function” and “main”, are similar but not identical. They have in common the requirement for a sequence of statements enclosed in curly brackets. This is something that parse_statement can already handle. But it would be a mistake to simply call parse_statement to deal with it: we don’t want to allow just any statement after main. Instead, the sensible thing to do is to recognise “a sequence of statements enclosed in curly brackets” as a useful unit in its own right. It even has an official name, block.

Let’s just borrow the code from parse_statement and call it parse_block. This is what parse_statement says at the moment:

 if (s == "{")

 { node * result = N("sequence");

 s = ";";

 while (s == ";")

 { result -> add(parse_statement(input));

 input >> s; }

 if (s != "}")

 { input.error("No '}' - probably mistake in previous statement ");

 exit(1); }

 return result; }

We can replace that by:
 if (s == "{")

 { input.putbacksymbol();

 return parse_block(input); }

And define:

 node * parse_block(reader & input)
 { string s;

 input >> s;

 if (s != "{")

 input.error("Block required, but no '{'");

 node * result = N("sequence");

 s = ";";

 while (s == ";")

 { result -> add(parse_statement(input));

 input >> s; }

 if (s != "}")

 input.error("No '}' - probably mistake in previous statement");

 return result; }

So now the part of parse_top_level that deals with main is a piece of cake:
 if (s == "main")

 { node * result = N("main");

 input >> s;

 if (s != "{")

 input.error("main must be followed by '{'");

 input.putbacksymbol();

 result->add(parse_block(input));
 return result; }

Make sure you understand why input.putbacksymbol has been used twice on this page.

Now what about the big one, a complete function definition. First note what things need to be represented in the node to be constructed. There is the function’s name, an unknown number (possibly zero) of parameter names, and a single block. Remember that a node struct contains a tag to record what kind of node it is (something like “functiondef” here), another string called “detail” (ideal for the name of the function), and any number of pointers to other nodes (perfect for the parameters and the block). It even has space for an extra int called “value” where we can store the number of parameters, although that is completely surplus to requirements because the size of the vector of pointers will be 1 + the number of parameters.
That gives us a complete plan. Once parse_top_level has noticed the word “function”:

Create a new node tagged “functiondef”.

Read the next lexeme, check that it is just a name.

Store the name in the node’s detail string.

Read the next lexeme, check that it is “(”.

Enter a loop:

Read the next lexeme

Error if it is neither a name nor “)”.

If it is “)”, break from the loop.

Create a new node to represent the variable whose name you just read.

Add it to the main node’s vector of pointers.

Read the next lexeme, check it is either a comma or a “)”.

If it is “)”, break out of the loop.

Otherwise continue round the loop again

Use parse_block to read the remainder of the definition.

Add the result to the node’s vector.

That’s it. Return this node pointer as the result.

One more thing needs to be added, the function call. This can be both a statement and an expression, but looks exactly the same in both cases. Nobody likes repeated code, but just for simplicity let’s just add the same thing to both parse_statement and parse_expression.

The special keyword call makes it easy for the parsing functions to detect a function call. After that, the syntax is almost identical to the syntax for a function definition. There are only two differences, so the code we just worked out can be copied and adapted.

The first difference is that there is no block following a function call, so just remove the call to parse_block. The second difference is that inside the parentheses there isn’t just a list of names, but a list of expressions. That actually makes it easier. Inside the loop, if the first lexeme is “)”, that still means it is time to break out of the loop. Anything else must be the beginning of an expression, so input.putbacksymbol it, and use parse_expression to read the whole thing.
This is the most complex new syntax you’re ever likely to want to add. We should not go on to teach the translator how to deal with it yet, instead we should make it testable. Make the parser read in the whole sample program and print the resulting tree. There will be a few typos to fix, so get them out of the way now. This is what main (in main.cpp) looks like now:
void main()

 { ifstream infile ("infile.p");

 reader in (infile);

 node *prog = parse_statement(in);

 prog->print();

 cout << "\n\n";

 prog->translatestatement(); }

Obviously parse_statement and translatestatement aren’t going to do the job, they need to be replaced by functions that can deal with whole programs. This is going to be the easiest fix yet.

A program is just a sequence of top level definitions terminated by end. To parse a whole program, create a node tagged “program”, enter a loop that repeatedly calls parse_top_level, saving the returned pointer in the current node. Stop when end is seen. Now you see why parse_top_level just returns NULL when it sees end: it makes knowing when to stop trivial.
The new translate_program only needs to use translate_top_level on each of its node pointers in turn. There is no need for translate_top_level to be anything more than an empty function for now, because we haven’t yet considered how to translate a top-level definition, and it isn’t needed for the immediate purpose of testing the new parser parts.

If you were careful in your coding, you’ll find that the new stuff does indeed work, but you won’t be able to test any useful programs until you teach parse_statement about return or if statements. If you followed the demands of the assignment, you will already have done that, and everything will be perfect.
