Summary of my sample instruction format. You do not have to do it this way.
Total of 32 bits per memory location, one instruction or one int fits exactly in one memory location.

Instructions have five parts.

1. “op-code”, 7 bits

2. main register, 4 bits

3. indirect bit, 1 bit

4. secondary register, 4 bits

5. numeric operand, 16 bits.

The positions of these bits within the memory “word” are unimportant.

In assembly code examples, a string representing the op-code always comes first. The main register (if one is used) appears second, and the other three parts which jointly represent one value, appear last.

Registers are made to stand out in some way, either by beginning their names with the letter R, or a $ sign. For implementation the $ is easier, because it can not be confused with anything else. e.g. R1, R12, $13, $0, etc.

Here, I will use a * (the “follow pointer” operator from C) to represent the indirect bit, and the secondary register (if used) will be separated from the numeric operand (if used) by a + sign.

Example meanings.

Assuming that before execution of each of the following instructions, register 2 contains the number 7 and register 3 contains the number 1239:

LOAD
$1
123
sets register 1 to contain the number 123

LOAD
$1
$2
sets register 1 to contain the number 7

LOAD
$1
123 + $2
sets register 1 to contain the number 130

LOAD
$1
$2 + 123
is the same thing.

Additionally, if memory is pre-loaded thus:

	location
	content

	1234
	20

	1235
	444

	1236
	5

	1237
	0

	1238
	0

	1239
	77

	1240
	1

	1241
	2

	1242
	3

	1243
	6666

	1244
	5

LOAD
$1
* 1235
sets register 1 to 444

LOAD
$1
* $3
sets register 1 to 77

LOAD
$1
* $3 + 4
sets register 1 to 6666

LOAD
$1
* $3 - 3
sets register 1 to 5

 (the numeric constant my be negative or positive)

