
A1, A2, A3, ..., AN is a list of integers, 
S is another integer. 
 
IntKnapsack(N, S) = what sublist of A1, A2, A3, ..., AN has sum S? 
 
We can easily solve this, in polynomial time, with dynamic programming. 
 
But suppose we are using real numbers (floats) instead of ints. 
 
The general knapsack problem can’t be solved by dynamic programming 
(because we can’t build the table), or by any other known technique, except 
in exponential time. 
 
If we could program with non-determinism, a solution would be easy, and 
polynomial time. 
 

Knapsack(N, S) = 
{ if (S == 0) 
     return <>; 
  if (N == 0 || S < 0) 
     FAIL; 
  CHOOSE 
     return <AN>  Knapsack(N-1, S-AN); 
  OR 
     return Knapsack(N-1, S); } 
 

Knapsack is an NP problem. 
 
The claimed solution is verifiable in polynomial time. 
 
There is a related decision problem (boolean function): 
 Is there a sublist of A1, A2, A3, ..., AN that has sum S? 
call that BoolKnapsack(N, S). 
 
BoolKnapsack solves Knapsack for us: 
 

Knapsack(N, S) = 
{ if (S == 0) 
     return <>; 
  if (N == 0 || S < 0) 
     FAIL; 
  if (BoolKnapsack(N-1, S-AN)) 
     return <AN>  Knapsack(N-1, S-AN); 
  else 
     return Knapsack(N-1, S); } 

 
If we could solve BoolKnapsack it would be the oracle that lets us resolve the 
non-determinism. 
 



It may be more convincing without recursion: 
 
 

Knapsack(N, S) = 
{ solution = <>; 
  while (true) 
  {  if (S == 0) 
        SUCCESS; 
     if (N == 0 || S < 0) 
        FAIL; 
     CHOOSE 
     {  solution = solution  <AN>; 
        S = S - AN; } 
     OR 
        { } 
     N = N - 1; } } 
 

 
or 
 
 

Knapsack(N, S) = 
{ solution = <>; 
  while (true) 
  {  if (S == 0) 
        SUCCESS; 
     if (N == 0 || S < 0) 
        FAIL; 
     if (BoolKnapsack(N-1, S-AN)) 
     {  solution = solution  <AN>; 
        S = S - AN; } 
     N = N - 1; } } 

 
 


