511 2005-02-10 (expanded with explanations 2005-02-12)
Output Streams

The first example shows how to write a function that takes an official C++ file as a parameter. In C++, the correct type for an output stream is called “ostream”. The automatically created objects cout and cerr are of type ostream, and when you open a file by creating an ofstream object, the result is also a kind of ostream. That is not a typing mistake: “ofstream” with an ‘f’ is what your program has to create to output to a file. “ostream” without an ‘f’ is a slightly more general kind of object that covers all kinds of output streams, not just those directed to files.

“ostream” covers all the things that you can use the << operator on to perform output.

Sending output to a file modifies that file, so a function that receives an ostream parameter must be able to modify that parameter if it is to successfully perform output, hence we must use the & symbol to mark the parameter as a reference.
$ cat one.cpp
#include <iostream>

#include <fstream>

#include <string>

void thingie(ostream & os, int n)

 {

 os << "The number is " << n;

 int sum=0;

 for (int i=0; i<=n; i+=1)

 sum+=i;

 os << " and the sum is " << sum;

 os << " or " << (n*(n+1)/2) << "\n";

 }

void main(void)

 {

 ofstream fout("test.txt");

 if (fout.fail())

 { cerr << "Can't create file 'test.txt'\n";

 exit(1); }

 thingie(cout, 10);

 thingie(fout, 10);

 fout.close();

 }

$ CC one.cpp
$ a.out
The number is 10 and the sum is 55 or 55
$ cat test.txt
The number is 10 and the sum is 55 or 55

If your function needs to perform input, perhaps using >> or getline, the parameter should be of type istream. This includes both the terminal input stream “cin”, and file input streams that you create as ifstreams. Input files must also be passed as references with an &; although the file itself is not modified by an input operation, the input stream is modified: it has to remember how much you’ve read so far.
Output Operators
It is annoying to have to use normal functions to print objects. If you have created a new kind of object, like “item” in the example below, and you have also created a nice print function that takes an ostream and an item as parameters, using that print function causes a break in the flow of your output operations, like this:

cout << “The item is: ”;

print(cout, x);

cout << “ and its value is ” << price << “ cents\n”;

Ideally, you should be able to say this instead:

cout << “The item is: ” << x << “ and its value is ” << price << “ cents\n”;

which is quite easy to make possible.

You have to write a function called operator<<, which takes an ostream reference and one of your new objects are parameters; it uses the incoming ostream to print the object in whatever way you want, then it must return that same ostream as its result so that it can be given to the next << operation (if there is one).

You could define the operator as just returning void (i.e. nothing), but then you would not be able to string together a long list of << operations in the traditional way, and what would you gain from that restriction? Nothing.
Notice that the item parameter is not just declared as (item x), but as (const item & x). This is all for a very good reason. In C++ programming, objects should normally be passed as constant references; it is a good habit to get into. Reasons: Objects can be big. A normal parameter has to be copied byte-by-byte into a new temporary variable for use inside the function, and that takes time. References are not made by copying; a reference is just a note of where the object is stored in memory, so a reference parameter is just a small (four byte) value that is very fast to pass in. BUT reference parameters can be modified; if the function has something wrong with it, it could ruin the parameter and spread the effects of the error throughout the program. The modifier const tells the compiler to make sure that this function can’t do anything that could conceivably modify this parameter. So the & gives efficiency but as a side-effect adds modifiability, and the “const” takes the modifiability away without changing the efficiency.

Any operator that was known to C: +, *, &, &&, ==, <, >>, ^, +=, and so on, may be given new definitions in a C++ program. It is hard to take away the original meaning, but easy to add a new meaning. If you define a function called operator+, which takes two parameters of particular types, it tells the compiler how to deal with the operator + when it appears between operands of those types. You see this happening better in the third example.
$ cat two.cpp
#include <iostream>

#include <fstream>

#include <string>

struct item

 { string name;

 int price; };

ostream & operator<< (ostream & out, const item & x)

 { out << "'" << x.name << "', at $";

 out << (x.price/100) << "." << ((x.price%100)/10) << (x.price%10);

 return out;

 }

void main(void)

 {

 item A[] = { { "Tin of Beans", 57 },

 { "Cheese Sandwich", 129 },

 { "Puppy", 300 },

 { "Banana", 49 } };

 int size = sizeof(A)/sizeof(A[0]);

 for (int i=0; i<size; i+=1)

 cout << "Item #" << i << ": " << A[i] << "\n";

 ofstream fff("test.txt");

 for (int i=0; i<size; i+=1)

 fff << "Item #" << i << ": " << A[i] << "\n";

 fff.close();

 }

$ CC two.cpp
$ a.out
Item #0: 'Tin of Beans', at $0.57

Item #1: 'Cheese Sandwich', at $1.29

Item #2: 'Puppy', at $3.00

Item #3: 'Banana', at $0.49

$ cat test.txt
Item #0: 'Tin of Beans', at $0.57

Item #1: 'Cheese Sandwich', at $1.29

Item #2: 'Puppy', at $3.00

Item #3: 'Banana', at $0.49
Wastefully repeated computation
In this third example, we (partially) implement complex numbers. A struct called “complex” is defined, and this creates a new type that can be used in the program. The three strangely names functions operator<<, operator+, and operator*, define exactly what happens when the operators <<, +, and * are used on complex values. Of course, all the other normal operators could also have been defined, but they would be nothing special.

In these functions, the parameters are passed in as const references as explained for example two; it is simple the right way to do things. Of course, the ostream is not made a const, because writing to an output stream must be able to modify that stream.

The function magnitude just follows the normal mathematical definition, it just gives the “size” of a complex number, as a normal floating point number.

The main function creates an array of complex numbers, initialising them in the simplest way, then calculates the size of that array. Sizeof is a standard C/C++ operator, which returns the number of bytes of memory that something occupies. The size of a whole array divided by the size of one of its elements must give the number of elements. Clumsy, but the only way available in C++.

Once the array has been set up, the main function simply runs through the array, finding the two complex numbers that are closest together in terms of magnitude. All possible pairing of the numbers are tried out, and the pair with the smallest difference is remembered. This is a reasonable way to find the closest two, but quite wasteful: the magnitude of each number is calculated over and over again, and it obviously isn’t going to change.
$ cat three.cpp
#include <iostream>

#include <string>

struct complex

{ double real, imag; };

ostream & operator<< (ostream & out, const complex & x)

 { out << " (" << x.real << "+" << x.imag << "i) ";

 return out; }

complex operator+(const complex & a, const complex & b)

 { complex answer;

 answer.real = a.real + b.real;

 answer.imag = a.imag + b.imag;

 return answer; }

complex operator*(const complex & a, const complex & b)

 { complex answer;

 answer.real = a.real*b.real - a.imag*b.imag;

 answer.imag = a.real*b.imag + a.imag*b.real;

 return answer; }

double magnitude(const complex & a)

 { return sqrt(a.real*a.real + a.imag*a.imag); }

void main(void)

 {

 complex A[] = { { 1.32, 3.412 },

 { 0.17, 2.987 },

 { 1.00, -2.12 },

 { -0.01, -9.03 },

 { 0.53, 3.21 } };

 int size = sizeof(A)/sizeof(A[0]);

 A[2] = A[1] + A[3];

 A[3] = A[3] * A[0];

 double mindiff=99999999.9;

 int closei=0, closej=0;

 for (int i=0; i<size; i+=1)

 for (int j=0; j<size; j+=1)

 if (i!=j)

 { double diff = magnitude(A[i])-magnitude(A[j]);

 if (diff<0) diff=-diff;

 if (diff<mindiff)

 { mindiff=diff;

 closei=i;

 closej=j; } }

 cout << "The closest two are "

 << closei << A[closei] << "and "

 << closej << A[closej] << "\n";

 }
$ CC three.cpp
$ a.out
The closest two are 1 (0.17+2.987i) and 4 (0.53+3.21i)

Avoiding it
Here, the wasted recomputation of magnitudes is avoided. The structure of a complex number has been redefined to include a third member, the magnitude. This third member is maintained automatically: whenever a complex number is created, the program only provides the normal real and imaginary parts; the magnitude is automatically created. When + or * is performed on complex numbers, the magnitude of the result is also set automatically.

Looking at the definitions of operator+ and operator*, you can easily see this happening. The magnitude function no longer has to perform a calculation, it just retrieves this precalculated value. So the main program remains virtually unchanged, but becomes much more efficient.

The one difference that does stand out is the way complex numbers are initialised or created. A new function, mysteriously called “complex::complex”, with no return type, has appeared. This is called a constructor for the complex struct. If you define a constructor for a type, it becomes impossible to create one of those objects without calling the constructor, so you can use it to perform any necessary set-up, confident that it can’t be bypassed.

Constructors are easy to see, as they have to follow certain rules:

1. Constructors look like functions.

2. A prototype for the constructor must appear inside the class/struct declaration.

3. The constructor must have the same name as the class/struct.

4. A constructor must not have a return type, not even void.

5. When the constructor is defined, outside the struct/class declaration, it appears with its full “qualified” name, which is always the class name, then a “::”, then the class name again.
When a constructor is used as a normal function (see the array setup below), a new object is implicitly created, and the constructor function is used to initialise its components. Remember that once a constructor exists, objects can not be created without calling it, so if I had continued to use the nested curly-brackets notation from the previous example, the compiler would have given an error.
$ cat four.cpp
#include <iostream>

#include <string>

struct complex

{ double real, imag, mag;

 complex(double r, double i); };

complex::complex(double r, double i)

 { real=r;

 imag=i;

 mag=sqrt(r*r+i*i); }

complex operator+(const complex & a, const complex & b)

 { double r = a.real + b.real;

 double i = a.imag + b.imag;

 return complex(r, i); }

complex operator*(const complex & a, const complex & b)

 { double r = a.real*b.real - a.imag*b.imag;

 double i = a.real*b.imag + a.imag*b.real;

 return complex(r, i); }

ostream & operator<< (ostream & out, const complex & x)

 { out << " (" << x.real << "+" << x.imag << "i) ";

 return out; }

double magnitude(const complex & a)

 { return a.mag; }

void main(void)

 {

 complex A[] = { complex(1.32, 3.412),

 complex(0.17, 2.987),

 complex(1.00, -2.12),

 complex(-0.01, -9.03),

 complex(0.53, 3.21) };

 int size = sizeof(A)/sizeof(A[0]);

 A[2] = A[1] + A[3];

 A[3] = A[3] * A[0];

 double mindiff=99999999.9;

 int closei=0, closej=0;

 for (int i=0; i<size; i+=1)

 for (int j=0; j<size; j+=1)

 if (i!=j)

 { double diff = magnitude(A[i])-magnitude(A[j]);

 if (diff<0) diff=-diff;

 if (diff<mindiff)

 { mindiff=diff;

 closei=i;

 closej=j; } }

 cout << "The closest two are "

 << closei << A[closei] << "and "

 << closej << A[closej] << "\n";

 }

$ CC four.cpp
$ a.out
The closest two are 1 (0.17+2.987i) and 4 (0.53+3.21i)

An Easy Programming Accident
So far this is all good stuff, but now things start to get complicated. The automatic calculation of the magnitude component means that programmers must not be allowed to modify complex number objects directly. If I create an object, the change one of its components, the magnitude will become incorrect. This is a very easy and natural mistake to make. Programmers do not expect things to be done secretly, behind the scenes.

The following example is exactly the same as the previous one, except for one line. After the array of complex numbers is set up, one of them is modified in a way that would be perfectly natural to most programmers: A[1].imag=99.99. After this, the magnitude of A[1] is incorrect, and the program produces the wrong results.
$ cat five.cpp
#include <iostream>

#include <string>

struct complex

{ double real, imag, mag;

 complex(double r, double i); };

complex::complex(double r, double i)

 { real=r;

 imag=i;

 mag=sqrt(r*r+i*i); }

complex operator+(const complex & a, const complex & b)

 { double r = a.real + b.real;

 double i = a.imag + b.imag;

 return complex(r, i); }

complex operator*(const complex & a, const complex & b)

 { double r = a.real*b.real - a.imag*b.imag;

 double i = a.real*b.imag + a.imag*b.real;

 return complex(r, i); }

ostream & operator<< (ostream & out, const complex & x)

 { out << " (" << x.real << "+" << x.imag << "i) ";

 return out; }

double magnitude(const complex & a)

 { return a.mag; }

void main(void)

 {

 complex A[] = { complex(1.32, 3.412),

 complex(0.17, 2.987),

 complex(1.00, -2.12),

 complex(-0.01, -9.03),

 complex(0.53, 3.21) };

 int size = sizeof(A)/sizeof(A[0]);

 A[2] = A[1] + A[3];

 A[3] = A[3] * A[0];

 A[1].imag=99.99;

 double mindiff=99999999.9;

 int closei=0, closej=0;

 for (int i=0; i<size; i+=1)

 for (int j=0; j<size; j+=1)

 if (i!=j)

 { double diff = magnitude(A[i])-magnitude(A[j]);

 if (diff<0) diff=-diff;

 if (diff<mindiff)

 { mindiff=diff;

 closei=i;

 closej=j; } }

 cout << "The closest two are "

 << closei << A[closei] << "and "

 << closej << A[closej] << "\n";

 }
$ CC five.cpp
$ a.out
The closest two are 1 (0.17+99.99i) and 4 (0.53+3.21i)

Avoiding It
To prevent this kind of problem, we have to start getting into some quite complex parts of C++. Inside a struct definition, various components may be defined as public, protected, or private. The default, if you don’t say anything at all (as in all the previous examples) is that public is assumed. Public means that there is no protection: any part of the program may access and modify these components in any way the programmer sees fit. In the previous example, real, imag, and mag were all public, which is why the main function was allowed to modify mag directly.
The alternative, protected, means that the effected components can only be accessed by “members of the family”: other functions whose prototypes appear inside the class/struct declaration. No other function, especially main, is even allowed to look at protected components. (The third alternative, private, is nearly always a mistake).

So by making real, imag, and mag all be protected, I can prevent other programmers from changing them and ruining my carefully planned connections between them. Of course this means that I must provide some other way for programmers to change the components, otherwise complex numbers become useless.

This example shows the usual C++/Java style: for every protected member, two functions must be defined: one to set it, and one to look at it, usually the access functions for component xxx are called getxxx and setxxx. These get and set functions have their prototypes inside the “struct complex” declaration, so they are part of the family, and able to access the protected members. The functions themselves are under the public heading, so other programmers are allowed to use them. This means that I retain complete control over how the components of my structs are used. Of course, I have to do a lot more typing.

The get and set functions can be very annoying. They usually do almost nothing, but have to be defined for every protected member, unless you really want to make that member inaccessible. Note that there is no set function for the magnitude in this example.
In this example, I left the now illegal attempt to change A[1].imag in, so you could see that it really is prevented. After removing that line, you see that the program works again.
$ cat six.cpp
#include <iostream>

#include <string>

class complex

{ protected:

 double real, imag, mag;

 public:

 complex(double r, double i);

 double getreal(void) const;

 double getimag(void) const;

 double magnitude(void) const;

 void setreal(double x);

 void setimag(double x); };

complex::complex(double r, double i)

 { real=r;

 imag=i;

 mag=sqrt(r*r+i*i); }

double complex::getreal(void) const

 { return real; }

double complex::getimag(void) const

 { return imag; }

double complex::magnitude(void) const

 { return mag; }

void complex::setreal(double x)

 { real=x;

 mag=sqrt(x*x + imag*imag); }

void complex::setimag(double x)

 { imag=x;

 mag=sqrt(real*real + x*x); }

complex operator+(const complex & a, const complex & b)

 { double r = a.getreal() + b.getreal();

 double i = a.getimag() + b.getimag();

 return complex(r, i); }

complex operator*(const complex & a, const complex & b)

 { double r = a.getreal()*b.getreal()- a.getimag()*b.getimag();

 double i = a.getreal()*b.getimag()+ a.getimag()*b.getreal();

 return complex(r, i); }

ostream & operator<< (ostream & out, const complex & x)

 { out << " (" << x.getreal() << "+" << x.getimag() << "i) ";

 return out; }

void main(void)

 {

 complex A[] = { complex(1.32, 3.412),

 complex(0.17, 2.987),

 complex(1.00, -2.12),

 complex(-0.01, -9.03),

 complex(0.53, 3.21) };

 int size = sizeof(A)/sizeof(A[0]);

 A[2] = A[1] + A[3];

 A[3] = A[3] * A[0];

 A[1].imag=99.99;

 double mindiff=99999999.9;

 int closei=0, closej=0;

 for (int i=0; i<size; i+=1)

 for (int j=0; j<size; j+=1)

 if (i!=j)

 { double diff = A[i].magnitude()-A[j].magnitude();

 if (diff<0) diff=-diff;

 if (diff<mindiff)

 { mindiff=diff;

 closei=i;

 closej=j; } }

 cout << "The closest two are "

 << closei << A[closei] << "and "

 << closej << A[closej] << "\n";

 }
$ CC six.cpp
six.cpp: In function `int main(...)':

six.cpp:6: `double complex::imag' is protected

six.cpp:61: within this context
$ pico six.cpp
change line 61 from A[1].imag=99.99; to A[1].setimag(99.99);

$ CC six.cpp
$ a.out
The closest two are 0 (1.32+3.412i) and 4 (0.53+3.21i)
What of the other complexities?
Well, this is just the beginning. In the definitions of the operators +, *, and <<, and for that matter anywhere else, the const modifier on the object parameters is important. It guarantees that the function can’t change the object no matter how badly programmed it is. If you are working in a team, this is important; it lets you work with idiot programmers without worrying that their mistakes will make your code appear to fail. I’m sure you can think of other more professional sounding benefits too.

But, once I’ve declared a parameter as const, I can’t do anything that could conceivably change that parameter. The C++ compiler has no intelligence: it can’t analyse functions and see what they actually do, it just knows that functions can potentially do anything. So if I have a function like this:

int fff(const thing & x)

{ cout << x;

 ggg(x);

 return x.value+72; }

the compiler will reject it unless it has a guarantee that << and ggg are both incapable of modifying x. The need for const is propagated: I must have declared the parameters of << and ggg as const if I’m to be allowed to use them in this function.

That in itself isn’t so bad. Quite logical even. But my new set and get functions don’t work in the normal way. They don’t take the object as a parameter, they are members of the object’s family and work on it directly and implicitly. How can I promise that getreal will only look at its object, not modify it?
The answer is the new use of the word const, appearing directly after the prototype of a member function. In this context, it is a promise that the function only looks, but doesn’t modify. The promise is enforced by the compiler just like the normal parameter const promise.

struct and class
Contrary to popular belief, the keywords struct and class in C++ mean almost exactly the same thing. Structs are allowed to have member functions and public and protected parts, and everything. The only difference is in the default assumption. If you use the word struct to define an object, the components are assumed to be public if you don’t say otherwise. If you say class instead, they get protected. This is the only real difference.

By convention, struct is normally used for simple objects that are data only, and have no significant function members, and class is used for anything more complicated. But that is only a common convention, not a rule.
