2005-02-08
The weekend brain-teaser:
How do you find the Minimum-Sum Contiguous Subsequence of a list of integers, quickly?

For example, given this list:

{ 17, -3, -4, 5, -2, 9, -5, 5, 3, 2, -4, -6, 1, -3, 2, -1, 3, -6, 8, -2, 4, -1 }

the subsequence { -3, -4 } has a sum of -7, but the subsequence { -4, -6 } has a sum of -10 which is better, and { -4, -6, 1, -3 } has a sum of -12 which is even better. Which is the absolute best?
“Contiguous” means that the sub-sequence can start and stop anywhere, but may not skip values, so the list { -3, -4, -2, -5 } is not a valid choice.

The brute force solution is to try out every possible contiguous subsequence, finding all their sums, and remembering the minimum. This is a cubic algorithm. Can you do better?

First, here is the brute-force algorithm. It tries all possible starting positions for a sequence (there are N of them); for each possible starting position it tries all possible ending positions (on average there will be N/2) of them. Each of these ½N2 combinations describe a possible subsequence. Each subsequence gets scanned through to work out its sum, the average length of a subsequence is something like ⅓N, so the total time spent finding all their sums and looking for the smallest is around N3/6. It is a cubic algorithm.

int beststart=0, bestend=0, smallest=value[0];

for (int start=0; start<N; start+=1)

{ for (int end=start; end<N; end+=1)

 { int sum=0;

 for (int i=start; i<=end; i+=1)

 sum+=value[i];

 if (sum<smallest)

 { smallest=sum;

 beststart=start;

 bestend=end; } } }

printf(“Add up value[%d] ... value[%d] for minimal sum of %d\n”,

 beststart, bestend, smallest);
Now for the quick way.
If we ever had a good sequence that got as far as the next-to-last value, the 4, it would obviously by worth extending that sequence by one more value, bringing in the -1, because it would make the sum even smaller.

But, if we ever had a good sequence that only got as far as the next-to-next-to-last number, the -2, it would obviously not be a good idea to extend it any further: the next number is a 4, and there aren’t enough negatives after that 4 to cancel it out.

It seems easy to work out, for every possible position, whether or not it would be worth continuing a sequence if it ever got that far.

In fact, the easiest thing to do is to put a numeric value on how much benefit you can get by continuing past a particular point.

Looking at a smaller, more manageable list:

	n
	0
	1
	2
	3
	4
	5

	value[n]
	9
	-1
	2
	-3
	5
	-3

If we had a sequence that already reached all the way to the end, no matter where it started, nothing could be gained by stretching it any further: there is no further to go; so BenefitOfExtendingTo[6] is 0.

If we had a sequence that already stretched to element number 4, no matter where it started, it would obviously be even better if we stretched it to include number 5 too: including that -3 will reduce the sum even further. In fact that’s the best we could do. Extending to include value[5] would give a benefit of reducing the sum by 3, going further than that has no added benefit, so BenefitOfExtendingTo[5] is -3.

If we have a sequence that already stretched to element number X, How exactly do we work out whether or not it is worth going further? There are two three choices for BenefitOfExtendingTo[X+1]:

1.
Don’t go any further, and the sum will increase by 0.
2.
Just go one step further, and the sum will increase by value[X+1].
3.
Go even further than that: the sum will increase by BenefitOfExtendingTo[X+2].
As we are looking for the subsequence with the smallest sum, we should take the choice that gives the smallest (most negative) number.

All three of those possibilities can be worked out very easily, provided that we start processing from the end of the array: BenefitOfExtendingTo[X] is defined in terms of BenefitOfExtendingTo[X+1], so work out the last one first, and work back towards BenefitOfExtendingTo[0].
It can even be simplified by collapsing the last two choices into one (and thinking about X instead of X+1):

Benefit[X] = smallest of 0 or Value[X]+Benefit[X+1]

except of course for the last element, Benefit[N]=0;

So we get a nice simple algorithm:

int value[N] = { 17, -1, 4, -4, -2, 6, -2, 6, -4, -2, 3, 2, -7, 5, -3, -1 };
int benefit[N+1];

...

benefit[N]=0;

for (int i=N-1; i>=0; i-=1)

{ int option = value[i]+benefit[i+1];

 if (option>0)

 option=0;

 benefit[i] = option; }

So we would end up with the following results:
	n
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	value[n]
	17
	-1
	4
	-4
	-2
	6
	-2
	6
	-4
	-2
	3
	2
	-7
	5
	-3
	-1
	

	benefit[n]
	0
	-3
	-2
	-6
	-2
	0
	-4
	-2
	-8
	-4
	-2
	-5
	-7
	0
	-4
	-1
	0

Now just look for the best benefit, that tells you where the minimal sum subsequence starts (-8 is the minimum, and it as at position [8]), then look for the first 0 after that: that tells you where it is not worth continuing any further, so the sequence should end there. (the next 0 after [8] is at [13]). So the minimal sum subsequence is from [8] to [12], values { -4, -2, 3, 2, -7 }, and its sum is -8.

int start=0, smallest=0, stop=0;

for (int i=0; i<N; i+=1)

{ if (benefit[i]<smallest)

 { smallest=benefit[i];

 start=i; }

for (int i=start; i<N; i+=1)
{ if (benefit[i+1]==0)

 { stop=i;

 break; } }
The whole algorithm involves one scan through the value array to create the benefit array, then one scan through that to find the beginning and end of the minimal subsequence, nearly 2N operations, so it is linear.
Interestingly, the second array doesn’t really need to be created. All we need from it is the position of its minimum value, and the position of the first zero after that. Both of those can be calculated “On the Fly”:

benefit=0; smallest=0;

for (int i=N-1; i>=0; i-=1)

{ int option = value[i]+benefit;

 if (option>0)

 option=0;

 benefit=option;

 if (benefit==0)

 lastzero=i;

 if (benefit<smallest)

 { smallest=benefit;

 start=i;

 stop=lastzero; } }

Of course this is still linear in time, but it has been reduced from linear to constant in memory use.
