511 Thursday 27th January 2005 Reminders
1. Matrix Chain Multiplication, The Actual Algorithm
Let’s say there are 7 matrices to multiply together, and instead of calling them A, B, C, D, E, F, G, they’ll be called M0, M1, M2, M3, M4, M5, M6. The big triangular table obviously fits into a two-dimensional array, but careful thought about where each entry should go pays off.

Everything in the table corresponds to the product of a contiguous subsequence of the list of matrices: you will find an entry for M2M3M4M5, one for M1M2M3, one for M3M4, one for M4M5M6, etc, but you won’t find an entry for M1M4M6, nor one for M3M0. Everything represented in the table can be characterised by the numbers for the first and last matrix concerned: M2M3M4M5 is represented by 2,5. Every ordered pair of numbers indicates something in the table, everything in the table is represented by an ordered pair of numbers. That gives a simple way to decide what goes where.
A[i][j] represents the product of matrices Mi to Mj.
A[2][5] represents M2M3M4M5.

This is the standard diagram, changed to show where each item goes in the array:
	A

M0
A[0][0]
	B

M1
A[1][1]
	C

M2
A[2][2]
	D

M3
A[3][3]
	E

M4
A[4][4]

	
	AB

M0M1
A[0][1]
	BC

M1M2
A[1][2]
	CD

M2M3
A[2][3]
	DE

M3M4
A[3][4]
	

	
	ABC

M0M1M2
A[0][2]
	BCD

M1M2M3
A[1][3]
	CDE

M2M3M4
A[2][4]
	

	
	
	ABCD

M0M1M2M3
A[0][3]
	BCDE

M1M2M3M4
A[1][4]
	
	

	
	
	ABCDE

M0M1M2M3M4
A[0][4]
	
	

And here is the reverse, the array showing which chain multiplication each entry shows the information for. If you don’t confuse yourself, it is very easy to work out one from the other.

	
	j=0
	j=1
	j=2
	j=3
	j=4

	i=0
	M0
	M0M1
	M0M1M2
	M0M1M2M3
	M0M1M2M3M4

	i=1
	
	M1
	M1M2
	M1M2M3
	M1M2M3M4

	i=2
	
	
	M2
	M2M3
	M2M3M4

	i=3
	
	
	
	M3
	M3M4

	i=4
	
	
	
	
	M4

It is important to work through the diagram row-by-row, and for each row run through the positions from left to right:

for (int row=0; row<n; row+=1)

{ for (int pos=0; pos<n-row; pos+=1)

 { ...
You can very quickly see that those nested loops will give all of the entries in the triangular diagram, in a rational order.

Now, before things get complicated, it makes sense to work out the array position for each iteration:
 { int i = pos,
 j = row+pos;
It is quite easy to get confused even at this stage, so let’s construct a little test...

const int n=5;

for (int row=0; row<n; row+=1)

{ for (int pos=0; pos<n-row; pos+=1)

 { int i = pos,
 j = row+pos;

 printf(“A[%d][%d] ”, i, j); }
 printf(“\n”); }

and run it

A[0][0] A[1][1] A[2][2] A[3][3] A[4][4]

A[0][1] A[1][2] A[2][3] A[3][4]

A[0][2] A[1][3] A[2][4]

A[0][3] A[1][4]

A[0][4]

and you see that it does look at the array positions in exactly the order wanted. So that’s alright then.

So what do you do at each position? Well, there are two simple cases and one that needs a little thought. The first simple case is that when we are in row=0, there is nothing to do: we are looking at one single unmultiplied matrix, so just copy the matrix size from the inputs, and set the number of operations needed to zero.

The second simple case is when we are in row=1. Here we are considering one simple matrix multiplication M[i] multiplied by M[j]. There isn’t much to do, the number of rows in the result is the same as the number of rows in input M[i], the number of columns in the result is the same as the number of columns in M[j], and we should also check the requirement that columns{M[i])=rows(M[j]). There is only one way to do this multiplication, so number of operations = rows(M[i])*rows(M[j])*columns(M[j]).

Now for the other case, when row>1. It is best to think about a later example, to see the pattern. When i=1 and j=4 (that is, when row=3 and pos=1, but that is largely irrelevant), we are considering M1M2M3M4, which requires the consideration of three different options: M1(M2M3M4, M1M2(M3M4, M1M2M3(M4. There are three possibilities because we are on row three. so...
 for (int p=0; p<row; p+=1)

 { // ‘p’ is for possibility.
and remember that at this point, i and j are already known, and give the first and last matrix being considered, so for M1M2M3M4, i=1 and j=4. So the possibility to consider is (Mi...Mp)((Mp+1...Mj). That means that we look at array entries A[i][p] and A[p+1][j] to work out how many operations will be required for this particular possibility, and just remember the best found during the loop:

 A[i][j].numrows = A[i][i].numrows;

 A[i][j].numcols = A[j][j].numcols;

 best=infinity;
 for (int p=0; p<row; p+=1)

 { numops = A[i][i+p].numops +
 A[i+p+1][j].numops +

 A[i][i+p].numrows * A[i][i+p].numcols * A[i+p+1][j].numcols;

 if (numops<best)

 best=numops; }

 A[i][j].numops=best;

Of course, you know as well as anyone that you can’t just write “infinity” in a program, but you can easily think of a way around that. The decision to use a struct to hold the answers in the array has just appeared without much premeditation. It’s just one of those things:
struct results { int numrows, numcols, numops; };

results A[n][n];

is clearly the declaration in force.

That is almost the whole thing. After all the loops as done, A[0][n-1] will hold the answer: the minimum number of individual multiplications required to find the product M0M1M2M3...Mn-1.

Here’s our final result table in array form, only showing the .numrows, .numcols, and .numops struct items:
	
	0
	1
	2
	3
	4
	5
	6

	0
	0

8(5
	270
8(7
	225
8(3
	369
8(6
	393
8(4
	549
8(7
	462
8(3

	1
	
	0

5(7
	105
5(3
	195
5(6
	237
5(4
	366
5(7
	342
5(3

	2
	
	
	0

7(3
	126
7(6
	156
7(4
	303
7(7
	255
7(3

	3
	
	
	
	0

3(6
	72
3(4
	156
3(7
	192
3(3

	4
	
	
	
	
	0

6(4
	168
6(7
	156
6(3

	5
	
	
	
	
	
	0

4(7
	84
4(3

	6
	
	
	
	
	
	
	0

7(3

Remember how to interpret it. Looking down the major diagonal, we see that seven matrices are being multiplied together, and their sizes are M0:8(5, M1:5(7, M2:7(3, M3:3(6, M4:6(4, M5:4(7, M6:7(3. Picking a random entry from elsewhere, let’s look at A[1][4], this represents calculating the product M1M2M3M4, and tells us that M1M2M3M4 has size 5(4, and requires a minimum of 237 numeric multiplications.
Except that answer isn’t very useful alone. It tells us how many multiplications are needed if the matrix products are done in the right order, but doesn’t tell us what that order is. The only thing we need to do is remember which possibility p it is that gives the best result at each stage:

for (int p=0; p<row; p+=1)

 { numops = A[i][p].numops +

 A[p+1][j].numops +

 A[i][p].numrows * A[i][p].numcols * A[p+1][j].numcols;

 if (numops<best)

 { best=numops;

 bestplace=p; } }

 A[i][j].numops=best;

 A[i][j].place=bestplace;

Using this, and today’s example list of seven matrices: A(8(5), B(5(7), C(7(3), D(3(6), E(6(4), F(4(7), G(7(3), so M0(A, M1(B, M2(C, M3(D, M4(E, M5(F, M6(G, and n=7, when the algorithm is finished we would find the final answer at A[0][6]: numops=462 and place=0. That means that the fastest calculation of M0M1M2M3M4M5M6 was found when p=0, which in turn means that it was based on multiplying M0 by M1M2M3M4M5M6.
Just looking at the loops, it should be clear that the time taken to work all this out is proportional to n3. For a large list of matrices, that can be a big number, but nothing like the n! permutations that were needed by the brute-force method.

M0 was an input, so no trouble there, but how do we get M1M2M3M4M5M6? Simple, just look at A[1][6] and we see numops=342 and place=1. This means that it was based on multiplying M1M2 by M3M4M5M6.
In simple terms:

The best way to calculate Mi...Mj is stored at A[i][j]; for example, M2M3M4M5 is stored at A[2][5].

and:

If A[i][j].place = X, that means that the best way to calculate Mi...Mj is:

1) Calculate Mi...Mp+i, (by looking at A[i][p+i] of course),

2) Calculate Mp+i+1...Mj, (by looking at A[p+i+1][j] of course),

3) Multiply those two resultant matrices together.

This can be written as a nice little recursive function.

First, let’s have a utility function for producing the name of a matrix. It’s easy...
string name(int i)

{ string s="";

 s=s+(char)('A'+i);

 return s; }
The only tricky bit is to realise that the expression (‘A’+i) is based on ASCII codes:

if i is 0, (‘A’+i) is ‘A’.

if i is 1, (‘A’+i) is ‘B’.

if i is 2, (‘A’+i) is ‘C’.

The type-cast (char) is required to tell C++ that the expression is to be treated as a char to be added to the end of the string, not an int to be rendered in decimal first. Annoying, but you get used to it. Sort of.
So, how do you multiply together matrices Mi...Mj?
string HowMultiply(int i, int j)

{ if (i==j)

 return name(i);

 int split = best[i][j].place;

 string s = "(";

 s = s + HowMultiply(i, i+split);

 s = s + HowMultiply(i+split+1,j);

 s = s + ")";

 return s; }
To try it out, here’s our result table in array form, only showing the .place struct item:
	
	0
	1
	2
	3
	4
	5
	6

	0
	
	0
	0
	2
	2
	2
	0

	1
	
	
	0
	1
	1
	1
	1

	2
	
	
	
	0
	0
	0
	0

	3
	
	
	
	
	0
	1
	1

	4
	
	
	
	
	
	0
	0

	5
	
	
	
	
	
	
	0

	6
	
	
	
	
	
	
	

At A[0][5].place, we see the number 2. This means that in calculating M0M1M2M3M4M5 it was the third possibility for the split (they were counted 0, 1, 2, ...) that was best: not right after M0, not right after M1, but right after M2, giving (M0M1M2)(M3M4M5).
A trace of the recursive calls involved is:
If we ask “How do you multiply M0M1M2M3M4M5?”:

We call HowMultiply(0,5). It sees that split=2, so calls HowMultiply(0,2) and HowMultiply(3,5).

The call HowMultiply(0,2) sets split=0, so calls HowMultiply(0,0) and HowMultiply(1,2).

The call HowMultiply(0,0) immediately returns “A”.

The call HowMultiply(1,2) sets split=0 and calls HowMultiply(1,1) and HowMultiply(2,2).

The call HowMultiply(1,1) immediately returns “B”.

The call HowMultiply(2,2) immediately returns “C”.

so HowMultiply(1,2) returns “(BC)”.

so HowMultiply(0,2) returns “(A(BC))”.

The call HowMultiply(3,5) sets split=1, so calls HowMultiply(3,4) and HowMultiply(5,5).

The call HowMultiply(3,4) sets split=0 and calls HowMultiply(3,3) and HowMultiply(4,4).

The call HowMultiply(3,3) immediately returns “D”.

The call HowMultiply(4,4) immediately returns “E”.

so HowMultiply(3,4) returns “(DE)”.

The call HowMultiply(5,5) immediately returns “F”.

so HowMultiply(3,5) returns “((DE)F)”.

so HowMultiply(0,5) finally returns “((A(BC))((DE)F))”.

If you prefer it as string substitutions, let “hm” stand for HowMultiply, and always expanding the first (left-most) function call first...
 hm(0,5)

= “(” + hm(0,2) + hm(3,5) + “)”

= “(” + “(” + hm(0,0) + hm(1,2) + “)” + hm(3,5) + “)”

= “(” + “(” + “A” + hm(1,2) + “)” + hm(3,5) + “)”

= “(” + “(” + “A” + “(” + hm(1,1) + hm(2,2) + “)” + “)” + hm(3,5) + “)”

= “(” + “(” + “A” + “(” + “B” + hm(2,2) + “)” + “)” + hm(3,5) + “)”

= “(” + “(” + “A” + “(” + “B” + “C” + “)” + “)” + hm(3,5) + “)”

= “(” + “(” + “A” + “(BC)” + “)” + hm(3,5) + “)”

= “(” + “(A(BC))” + hm(3,5) + “)”

= “(” + “(A(BC))” + “(” + hm(3,4) + hm(5,5) + “)” + “)”

= “(” + “(A(BC))” + “(” + “(” + hm(3,3) + hm(4,4) + “)” + hm(5,5) + “)” + “)”

= “(” + “(A(BC))” + “(” + “(” + “D” + hm(4,4) + “)” + hm(5,5) + “)” + “)”

= “(” + “(A(BC))” + “(” + “(” + “D” + “E” + “)” + hm(5,5) + “)” + “)”

= “(” + “(A(BC))” + “(” + “(DE)” + hm(5,5) + “)” + “)”

= “(” + “(A(BC))” + “(” + “(DE)” + “F” + “)” + “)”

= “(” + “(A(BC))” + “((DE)F)” + “)”

= “((A(BC))((DE)F))”

It gets a bit much, doesn’t it.

Here’s the whole program. I accidentally changed some variable names, but nothing significant.

$ cat chainmat.cpp
#include <iostream>

#include <string>

int inputsizes[][2] = { {8,5}, {5,7}, {7,3}, {3,6}, {6,4}, {4,7}, {7,3} };

const int num = sizeof(inputsizes)/sizeof(inputsizes[0]);

struct info { int rows, cols, numops, place; };

info best[num][num];

string name(int i)

{ string s="";

 s=s+(char)('A'+i);

 return s; }

string HowMultiply(int i, int j)

{ if (i==j)

 return name(i);

 int split=best[i][j].place;

 string s="(";

 s=s+HowMultiply(i, i+split);

 s=s+HowMultiply(i+split+1,j);

 s=s+")";

 return s; }

void main(void)

{ for (int i=0; i<num-1; i+=1)

 { if (inputsizes[i][1]!=inputsizes[i+1][0])

 { cerr << "INCOMPATIBLE SIZES\n";

 exit(1); } }

 for (int row=0; row<num; row+=1)

 { for (int pos=0; pos<num-row; pos+=1)

 { int i=pos, j=row+pos, ans=0, which=0;

 best[i][j].rows=inputsizes[i][0];

 best[i][j].cols=inputsizes[j][1];

 for (int option=0; option<row; option+=1)

 { int curr=best[i][i+option].numops+

 best[i+option+1][j].numops+

 best[i][i+option].rows*best[i][i+option].cols*best[i+option+1][j].cols;

 if (curr<ans || ans==0)

 { ans=curr;

 which=option; } }

 best[i][j].numops=ans;

 best[i][j].place=which; } }

 cout << HowMultiply(0,num-1) << " takes " << best[0][num-1].numops << " ops\n"; }

$ CC chainmat.cpp
$ a.out
(A((BC)((DE)(FG)))) takes 462 ops

2. Knapsack, The Actual Algorithm
This one is much easier.

Call the package weights, or the numbers being combined, S1, S2, S3, ..., Sn. The number of packages is of course n, and the brute-force method of trying all combinations requires 2n combinations to be tried, and therefore n2n individual operations. Call the capacity of the van, or the desired sum, C.

Construct a table T with (n+1) rows and (C+1) columns.

T[r][c] will contain just 1 or 0 by the time we finish. T[r][c] means that there is some subset of S1, S2, S3, ..., Sr that adds up to exactly c.

For row i=0, there are no allowed packages, so the only possible sum is 0. T[0][0]=1, T[0][j]=0.

For every other row, i>0, only a very simple operation is required. T[i][j] is asking the question “can we make a sum of j using packages S1 to Si only?”. If the table is completed in a rational order, we have already worked out the previous row, and therefore already know if we can make a sum of j using packages S1 to Si-1 only. This new row differs in nothing more than the ability to use package Si where we couldn’t before.
So, if we could make the sum of j on the previous row, we can certainly still make it now: just opt not to use this new package.

Also, if we could make the sum of j-Si on the previous row, we can certainly make the sum of j now.

And there are no other possibilities.

So (for i>0), row i is completed by running through every column j, copying every 1 that appears in the row above (i-1) into row i twice: once immediately below, in the same column, and once Si positions to the right.

Using the class example { 4, 5, 8, 11, 11, 14, 14, 15, 18 }and a capacity of 22 (because that’s all that fits on the page), this is how the table fills up (leaving the zeros blank, it’s easier to read that way):
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

	-
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	4
	1
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	1
	
	
	
	1
	1
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	8
	1
	
	
	
	1
	1
	
	
	1
	1
	
	
	1
	1
	
	
	
	1
	
	
	
	
	

	11
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	
	1
	1
	1
	
	1
	1
	
	1

	11
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	
	1
	1
	1
	
	1
	1
	
	1

	14
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	1

	14
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	1

	15
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	1

	18
	1
	
	
	
	1
	1
	
	
	1
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	1

You can see immediately that only the sums 1, 2, 3, 6, 7, and 21 are impossible, and the time taken to work out all the possibilities is proportional exactly to the size of the table. It may be big, but will not even approach the n2n of the brute-force method.

What exactly do we learn from these two algorithms?
