511 Tuesday 25th January 2005 Reminders
1. Two Seemingly Similar Problems
1a. Boolean Satisfiability
Given a simple formula in Boolean logic, is there any way to make it true?

Studying hardware design, you get used to formulæ being presented in Disjunctive Normal Form, DNF, (or Sum of Products if you prefer more prosaic language). In this form, the problem is trivial. For example:

 _    ___   _ _    _ 
ABC + ABC + ABCD + AC

It doesn’t matter how complicated I make the formula, just pick the first disjunct, and make all of its components true: A=1, B=0, C=1, and that is enough to make the whole formula true. There are nine different valuations of the variables that make the formula true.
If the formula is not in such a friendly form, for example:

   _  _ _    _     
(A+B)(A+C)(C+D)(A+C)(C+D)
it is not so easy. That one can be solved by setting A=0, B=0, C=1, D=1, but that is the only possible solution this time, and it is not so easy to work out.
How can it possibly be hard? We all know that any logical formula can be converted into DNF, and DNF makes the problem trivial. The trouble is that the conversion into DNF can take a lot of work. Expanding that formula produces 32 terms which then need to be simplified before a solution can be extracted.
If the formula consists just of n terms anded together, with each term having only m variables (like in the example, in which m=2 and n=5), expansion produces mn terms before simplification. So although it is simple to solve the problem with a sum of products, and it is always possible to convert a formula into sum of products, that conversion can require an enormous amount of work.

The simple solution is to run through all possible valuations of the variables. Each variable can only be true or false, so n variables produces 2n combinations to try. For each combination, evaluating the formula is simple, but still requires some work. There is no limit to how complex a formula can be, so there is also no limit to how long an evaluation can take. It is normal to ignore the time taken for each evaluation, and just be concerned with the number of combinations required, because the result is so bad that making it worse doesn’t really make any difference!

In general there is no good solution to this problem. There are special cases (such as formulæ already in DNF) that can be solved quickly, but for the general case, producing an algorithm that can correctly solve the boolean satisfiability problem with n variables, at least 2n are required. Thus it is known as an exponential problem. The Brute Force solution is the only known solution.

1b. The Knapsack Problem
Given a collection of packages whose weights are known, and the maximum capacity of a truck, which subset of the packages can you put on the truck to maximise the weight taken without exceeding the maximum?
or

Given a set of numbers, can you find a subset whose sum exactly equals some particular value?
These two problem specifications are a little different, but computationally equivalent.

Example: there are six diamonds, weighing 4, 7, 8, 11, 13, and 17 pounds; you can carry an absolute maximum of 27 pounds; which diamonds should you take?

It isn’t exactly easy, is it? After some experimentation, you can see that it isn’t possible to make a total of 27 pounds, but you can make 26 (7+8+11), so that is the solution. But that example only involved six numbers, and was by no means thought-free. What if you had a really serious number of weights? Is there a good (fast) algorithm for solving the problem?

After some thought, this seems to be very similar to the Boolean Satisfiability problem. Every single package can be either taken or not taken. That is a yes/no boolean decision for each. With n packages, there are 2n possible combinations of n leave/take decisions, and each of them needs to be considered. The problem can be solved by constructing a kind of truth table:

 4  7  8 11 13 17

 0  0  0  0  0  0  sum is  0

 0  0  0  0  0  1         17

 0  0  0  0  1  0         13

 0  0  0  0  1  1         30

 ...   ...   ...         ...

 1  1  1  1  1  0         43
 1  1  1  1  1  1         60

After evaluating all  combinations, you’d see that the number 27 never appears as a possible sum, but 26 does, and that’s the best we’re going to get. It must take at least 2n operations to test 2n combinations, so we’ve got another exponential algorithm.  You can get away with such lazy logic because saying that an algorithm is exponential is taken to mean the time required is at least 2n. In this case, the true time is easy to work out: each combination requires testing n boolean conditions and adding those that are true to produce the sum, so the real number of operations is n2n.  Why don’t we care about the distinction?

Consider a real-sized problem. A delivery company could easily have 350 packages to deliver. 2350 is about 2,293,499,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000, whereas 350(2350 is about 802,725,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000. What’s the difference? Both are out of the question. Knowing that an algorithm is exponential is enough to know that it can’t be used for anything but trivial examples. Knowing that it’s really even worse makes no difference at all.
Interestingly, there is a nice fast algorithm that works well for all practical instances of the knapsack problem.
2. Two More Seemingly Similar Problems
2a. Travelling Salesman
There is a set of locations that you must visit; you know the cost of travelling between any pair of them. What is the cheapest route that takes you through each location exactly once? (“exactly once” means what it says: you are not allowed to visit the same location twice, even if it makes the trip cheaper)

For simplicity, the input to the problem may be presented in a square array. The number at A[i][j] is the cost of travel directly between location i and location j. It is not necessary that A[i][j]=A[j][i], just like in the real world.

In most versions of the problem, we also require that the traveller returns to his/her/it starting point at the end of the journey. This makes no difference to the computational difficulty.

This is another one of those problems that a lot of people have put a lot of effort into solving. So far, the only known solution is the Brute Force method again. Every trip can be represented by the list of locations in the order in which they were visited. If every location must be visited exactly once, then a solution is simply a permutation of the set of locations.

Example: if there are four locations, called A, B, C, and D, then there are 24 possible complete traversals: ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD, CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB, DCBA. If there are n locations, then there are n! possible permutations to explore. The cost of each permutation must be computed by adding together the costs of the (n-1) individual location-to-location trips, so the total number of operations required is (n-1)(n!.  This is even worse than 2n, just take a small number to see:


220 = 1,048,576
20! ( 2,421,000,000,000,000,000

So although it is a bit lazy, we are happy to say that the travelling salesman problem is exponential too. It is worse than exponential, but is there really anything worse than insoluble?

2b. Chain Matrix Multiplication
The familiar problem (we started looking at it a week ago, q.v.)  of having to multiply together a large number of matrices, realising that the order of the multiplications can make a huge difference to the time taken, so trying to work out the best order for doing the multiplications.

With n matrices to multiply, there are (n-1) matrix multiplications, so (n-1)! different orderings for those multiplications. It has all the signs of being a practically insoluble problem for any large number of matrices.

But in this case there is a very good trick.

Here is the example. We are to multiply five matrices, A, B, C, D, and E. Their sizes are respecitvely 7(3, 3(5, 5(2, 2(6, 6(4 (rows(columns). We complete the following table:

	A

7(3

0
	B

3(5

0
	C

5(2

0
	D

2(6

0
	E

6(4

0

	
	AB

7(5

105
	BC

3(2

30
	CD

5(6

60
	DE

2(4

48
	

	
	ABC

7(2

???
	BCD

3(6

???
	CDE

5(4

???
	

	
	
	ABCD

7(6

???
	BCDE

3(4

???
	
	

	
	
	ABCDE

7(4

???
	
	


Each entry in this table shows a matrix that is known or could be computed, its size, and the number of operations that would be required to compute it. The five input matrices are givens, and require no computation. For those on the second row, you just need to remember that multiplying together an a(b matrix and a c(d matrix requires that b=c, produces a a(d matrix, and requires a(b(d individual numeric multiplication operations. That is how we know that it would require 105 operations to produce AB.
To calculate ABC, we have two possibilities: calculate either (AB)C or A(BC).

(AB)C:

(AB) is a 7(5 matrix, and C is a 5(2 matrix, so the multiplication requires 7(5(2=70 operations, but it would take 105 operations to produce AB, so a total of 105+70=175 operations is required to produce (AB)C.

A(BC):

A is a 7(3 matrix, and (BC) is a 3(2 matrix, so the multiplication requires 7(3(2=42 operations, but it would take 30 operations to produce BC, so a total of 42+30=72 operations is required to produce A(BC).

We know that (AB)C and A(BC) must be the same, and we have seen that A(BC) requires much less work, so the only reasonable way to compute ABC is as A(BC), which would require 72 operations.

In exactly this manner, the third row of the table can be completed:

	
	ABC

7(2

72
	BCD

3(6

66
	CDE

5(4

88
	


To calculate ABCD, we have three possibilities, not six: calculate (ABC)D, (AB)(CD), or A(BCD).

(ABC)D:

(ABC) is a 7(2 matrix, and D is a 2(6 matrix, so the multiplication requires 7(2(6=84 operations, but we have just worked out that it would take 72 operations to produce ABC, so a total of 72+84=156 operations is required to produce (ABC)D.

(AB)(CD):

(AB) is a 7(5 matrix, and (CD) is a 5(6 matrix, so the multiplication requires 7(5(6=210 operations, but we already know that it would take 105 operations to produce AB and 60 for CD, so a total of 105+60+210=375 operations is required to produce (AB)(CD).

A(BCD):

A is a 7(3 matrix, and (BCD) is a 3(6 matrix, so the multiplication requires 7(3(6=126 operations, but we have just worked out that it would take 66 operations to produce BCD, so a total of 66+126=192 operations is required to produce A(BCD).

Therefore the only reasonable way to calculate ABCD is as (ABC)D, at a cost of 156 operations. 
In exactly this manner, the fourth row of the table can be completed:

	
	
	ABCD

7(6

156
	BCDE

3(4

102
	
	


Finally, to calculate ABCDE, we have four possibilities, not 24:

(ABCD)E:

(ABCD) is a 7(6 matrix, and E is a 6(4 matrix, so the multiplication requires 7(6(4=168 operations, but we have just worked out that it would take 156 operations to produce ABCD, so a total of 156+168=324 operations is required to produce (ABCD)E.

(ABC)(DE):

(ABC) is a 7(2 matrix, and (DE) is a 2(4 matrix, so the multiplication requires 7(2(4=56 operations, but we already know that it would take 72 operations to produce ABC and 48 for DE, so a total of 72+48+56=176 operations is required to produce (ABC)(DE).

(AB)(CDE):

(AB) is a 7(5 matrix, and (CDE) is a 5(4 matrix, so the multiplication requires 7(5(4=140 operations, but we already know that it would take 105 operations to produce AB and 88 for CDE, so a total of 105+88+140=325 operations is required to produce (AB)(CDE).

A(BCDE):

A is a 7(3 matrix, and (BCDE) is a 3(4 matrix, so the multiplication requires 7(3(4=84 operations, but we have just worked out that it would take 102 operations to produce BCDE, so a total of 102+84=186 operations is required to produce A(BCDE).

Therefore the only reasonable way to calculate ABCDE is as (ABC)(DE), at a cost of 176 operations. 

	
	
	ABCDE

7(4

176
	
	


So ABCDE is best computed as (ABC)(DE), and ABC is best computed as A(BC), so the best ordering for the multiplications is (A(BC))(DE).

There are three questions to ask:

Is this method really correct and generally applicable?

Was it really faster than checking all permutations?

How easily can it be implemented as a program?

I hope we can say “yes” to the first without further ado.

The answer to the second is also “yes”, but we’ll quantify that properly.

And we’ll see that the answer to the third is “very”.

Then we’ll wonder whether this is just a once-off good trick, or if it might lead to a useful general method.

