1. Software Management

This is generally not a very interesting topic for engineers, so we condense it into something short. The sad truth is that technical people don’t get the best pay, that is reserved for management positions. People trained in management are not more capable or more intelligent than technical experts, and they certainly aren’t very rare. Managers make the decisions, so of course they decide that management people should get the best pay. It is so ingrained into society that people tend to think it is beyond question, but is there really any logical reason why being the decision maker should earn the greatest rewards?

To join the management caste, you have to be able to speak their language, which includes things like software metrics and cost estimations, which we’ll look at later. You also have to be able to make policy decisions, such as what kind of programming environment is to be used, and that means you should be aware of the kind of problems that can be caused by a wrong choice. This example explores that.
The code you see below (written in Fortran) is claimed to be part of the actual code used in the Mariner 1 Mars Probe’s guidance system. I wasn’t there, so can’t guarantee that this really is the genuine code, but it is typical Fortran, it does contain the right error, and appeared in two independent places, so I’m willing to accept that it is at least close enough.

Mariner 1 was launched in 1962, and was intended to go to Mars, but didn’t. Nobody knows where it really went. Can you tell why?

	Intended Program
	Typed Program

	   ...

   IF (TVAL .LT. 0.2E-2) GOTO 40

   DO 40 M = 1, 3

   W0 = (M-1)*0.5

   X = H*1.74533E-2*W0

   DO 20 N0 = 1, 8

   EPS = 5.0*10.0**(N0-7)

   CALL BESJ(X, 0, B0, EPS, IER)

   IF (IER .EQ. 0) GOTO 10

20 CONTINUE

   DO 5 K = 1, 3

   T(K) = W0

   Z = 1.0/(X**2)*B1**2+3.0977E-4*B0**2

   D(K) = 3.076E-2*2.0*(1.0/X*B0*B1+3.0977E-
  1  4*(B0**2-X*B0*B1))/Z

   E(K) = H**2*93.2943*W0/SIN(W0)*Z

   H = D(K)-E(K)

 5 CONTINUE

10 CONTINUE

   Y = H/W0-1

40 CONTINUE

   ...

	   ...

   IF (TVAL .LT. 0.2E-2) GOTO 40

   DO 40 M = 1, 3

   W0 = (M-1)*0.5

   X = H*1.74533E-2*W0

   DO 20 N0 = 1, 8

   EPS = 5.0*10.0**(N0-7)

   CALL BESJ(X, 0, B0, EPS, IER)

   IF (IER .EQ. 0) GOTO 10

20 CONTINUE

   DO 5 K = 1. 3

   T(K) = W0

   Z = 1.0/(X**2)*B1**2+3.0977E-4*B0**2

   D(K) = 3.076E-2*2.0*(1.0/X*B0*B1+3.0977E-
  1  4*(B0**2-X*B0*B1))/Z

   E(K) = H**2*93.2943*W0/SIN(W0)*Z

   H = D(K)-E(K)

 5 CONTINUE

10 CONTINUE

   Y = H/W0-1

40 CONTINUE

   ...



Fortran was the language for scientific programming for a very long time. Originally designed in about 1957, it is very much a product of its time.  Back then, the job of a programming language was simply to automate the annoying and time-consuming tasks of programming, writing assembly language to evaluate expressions and test conditions wasn’t hard, but also wasn’t a very good use of a highly trained programmer’s time. Fortran was barely more than a system for automatically converting expressions, conditions, and loops into assembly language, and automatically allocating memory for variables. It had no structure, no { and } (or “begin” and “end”), no local variables, and no structured loops (you had to use conditional jumps, IF ... GOTO ...). Simply using a new variable was enough to have it automatically declared for you. 

The designers thought that would be good for programming productivity: you don’t have to waste time declaring your variables. They also decided that spaces would be completely ignored; that would make it easier to type programs correctly, if spaces don’t matter you can’t possibly get them wrong. As a result, the following lines of Fortran were functionally identical:
DO 5 K = 1, 100

D O 5 K = 1 , 1 0 0

DO5K=1,100

DO5K = 1,100

They are examples of an automatic loop statement, similar to the modern “for” loop. They mean that a group of statements are to be executed repeatedly, with the variable K ranging between 1 and 100, in C you would write “for (k=1; k<=100; k+=1)”.  The number 5 indicates which statements are to be repeated: the loop consists of all statements up to and including the one that has the numeric label 5 to the left of it.

Unfortunately,

DO 5 K = 1, 3

and

DO 5 K = 1. 3

look very similar. It is really hard to tell them apart. The first one is a valid loop, the second because it has no comma, isn’t. But the second is a valid assignment, it means set the variable called DO5K to the value 1.3 (remember, all spaces are ignored).  The only difference between the two statements is the two pixels that differentiate a comma from a dot. That one little change turns a perfectly valid loop statement into a perfectly valid assignment statement. There are no compilation errors, the program still runs, but it doesn’t do what it was supposed to do.
The problem is that there is very little redundancy. Making programmers type a little more, perhaps designing a keyword for use in loops: “DO 5 K = 1 TO 3”,  would not make programming any harder, and would not even significantly slow typing. It would result in much more reliable programs; one single typing error would be likely to produce an incorrect program that could be detected by the compiler.

This lesson was successfully learned. Through the sixties and seventies, programming language design favoured the use of typed keywords rather than single symbols of punctuation. Just a few examples:

instead of 
{ and }
use
begin and end
instead of
if (x==3) y=4
use
if x=3 then y=4
instead of
int A[10]
use
var A: array [0..9] of integer
instead of
for (x=1; x<10; x++) y*=x
use
for x=1 to 10 do y*=x
You may have noticed that those examples are in fact comparing C++ (not Fortran) with something else (Pascal, a typical language of the 70’s). We did learn the lesson once, Pascal programs do not suffer from undebuggable typing errors, but then we un-learned the lesson. C and C++ are just as bad as Fortran in this respect.

To complete the picture, Cobol is a programming language designed not long after Fortran (about 1961). But Cobol was designed for business programming: shovelling data from one place to another, formatting things nicely, and preparing commercial reports. Programming in Cobol is rather like filling in a soviet tax form in triplicate. At least everything is spelled out, and meaning does not depend on the placement of single punctuation symbols. A typing mistake in a Cobol program is very likely to be detected by the compiler.

Think of all the time you’ve wasted searching for errors that turned out to be mere typing mistakes (in C/C++, misplaced semicolons are common culprits). Wouldn’t it be nice if that never happened? Think of the productivity gain.  Of course, most people would agree that Cobol goes much too far in the opposite direction.

Generic Sample COBOL program for contrast.

IDENTIFICATION DIVISION.

PROGRAM-ID.  SeqRead.

AUTHOR.  Michael Coughlan.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

    SELECT StudentFile ASSIGN TO "STUDENTS.DAT"



ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD StudentFile.

01 StudentDetails.

   88  EndOfStudentFile  VALUE HIGH-VALUES.

   02  StudentId       PIC 9(7).

   02  StudentName.

       03 Surname      PIC X(8).

       03 Initials     PIC XX.

   02  DateOfBirth.

       03 YOBirth      PIC 9(4).

       03 MOBirth      PIC 9(2).

       03 DOBirth      PIC 9(2).

   02  CourseCode      PIC X(4).

   02  Gender          PIC X.

PROCEDURE DIVISION.

Begin.

   OPEN INPUT StudentFile

   READ StudentFile

      AT END SET EndOfStudentFile TO TRUE

   END-READ

   PERFORM UNTIL EndOfStudentFile

      DISPLAY StudentId SPACE StudentName SPACE CourseCode SPACE YOBirth

      READ StudentFile

         AT END SET EndOfStudentFile TO TRUE

      END-READ

   END-PERFORM

   CLOSE StudentFile

   STOP RUN.

2. Data Structures
Suppose you have a million personnel records, just consisting of name, employee number, and salary, and need rapid access to them. Given the size, it should be quite feasible to get a computer with enough memory to keep them all in RAM, so the slowness of disc access can be avoided.

The important question is: given the nature of the data, how should it be stored? What kind of variable or class declarations would you want to use in order to provide efficient fast access to the data?

The topics of data structures, algorithms, and analysis are all really one big topic: a data structure is useless without an appropriate algorithm for accessing it. The term “data structures” is usually used to denote a more practical approach to the same subject.
The two solutions usually suggested involve creating a struct to represent an individual record, then creating either an array of those structs, or a linked list.  What are the advantages and disadvantages of those two solutions?

Array advantages:

· Immediate access to any position

· If data is sorted, searches can be very fast (using Binary Chop Search), with one million items, guaranteed worst case of 20 items need to be accessed

Linked List advantages:

· Flexible size: an empty linked list occupies no space; size does not need to be known in advance. The worst case for searching a linked list of a million items involves having to access all million items.

It is always slow to find anything in a linked list, as each item can only be reached via the previous item. Even sorting the data makes no significant difference, binary chop searches are not possible.

Once an array is created its size can not change. That means that there can be a lot of wasted memory if the data size is not accurately known. However, linked lists do waste some memory: every item needs to hold a pointer to the next.

What if we could get the best of both worlds: something that has a flexible size and can grow as needed, occupying no space when empty, but which still gives the speed of binary chop search (50,000 times faster for a million items)? What if we didn’t even need to sort the data first?
That is exactly what a Binary Tree is: a linked-list like structure designed to support binary chop search, and be essentially self-sorting. That will be one of the things we study in depth.

Can we do even better? Yes. There is a data structure called a Hash Table which, if managed well, can result in an average case on ONE item having to be accessed when searching for something, regardless of the amount of data stored. That is something else we will be studying.

3. Fundamental Things
Here, we will be looking at the most fundamental theory of computing. For a quick introduction to the ideas, think about the answers to these few questions:
a)
How many Natural Numbers are there?

b)
How many Rational Numbers are there?

c)
How many Real Numbers are there?

d)
How many possible programs are there?

Just as a reminder, Natural Numbers means positive integers: 0, 1, 2, 3, 4, 5, 6, .....

Rational Numbers means Fractions: 1/2, 3/7, 9211/171, 5/1, ....

Real Numbers means what you’d expect: 1.27, 5.0, (, e2, ...

You probably know what a program is.

Naively, a person might answer “infinity” to all of those, but a little thought should result in the realisation that the answers might not all be the same.

Obviously, any natural number can be written as a fraction, 6 is the same as 6/1. But most fractions can not be written as a natural number: 3/7 is just not whole. So we might conclude that although (a) and (b) are both infinite numbers, (b) is a bigger infinity than (a).

Similarly, it is obvious that there are more real numbers than natural numbers, but how do rationals and reals compare? At first sight they seem to be the same, but you are probably aware that some real numbers (e.g. () can not be written as a fraction, so maybe the sizes are different.

An important thing to learn is that obvious things are not always true things. The world is obviously flat, but of course it isn’t.
It is possible to show (and you will be shown it later in the semester) that (a) and (b) are in fact exactly the same size, but (c) is genuinely bigger. So there are at least two different infinities, and they don’t behave in completely obvious ways.

Now it is easy to give a relative answer to (d). A program in any language is just a sequence of ASCII characters, and all ASCII characters have an integer code between 0 and 127. This means that the characters of a program can be seen as just digits in base 128, and a whole program is just a big number written in base 128. For example, if “CAT” were a valid program in some language, under ASCII, C=67, A=65, T=84, so as a base 128 number, CAT is 67(1282+65(1281+84(1280 = 1106132.

Any string of characters can be converted into a unique natural number, and any natural number can be converted to a unique string by reversing the process. There is a direct one-to-one correspondence between strings and natural numbers, so the two sets must be the same size.

Every program is a string, but not every string makes a real program. So the number of possible programs is no bigger than the number of natural numbers (although it is obviously still infinite).

So we know that (d) is no bigger than (a), and (a) is smaller than (c). Therefore (d) is smaller than (c). The number of possible programs is smaller than the number of real numbers.

Therefore there are some real numbers that can not be computed.

It is not so hard to imagine that some tasks may be uncomputable, some problems insoluble, but now we know that some things as simple as plain old numbers are uncomputable. What does that really mean? What is the significance? It is probably worth knowing if a particular problem is guaranteed to be insoluble before devoting any resources to trying to solve it.
