This is “Halstead’s Software Science”.
Take a program, for example this little bit of one.

int f=1, n=7;

for (int i=1; i<=n; i+=1)

 f*=i;

An “operator” is a fixed symbol or reserved word in a language, and “operand” is everything else: variable names, function names, numeric constants, etc. Comments don’t count.

define n1 to be the number of unique operators, in the example there are 10:

int = , ; for (<= +=) *=

define n2 to be the number of unique operands, in the example there are 5:

f 1 n 7 i
define N1 to be the number of operators, in the example there are 16:

int = , = ; for (int = ; <= ;

+=) *= ;
define N2 to be the number of operands, in the example there are 12:

f 1 n 7 i 1 i n i 1 f i
define N, the length of the program to be N1+N2 (example 28)
define V, the volume of the program, to be (example 109.4)

N × log2(n1 + n2)
define D, the difficulty of the program, to be (example 12)

(n1 × N2) ÷ (n2 × 2)
define E, the effort required to write the program, to be (example 1312.8)
D × V
calculate B, the number of bugs you should expect in the program as (example 0.04)

E0.667÷3000
calculate T, the time it took to write the program as (example 73 seconds)

E÷18 seconds
Write a program that can read a clean C++ program and work out what T is. Try it on some samples. Assess and critique the results. Try to explain as much of you can of Halstead’s reasoning in inventing these formulae.
