Assume that an enumeration of real numbers $0 \le x < 1$ exists.

Let E be such an enumeration, $E = \langle E_0, E_1, E_2, E_3, E_4, ... \rangle$ where E_i is the *i*th number in the enumeration.

Now think of each of those numbers in Binary, we assume a "0." in front of each to make the range be $0 \le x < 1$.

We couldn't write out the table because it is infinite in both directions: there are an infinite number of E_i s in the enumeration, and being real numbers, many of them are infinite in length.

If N is a number, let N|j represent the jth digit of N, with N|0 being the digit immediately following the "decimal point".

So without making any assumptions about what the enumeration is, we can write it out as

 $E_0 = 0$. $E_0 | 0 E_0 | 1 E_0 | 2 E_0 | 3 E_0 | 4 E_0 | 5 E_0 | 6 E_0 | 7 E_0 | 8 E_0 | 9 ...$ $E_1 = 0$. $E_1 | 0$ $E_1 | 1$ $E_1 | 2$ $E_1 | 3$ $E_1 | 4$ $E_1 | 5$ $E_1 | 6$ $E_1 | 7$ $E_1 | 8$ $E_1 | 9$... $E_2 = 0$. $E_2 | 0 E_2 | 1 E_2 | 2 E_2 | 3 E_2 | 4 E_2 | 5 E_2 | 6 E_2 | 7 E_2 | 8 E_2 | 9 ...$ $E_3 = 0$. $E_3 | 0 E_3 | 1 E_3 | 2 E_3 | 3 E_3 | 4 E_3 | 5 E_3 | 6 E_3 | 7 E_3 | 8 E_3 | 9 ...$ $E_4 = 0$. $E_4 | 0 E_4 | 1 E_4 | 2 E_4 | 3 E_4 | 4 E_4 | 5 E_4 | 6 E_4 | 7 E_4 | 8 E_4 | 9 ...$ $E_5 = 0$. $E_5 | 0$ $E_5 | 1$ $E_5 | 2$ $E_5 | 3$ $E_5 | 4$ $E_5 | 5$ $E_5 | 6$ $E_5 | 7$ $E_5 | 8$ $E_5 | 9$ ••• ••• •••

Now I can construct a number X, where $X | i = not(E_i | i)$

X = 0 . $not(E_0 | 0)$ $not(E_1 | 1)$ $not(E_2 | 2)$ $not(E_3 | 3)$ $not(E_4 | 4)$ $not(E_5 | 5)$...

If X is in the enumeration, then X must = E_j for some j, and if two numbers are the same, all their digits are the same.

But $X \neq E_0$ because $X | 0 \neq E_0 | 0$ and $X \neq E_1$ because $X | 1 \neq E_1 | 1$ and $X \neq E_2$ because $X | 2 \neq E_2 | 2$ and $X \neq E_3$ because $X | 3 \neq E_3 | 3 \dots$ etc.

In fact X is different from all of the $E_{i}\xspace$ in at least one digit position.

Therefore X is not in the enumeration.

But X is a real number, $0 \le x < 1$.

Therefore E is not an enumeration of real numbers $0 \le x < 1$. That is deduced from a single assumption, that E *is* such an enumeration.