
STATEMENTS

BCPL is not case sensitive. The reserved words of the language (if, unless, while, etc) may
be typed in any combination of capital and lower case letters.

Assignment

destination := expression

destination operator := expression for any dyadic operator, equivalent to
 destination := (destination) operator expression

Destinations for assignments, properly called L-values, may be:

The name of any variable
! E, where E is any expression - see the section on expressions
E ! F, where E and F are any expressions - see the section on expressions
E from F - see the section on expressions
E of F - see the section on expressions

Conditional

if expression then statement do may be used in place of then

unless expression do statement ≡ if not expression do statement

test expression then statement or statement
 do may be used in place of then
 else may be used in place of or

In conditional and loop expressions, 0 is taken as false, all other values are taken as true.

Loops

while expression do statement

until expression do statement ≡ while not expression do statement

statement repeat ≡ while true do statement

statement repeatwhile expression the statement is always executed once before the
 condition is ever tested.

statement repeatuntil expression

for variable = expression to expression do statement
 variable is declared as local to the loop.
 The to expression is evaluated only once, before
 the loop begins.
 If the loop is to count down, “by -1” must be
 stated explicitly
for variable = expression to expression by expression do statement
 the by expression must be a compile-time constant

break same as in C++

loop ≡ C++’s continue

Function call

expression ()
expression (expression)
expression (expression , expression)
expression (expression , expression , expression)
expression (expression , expression , expression , expression)
 etc, etc, etc.

Any number of parameters may be provided, regardless of the number specified in the
function’s declaration. No check is performed.
If the function returns a result (i.e. uses resultis instead of return), there is no
error, the result is ignored.

Special version of function call

f (val1) := val2 ≡ f (val1 , val2)
f (val1 , val2) := val3 ≡ f (val1 , val2 , val3)
 etc, but inside the function f the special constant lhs will be true.

Exitting

return exits from “void” function

resultis expression exits from non-void function or a valof

finish terminates the whole program

Blocks

{ } do nothing
{ statement }
{ statement ; statement }
{ statement ; statement ; statement }
{ statement ; statement ; statement ; statement } etc, etc, etc.

All declarations must appear before the first regular statement.
Semicolons are used to separate statements, they are not parts of those statements.
The semicolon is not required immediately after a } symbol.

Jumps

goto expression expression should evaluate to a label

label : statement or
label : } attaches a label to a goto destination
 labels are just names, same rules as variables
 labels are local to the block they appear in

Multi-way jump

switchon expression into statement statement should be a block containing
 case statements and optionally a default
case expression : statement
case expression ... expression : statement
default : statement
default expression ... expression : statement
 in case and default statements the expressions
 must be compile-time constants.
endcase ≡ C++’s break in a switch

On executing switchon E into S, the expression E is evaluated and a jump is
made directly to the statement inside S (which should be a block) that has the matching
case label.

If there is no case statement matching the expression, the jump is to the statement
with the default label. If there is no default statement, the whole switchon has no effect.
If the default statement has a range of expressions and the switchon expression is outside that
range, again the whole switchon has no effect.

Once a case or default has been jumped to, the following statements are also executed
until the end of the switchon is reached, even if other case statements are reached.

Miscellaneous

debug expression expression must be compile time constant
 causes an interruption to program execution and transfer of
 control to the assembly language debugger.

DECLARATIONS

Names chosen for variables, constants, and functions must begin with a letter and may contain
any combination of letters, digits, underlines, and dots. Capital and lower case letters are the
same: Number, number, and NUMBER are the same thing.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 _ .

Local Variables inside any block, before the first regular statement.

let item , item , item , item ...

items may be: variable
 variable = expression
 variable = vec expression
The third form creates an array of the indicated size, and sets the value of the new variable to
be the address of the first element of the array. The expression used to indicate the array’s
size must be a compile-time constant. The array has the same lifetime as the variable.

Very Local Variables

statement where item , item , item , item ...

Any statement may be followed by a where clause, which introduces new variables that are
local to that single statement, for example:

y := t * (t+1) where t = 3*x+5

Global Variables

May be declared using the same syntax as local variables but outside of any function.

Static Variables

static { item , item , item , item ... }

May be global (in which case they are exactly the same as global variables) or local to any
block. A local static variable has the same lifetime as a global variable, it will retain its value
from one execution of its block to the next.

Named Constants

manifest { name = value , name = value , name = value , ... }

May be global or local. The values must be compile-time constants.

Functions

let name (parameters) be statement for “void” functions

let name (parameters) = expression for functions that return a value

parameters is a list of names separated by commas. If there are no parameters, an empty pair
of parentheses is still required. Normally the statement will be a block enclosed in { }, but
that is not necessary.

The function may be called with any number of parameters, regardless of the number
appearing in the declaration. The standard library function numbargs() may be used inside
the function at run time to find out how many were actually passed in.

Functions may be global as in C++, but they may also be declared local to another function or
block.

Simultaneous Declaration of Functions

let name (parameters) be statement
and name (parameters) be statement
and name (parameters) be statement ...

The “= expression” form may be used instead of the “be statement” form shown. All of the
functions are declared before any of the statements are processed by the compiler, so the later
functions may refer to the earlier ones without violating the declare-before-use rule. This is
necessary to allow mutually recursive functions.

COMMENTS

Comments are exactly the same as in C:
after // ignore everything up to the end of the line,
after /* ignore everything up to and including the next */.

PROGRAMS

A BCPL program consists of a sequence of declarations of functions, named constants, and
global variables. To be complete, a program must have a function called start, which serves
the same purpose as main in C++.

Amongst the declarations in a program, there may also be directives to make use of pre-defined
libraries, these have the form

import "name"

The standard library of input/output functions is accessed through import "io"

EXPRESSIONS, in order of decreasing priority

1. Atomic expressions

indentifier

The name of any variable, manifest constant, or function.
The value of a function name is the address of the memory location that
contains its first executable instruction.

integer constants
may be written in:

decimal, using only the digits 0 to 9
binary, being prefixed by 0b and using only the digits 0 to 1

example: 0b1001 is equivalent to 9.
octal, being prefixed by 0o and using only the digits 0 to 7

example: 0o123 is equivalent to 83.
hexadecimal, being prefixed by 0x and using only the digits

0 to 9, A to F, and a to f
example: 0x1A2 is equivalent to 418.

floating point constants
may be written only in decimal, using the digits 0 to 9, and must contain
either a decimal point, or use the E notation to represent “times ten to the
power of”, or both. Examples:

1.0
123.4
0.157
.98765
1e3 is equivalent to 1000.0
1.23E3 is equivalent to 1230.0

1.234567e+1 is equivalent to 12.34567
468e-12 is equivalent to 0.00000000000468

Beware: a preceding + or - sign is not considered to be part of the
number, but the use of a separate monadic operator. To produce a valid
negative floating point number, the floating point #- operator must be
used.

string constants
consist of any number of characters except line breaks, surrounded by
double "quotes". Special characters are represented in the C style, using
two character combinations beginning with \:

\\ represents a single \, ascii code 92.
\′ represents a single ′, ascii code 39.
\" represents a single ", ascii code 34.
\n represents a new-line character, ascii code 10.
\r represents a carriage return, ascii code 13.
\t represents a tab, ascii code 9.
\b represents a backspace character, ascii code 8.
\s represents a normal space, it is just a way to make them visible.

The value of a string constant is the address in memory where the
characters are stored, terminated with a NUL character (ascii code 0), and
packed four to each word.

character constants
consist of one to four characters surrounded by single ′quotes′. The same
\ notation described for strings is used for special characters. The value of
a single quoted character (e.g. ′x′) is its ascii code. Multiple quoted
characters are packed into the four 8 bit bytes that fit in a 32 bit word.

parenthesised expressions
Any valid expression may be surrounded by brackets in the usual way.
Round brackets (2+3) and square brackets [2+3] may both be used,
and have the same meaning, but they must be correctly matched.

valof block
Any normal block of code (declarations and statements surrounded by {})
may be converted into an expression by valof. The resultis
statement is used to indicate the final value. Example:
 x := y + valof { let f = 1;
 while n > 0 do
 { f *:= n;
 if f>1000 then resultis f;
 n -:= 1 }
 resultis f/2 } * 7

true
Equivalent to -1, a 32 bit value in which every bit is set to 1.

false
Equivalent to 0.

nil
Equivalent to 0. Intended to represent a null pointer.

2. Function calls

expression ()
expression (expression)
expression (expression , expression)
expression (expression , expression , expression)
expression (expression , expression , expression , expression)
 etc, etc, etc.

If the function does not return a result (i.e. uses return instead of resultis), there
is no error, but the value of the expression is indeterminate.

3. Monadic operators E represents any valid expression

+ E

Has no effect
- E

Integer negation. The value is 0 - E.
#- E

Floating point negation. The value is 0.0 - E.
not E
~ E

Logical negation. Each of the 32 bits of E is switched over 0 to 1 and 1 to 0.
! E

Pointer following. The value of the expression is whatever is stored in
memory location E.

This form is also allowed as an L-value in an assignment statement:
 ! E := F
changes the value stored in memory location E to become F.

abs E
Integer absolute value. If E is positive, the value is E. If E is negative, the
value is - E

#abs E
Floating point absolute value. If E is positive, the value is E. If E is negative,
the value is #- E

fix E
Conversion from floating point to integer. The result is truncated towards
zero.

float E
Conversion from integer to floating point.

@ E
Address of. E must be a variable, the result is the numeric address of the
memory location used to store E’s value. ! @ E is the same as just E.

4. Infix function call A, B represent any valid expression

A %F B

F must be the name of a function.
x %fun 24 is exactly equivalent to fun(x, 24)

5. Array and structure access A, B represent any valid expression

A ! B

A ! B is exactly equivalent to !(A+B)
Either A or B should be the address of the first memory location in a vector
(array or data structure), and the other should be an integer index into that
vector. The result is the value stored at that position in the vector.

This form is also allowed as an L-value in an assignment statement:
 A ! B := C
changes the value stored at that position in the vector to C.

6. To the power of A, B represent any valid expression

A ** B

Integer to integer power, integer result.
A #** B

Floating point to integer power, floating point result.

7. Multiplication-like operators A, B represent any valid expression

A * B

Integer multiplication, meaningless results if either operand is floating point.
A #* B

Floating point multiplication, meaningless results if either operand is integer.
A / B

Integer division, meaningless results if either operand is floating point.
A #/ B

Floating point division, meaningless results if either operand is integer.
A rem B

Both operands should be integer values. Remainder after division.

8. Addition-like operators A, B represent any valid expression

A + B

Integer addition, meaningless results if either operand is floating point.
A #+ B

Floating point addition, meaningless results if either operand is integer.
A - B

Integer subtraction, meaningless results if either operand is floating point.

A #- B
Floating point subtraction, meaningless results if either operand is integer.

9. Selectors, and
10. Bit range selection A, B, C, D, E represent any valid expression

selector A : B

Describes the group of A consecutive bits that have B bits to the right of them
within any 32 bit word

C from D
If C is a selector value and D is any expression, is the group of bits described
by C extracted from the value of D, shifted right. Example:
 selector 10 : 4 from 0x1B4693A5
0x1B4693A5 in binary is
 00011011010001101001001110100101
 ^^^^^^^^^^
selector 10 : 4 describes t h e s e ten bits, so
selector 10 : 4 from 0x1B4693A5 is 0100111010 in binary,
or 0x13A, or 314 in decimal.

From expressions also allowed as L-values in assignment statements:
 selector 16 : 8 from x := 0
sets the middle 16 bits of the variable x all to zero.

selector A : B : C
Describes the group of A consecutive bits that have B bits to the right of them
in the Cth word of any vector.

D of E
If D is a selector value and E is a pointer to a vector, is the group of bits
described by D extracted from the indicated element of E. Example:
 manifest { those = selector 16 : 16 : 2 }
 let them = vec 4;
 v ! 0 := 0x13578642;
 v ! 1 := 0xBEEFFACE;
 v ! 2 := 0x1A2B3C4D;
 v ! 3 := 0xE8500C2A;
 those of them := 0xAAAA;
changes v!2 to 0xAAAA3C4D.

byte A
Is a selector for the Ath 8-bit byte in a vector, an abbreviated form to simplify
string processing.
 byte A ≡ selector 8 : (A rem 4) * 8 : A / 4

byte 5 of "ABCDEFGHIJ" has the value ′F′
byte i of s := ′F′ changes the ith character of string s.

11. Shift operators A, B represent any valid expression

A << B

Left shift. The 32 bits of A are shifted B positions to the left.
The B most significant bits are lost, and B zero bits are added at the right.

A >> B
Right shift. The 32 bits of A are shifted B positions to the right.
The B least significant bits are lost, and B zero bits are added at the left.

A alshift B
Arithmetic left shift. Exactly the same as A << B.
A alshift B has the value of A times two to the power of B.

A arshift B
Arithmetic right shift. The 32 bits of A are shifted B positions to the right.
The B least significant bits are lost, but the sign of A is preserved.
If A was positive, then B zero bits are added at the left.
If A was negative, then B one bits are added at the left.
A arshift B has the value of A divided by two to the power of B.

A rotl B
Rotate left. The 32 bits of A are shifted B positions to the left.
The B most significant bits of A are removed from the left, but fed in from the
right, so no bits are lost.
 0x12345678 rotl 16 = 0x56781234

A rotr B
Rotate right. The 32 bits of A are shifted B positions to the right.
The B least significant bits of A are removed from the right, but fed in from
the left, so no bits are lost.

12. Relational operators A, B represent any valid expression

Chains of comparisons have the mathematically expected meaning, so for example
A < B < C < D is the same as A < B /\ B < C /\ C < D

Integer comparisons - results are indeterminate if any operand is floating point.

A < B
True if A is less than B, false otherwise

A <= B
True if A is less than or equal to B, false otherwise

A > B
True if A is greater than B, false otherwise

A >= B
True if A is greater than or equal to B, false otherwise

A = B
True if A is equal to B, false otherwise

A <> B
A /= B
A \= B

True if A is not equal to B, false otherwise

Floating point comparisons - results are indeterminate if any operand is not floating point.

A #< B
True if A is less than B, false otherwise

A #<= B
True if A is less than or equal to B, false otherwise

A #> B
True if A is greater than B, false otherwise

A #>= B
True if A is greater than or equal to B, false otherwise

A #= B
True if A is equal to B, false otherwise

A #<> B
A #/= B
A #\= B

True if A is not equal to B, false otherwise

12. Conjunctions A, B represent any valid expression

A /\ B

Logical and, with “short circuit” evaluation.
If A is zero (i.e. false), then B is not evaluated, the result is 0.
Otherwise, if B is zero (i.e. false), the result is 0.
Otherwise, if A and B are both non-zero, the result is true (i.e. -1).

A bitand B
Bit-by-bit and. The 32 bits of A and B are individually anded together,
producing a 32 bit result.

13. Disjunctions A, B represent any valid expression

A \/ B

Logical or, with “short circuit” evaluation.
If A is not zero (i.e. true), then B is not evaluated, the result is true (i.e. -1).
Otherwise, if B is not zero, the result is true.
Otherwise, if A and B are both zero, the result is false (i.e. 0).

A bitor B
Bit-by-bit or. The 32 bits of A and B are individually orred together,
producing a 32 bit result.

14. Equivalence and exclusive or A, B represent any valid expression

A eqv B

The 32 bits of A and B are compared one-by-one to produce a 32 bit result.
Where a bit in A has the same value as the corresponding bit in B, there is a 1
in the result, where the bits are not the same there is a 0.

A neqv B
Exclusive or. A neqv B ≡ not (A neqv B)
The 32 bits of A and B are compared one-by-one to produce a 32 bit result.
Where a bit in A has a different value as the corresponding bit in B, there is a
1 in the result, where the bits are equal there is a 0.

15. Conditional expressions A, B, C represent any valid expression

A -> B , C

A is evaluated first. If the value of A is zero (i.e. false), C is evaluated and
is the result. In this case B is never evaluated.
If the value of A is true (i.e. not zero), B is evaluated and is the result. In this
case C is never evaluated.

16. Tables A, B, C, D, E represent any valid expression

table A , B , C , D , E , F ...

All of the expressions must be compile-time constants or strings or other table
expressions. A table expression is equivalent to a global variable whose value is vec
N (where N is the number of expressions), and the contents of the vector are set to the
values of the expressions before program execution begins. For example:
 let days = table "Mon", "Tue", "Wed", "Thur",
 "Fri", "Sat", "Sun";
 let s = days ! 3
gives the variable s the string value "Thur"

THE STANDARD LIBRARY "IO"

outch(N)
 print a single character

outno(N)
 print an integer in decimal

outhex(N)
 print an integer in hexadecimal

outbin(N)
 print an integer in binary

outf(N)
 print a floating point number

outs(N)
 print a string

out(F, A, B, C, ...)
 formatted output

The first parameter should be a string. The string is printed character by character
until a ′%′ is encountered, then the next unused parameter is taken and printed using
the function indicated by the character immediately following the %, as follows:

d - outno
f - outf
s - outs
c - outch
x - outhex
b - outbin

example: out("int %d float %f char %c\n", 12, 3.5, 65)
prints int 12 float 3.5 char A

inch()
 read a single character from the user, return its ascii code.

inno()
 read a decimal integer and return its value

init(V, N)
 V is a vector, N is its length in words.
 Initialise the memory allocation system.

newvec(N)
 allocate N sequential words of memory from the vector given to init,
 return a pointer to the first

freevec(V)
 de-allocate memory previously obtained from newvec.

numbargs()
 returns the number of parameters that the surrounding function was
 called with.

lhs()
 true if the surrounded function was called from the left hand side of
 an assignment statement.

thiscall()
 returns a reference to the currently executing function call,
 for use with returnto.

returnto(R)
returnto(R, V)
 return to R, a function call reference previously obtained from thiscall,
 terminating all intervening function calls still executing.
 V is the value returned to that context.

seconds()
 returns the number of seconds elapsed since midnight on 1st January
 2000, local time, as an integer.

datetime(T, V)
 T should be a time value as returned by seconds, V should be a vector
 of at least 7 words. The time value is decoded and stored in V thus:
 V ! 0 := year
 V ! 1 := month, 1-12
 V ! 2 := day, 1-31
 V ! 3 := day of week, 0 = Sunday
 V ! 4 := hour, 0-23
 V ! 5 := minute, 0-59
 V ! 6 := second, 0-59

datetime2(V)
 Similar to datetime, but a more compressed representation, and more
 precision in the time. V should be a vector of at least 2 words.
 V ! 0 : most significant 13 bits = year
 next 4 bits = month
 next 5 bits = day
 next 3 bits = day of week
 least significant 7 bits not used
 V ! 1 : most significant 5 bits = hour
 next 6 bits = minute
 next 6 bits = seconds
 next 10 bits = milliseconds
 least significant 5 bits not used

File Access

findfile(unit, name)
 unit is an integer in the range 0 to 7.
 name is a string.
 returns true for success, false for failure.
 Attempts to open the named file for future readblock operations, fails
 if the file does not exist.

makefile(unit, name)
 unit is an integer in the range 0 to 7.
 name is a string.
 returns true for success, false for failure.
 Attempts to create and open the named file for future writeblock
 operations, overwrites the file if it already exists.

closefile(unit)
 unit is an integer in the range 0 to 7, as provided to findfile or makefile
 when the file was opened.

readblock(unit, blocknum, V)
 unit is an integer in the range 0 to 7, as provided to findfile.
 v is a vector of at least 128 words.
 returns true for success, false for failure.
 The indicated 512 byte block of the file is read directly into memory at v.

writeblock(unit, blocknum, V)
 unit is an integer in the range 0 to 7, as provided to makefile.
 v is a vector of at least 128 words.
 returns true for success, false for failure.
 128 words from memory starting at v are written directly to the indicated
 512 byte block of the file.

