
The Big Final Thing 
 
Split OS-like program into two parts: 
 

Loader: does almost everything that our VM program does. Set up virtual memory, 
interrupt vector, syscalls, etc. Ensure that its own memory pages are in the free 
list (at the end for safety). Find the other half, system.exe, on tape from its 
length add the correct number of pages to OS code area and one page to OS stack 
area. Read OS into those pages, set flags and jump to that OS code. 

 
System: the real operating system. As a result of the loader’s actions it will only ever 

run under virtual memory and with the interrupt vector and call gate vector set 
up already. It makes whatever the user wants to happen happen. 

 
What system does, first step: 
 

User enters basic commands. 
 
If one is unrecognised (e.g. thing) search for search for thing.exe (search tapes first 
then disc, and search really just means attempt to open) if found, use its length to 
calculate the number of code pages needed, add those pages to user code space, read 
the file into them, add one user stack page, set registers correctly, run it in user mode. 
 
Remember that a lot of things won’t be doable in user mode. That will be fixed in step 
two. 
 
Trap page faults (as in class 19) adding pages to user or system stack area rejecting 
any non-stack-area requests as fatal run-time errors. A fatal run-time error for a user 
program just means killing it off. Recycle its memory and return to the OS. There is no 
real point in trying to handle OS code errors. 
 
Trap halts (as in class 19) in user mode, return to OS, all user memory pages back on 
free list. 
 
Trap keyboard interrupts, putting the characters received into iosb’s keyboard buffer 
just like readch_tty does when it finds the buffer is empty. Readch_tty should not do 
this itself any more. If readch_tty finds that the keyboard buffer is empty, it must just 
wait (little loop including a short pause) until the buffer is not empty (it will fill as if by 
magic as the keyboard interrupt handler does its job). 
 
OS is using iosb stuff so user programs won’t receive keyboard input, but can still use 
io for output. 

 
Second step, making it usable. 
 

Make syscalls for essential things: 



Open, close, read, write, etc. (iosb stuff). Big things only, the things that can’t be 
done in user mode. Readch, writech, write, etc can do their work in user 
mode, using syscalls for the major operations. 

Request n pages of memory for (or to be added to) the heap. The OS must know 
how many code pages you have, so it can decide where your heap pages 
should be. Heap implementation all happens in user mode, just using this 
syscall for the one thing that can’t be done in user mode. 

exit(n) is cleaner than trapping halt instructions, allows for an exit code. 
You will need to create a library (analogous to <unistd.h>) that user programs will 
import. It will define functions like exit, open, and so on, and include the correct 
syscalls. 

 
Pick a control character for control-C’s usual duties (control-c itself, along with control-
d, control-h, control-i, control-q, control-s, and control-z would be bad choices) and 
use it to stop user programs (remember OS has control of the keyboard still). So control-
C (equivalent) will be detected by the keyboard interrupt handler: you will already be 
in system mode as is needed. 

 
Third step, multiple processes. 
 

When a user program is running, the OS is still in control of the keyboard (and always 
will be), so for the time being user programs will still not receive user input. This means 
that every time the keyboard interrupt handler receives a newline ‘\n’, the OS will 
take the received line as a command to be obeyed. 
 
Create a moderate array of Process Control Blocks in the OS attic area. If an interrupt 
or other event requires that a process should pause, that process’ volatile state should 
be copied from the system stack into its PCB, another process is selected, its volatile 
state is copied from its PCB to the system stack, PDBR is set to the correct address for 
that process, and a return from interrupt resumes its run. 
 
For this to work, there must be an “idle” process, it does nothing useful but means 
there will always be another process that can run. This should be the first process that 
runs, and is made before the OS starts accepting commands. Set aside the first PCB 
for the idle process, put a reasonable initial state for the registers in its PCB and let it 
run as a user program. 
 
Create a timer interrupt handler, and set the timer so that it will produce regular 
interrupts at fairly short intervals. When timer interrupt happens, check all user 
processes. If there is another one that can run, let it. 
 
Add a sleep(t) syscall so that processes can voluntarily be put to sleep for the period 
of time indicated by t. Don’t worry about what that exact period of time is, you can 
experimentally find out how frequent the timer interrupts are, then sleep will convert 
the time given (maybe in units of milliseconds) into a number of timer interrupts. A 
sleeping process will not be selected for running until its sleep period has reduced to 
zero. 



 
The PCB is the place to store a process’ state (so far just runnable or sleeping) and its 
remaining sleep time. 

 
Fourth step, user input. 
 

Give each process its own keyboard buffer and select another unused control character 
(lets say control-P for Process). If the user types control-P followed by the digit N, then 
all subsequent key-presses go to process N’s keyboard buffer. N = 0 sets it back to the 
OS keyboard buffer so more commands can be given. 
 
Create another syscall to wait until keyboard input is ready. This would have the effect 
of putting the process to sleep until input is available, but don’t use the existing sleep 
state, add a third one. 
 


