‘ ®
- ntel MEMORY MANAGEMENT

;rg‘ 5.3 Page Translation

nt
A linear address is a 32-bit address into a uniform, unsegmented address space. This
address space may be a large physical address space (i.c., an address space composed of
4 gigabytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is trans-
lated into its corresponding physical address, or an exception is generated. The excep-
tion gives the operating system a chance to read the page from disk (perhaps sending a

le different page out to disk in the process), then restart the instruction which generated

CS the exception.

of .

is

1 a Paging is different from segmentation through its use of small, fixed-size pages. Unlike
segments, which usually are the same size as the data structures they hold, on the i486
processor, pages are always 4K bytes. If segmentation is the only form of address trans-

h lation which is used, a data structure which is present in physical memory will have all of

Eﬂe its parts in memory. If paging is used, a data structure may be partly in memory and

Yy partly in disk storage.

uld

ind

Ons The information which maps linear addresses into physical addresses and exceptions is
held in data structures in memory called page tables. As with segmentation, this informa-
tion is cached in processor registers to minimize the number of bus cycles required for

bit address translation. Unlike segmentation, these processor registers are completely invis-

nd ible to application programs. (For testing purposes, these registers are visible to pro-

ase grams running with maximum privileges; see Chapter 10 for details.)

om

lary The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page
tables. Because both the virtual pages in the linear address space and the physical pages

ode of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12

but bits of the address. These 12 bits pass straight through the paging hardware, whether

i by paging is enabled or not. Note that this is different from segmentation, because segments

OD can start at any byte address.

mned
The upper 20 bits of the address are used to index into the page tables. If every page in
the linear address space were mapped by a single page table in RAM, 4 megabytes

] would be needed. This is not done. Instead, two levels of page tables are used. The top

level page table is called the page directory. It maps the upper 10 bits of the linear
address to the second level of page tables. The second level of page tables maps the
middle 10 bits of the linear address to the base address of a page in physical memory
(called a page frame address).

An exception may be generated based on the contents of the page table or the page
directory. An exception gives the operating system a chance to bring in a page table from
disk storage. By allowing the second-level page tables to be sent to disk, the paging
mechanism can support mapping of the entire linear address space using only a few
pages in memory.

86148

MEMORY MANAGEMENT

intel®

The CR3 register holds the page frame address of the page directory. For this reason, it
also is called the page directory base register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBR register to get the physical address of an entry in the page directory.
Because the page frame address is always clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the low 12 bits with the scaled index).

When the entry in the page directory is accessed, a number of checks are performed.
Exceptions may be generated if the page is protected or is not present in memory. If no
exception is generated, the upper 20 bits of the page table entry are used as the page
frame address of a second-level page table. The middle 10 bits of the linear address are
scaled by four (again, the size of a page table entry) and concatenated with the page
frame address to get the physical address of an entry in the second-level page table.

Again, access checks are performed, and exceptions may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in

memory.

Although this process may seem comple, it all takes place with very little overhead. The

processor has a cache for page table entries called the translation lookaside buffer

(TLB). The TLB satisfies most requests for reading the page tables. Extra bus cycles
occur only when a new page is accessed. The page size (4K bytes) is large enough so that
very few bus cycles are made to the page tables, compared to the number of bus cycles
made to instructions and data. At the same time, the page size is small enough to make
efficient use of memory. (No matter how small a data structure is, it occupies at least

one page of memory.)

5.3.1 PG Bit Enables Paging
If paging is enabled, a second stage of address translation is used to generate the phys-

~ical address from the linear address. If paging is not enabled, the linear address is used
as the physical address.

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is
set by the operating system during software initialization. The PG bit must be set if the
operating system is running more than one program in virtual-8086 mode or if demand-

paged virtual memory is used.

5.3.2 Linear Address

Figure 5-12 shows the format of a linear address.

5-18

MEMORY MANAGEMENT

n, it
near
 the

tOI’y.
n is

31 22 21 12 11 0

DIRECTORY TABLE OFFSET

240486149

ned.
f no
age
are

Figure 5-12. Format of a Linear Address

age
PAGE FRAME
LDRECTORY [TABLE | oFrseT |
tion OPERAND
the
) in PAGE DIRECTORY PAGE TABLE
PG DIR ENTRY

The PG TBL ENTRY
ffer

cles

hat CR3

cles

ake
>ast

240486i50

Figure 5-13. Page Transiation

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF-
SET fields of a linear address into the physical address usi

1y'S-
sed

5.3.3 Page Tables
y is
the
nd-

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096

bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and
page tables, are aligned to 4K-byte boundaries.

Two levels of tables are used to address a page of memory. The top level is called the

page directory. It addresses up to 1K page tables in the second level. A page table in the

second level addresses up to 1K pages in physical memory. All the tables addressed by

one page directory, therefore, can address 1M or 22° pages. Because each page contains

4K or 2'2 bytes, the tables of one pagg,zdirectory can span the entire linear address space
279).

of the 486 processor (220 x 212 —

5-19

MEMORY MANAGEMENT

intel”

The physical address of the current page directory is stored in the CR3 register, also
called the page directory base register (PDBR). Memory management software has the
option of using one page directory for all tasks, one page directory for each task, or some
combination of the two. See Chapter 10 for information on initialization of the CR3
register. See Chapter 7 for how the contents of the CR3 register can change for each

task.

5.3.4 Page-Table Entries
Entries in either level of page tables have the same format. Figure 5-14 illustrates this
format. "

5.3.4.1 PAGE FRAME ADDRESS

The page frame address is the base address of a page. In a page table entry, the upper
20 bits are used to specify a page frame address, and the lowest 12 bits specify control
and status bits for the page. In a page directory, the page frame address is the address of*
a page table. In a second-level page table, the page frame address is the address of a

page containing instructions or data.

5.3.4.2 PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to
a page in physical memory. When set, the page is in memory.

and the rest of the page table
ore information regarding
he format of a page table

When the Present bit is clear, the page is not in memory,
entry is available for the operating system, for example, to st
the whereabouts of the missing page. Figure 5-15 illustrates t
entry when the Present bit is clear.

12 1

PAGE FRAME ADDRESS 31..12 AVAIL

— PRESENT

P

RIW — READ/WRITE

u/s — USER/SUPERVISOR

PWT — PAGE WRITE TRANSPARENT
PCD — PAGE CACHE DISABLE

A — ACCESSED

D — DIRTY

AVAIL. — AVAILABLE FOR SYSTEMS

PROGRAMMER USE
NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE.

240488151

Figure 5-14. Format of a Page Table Entry

5-20

MEMORY MANAGEMENT

1, also
125 the . 10
I SOme
e CR3 AVAILABLE <10
r each

240486i52

Figure 5-15. Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of
page table entry for address translation, a
which support demand-paged virtual me
occurs:

page tables when an attempt is made to use a
page-fault exception is generated. In systems
mofy, the following sequence of events then

. The operating system copies the page from disk storage into physical memory.

upper . The operating system loads the page frame addre
ontrol ‘

ress of
ss of a

ss into the page table entry and
sets its Present bit. Other bits, such as the R/W bit, may be set, too.

- Because a copy of the old page table entry may still exist in

buffer (TLB), the operating System empties it. See Section
the TLB and how to empty it.

the translation lookaside
5.3.5 for a discussion of

4. The program which caused the exception is then restarted.

'aps to Since there is no Present bit in CR3 to indicate when

in memory, the page directory pointed to b
memory.

the page directory is not resident
y CR3 should always be present in physical

c table .

arding

c table ~ 5.3.4.3 ACCESSED AND DIRTY BITS

~ These bits provide data about page usage in both levels of page tables. The Accessed bit

Is used to report read or write access to a page or second-level page table, The Dirty bit
Is used to report write access to a page.

processor sets the Dirty bit in the second-level page tabl

t0 an address mapped by that page table entry. The Dirty
undefined.

The operating system may use the Accessed bit when it needs to create some free mem-

10486151

5-21

intgl® MEMORY MANAGEMENT

The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it
has received any write access. If there is a copy of the page on disk and the copy in
memory has not received any writes, there is no need to update disk from memory.

See Chapter 13 for how the i486 processor updates the Accessed and Dirty bits in
multiprocessor systems.

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS

The Read/Write and User/Supervisor bits are used for protection checks applied to
pages, which the processor performs at the same time as address translation. See Chap-
ter 6 for more information on protection.

5.3.4.5 PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. Software can control
the caching of individual pages or second-level page tables using these bits. See
Chapter 12 for more information on caching. '

5.3.5 Translation Lookaside Buffqr

The processor stores the most recently used page table entries in an on-chip cache called
the translation lookaside buffer or TLB. Most paging is performed using the contents of
the TLB. Bus cycles to the page tables are performed only when a new page is used.

The TLB is invisible to application programs, but not to operating systems. Operating-
system programmers must flush the TLB (dispose of its page table entries) when entries
in the page tables are changed. If this is not done, old data which has not received the
changes might get used for address translation. A change to an entry for a page which is
not present in memory does not require flushing the TLB, because entries for not-
present pages are not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in
either of two ways:

1. Explicit loading using MOV instructions, such as:
nv CR3, EAX

2. Implicit loading by a task switch which changes the contents of the CR3 register.
(See Chapter 7 for more information on task switching.)

An individual entry in the TLB can be flushed using an INVLPG instruction. This is
useful when the mapping of an individual page is changed. :

5-22

