intel”

LOCK — Assert LOCK# Signal Prefix

Opcode Instruction Clocks Description
FO LOCK 1 Assert LOCK# signal for the next instruction

Description

The LOCK prefix causes the LOCK# signal of the 486 processor to be asserted during
execution of the instruction that follows it. In a multiprocessor environmernt, this signal
can be used to ensure that the i486 processor has exclusive use of any shared memory
while LOCK# is asserted. The read-modify-write sequence typically used to implement
test-and-set on the i486 processor is the BTS instruction.

The LOCK prefix functions only with the following instructions:

-

BTS, BTR, BTC mem, reg/imm
XCHG reg, mem
XCHG menm, reg
ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm
NOT, NEG, INC, DEC : mem

An undefined opcode trap will be generated if a LOCK prefix is used with any instruc-
tion not listed above.

The XCHG instruction always asserts LOCK# regardless of the presence or absence of
the LOCK prefix.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Flags Affected

None

Protected Mode Exceptions

#UD if the LOCK prefix is used with an instruction not listed in the “Descripiiiqn”
section above; other exceptions can be generated by the subsequent (locked) instruction

Real Address Mode Exceptions

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the “Descripti.Oﬂ”
section above; exceptions can still be generated by the subsequent (locked) instruction

26-202

. ®
Intel INSTRUCTION SET

Virtual 8086 Mode Exceptions

#UD if the LOCK prefix is used wi i '
) _ with an instruction not listed i S iption”
SICIeH R section above; exceptions can still be generated by the subsequent l(liogll(zd)l)ig:frrllllztligg

o be asserted during
ironment, this signal
any shared memory
y used to implement

1sed with any instruc-
resence or absence of

- of the memory field.

| in the “Description”
nt (locked) instruction |
r

-d in the “Description”
1t (locked) instruction

26-203

i

intel® INSTRUCTION SET

BTS — Bit Test and Set

Opcode Instruction Clocks Description

OF AB BTS 1/m16,r16 6/13 Save bit in carry flag and set
OF AB BTS r/m32,r32 6/13 Save bit in carry flag and set
OF BA/5 ib BTS 1/m16,imm8 6/8 Save bit in carry flag and set
OF BA /5 ib BTS r/m32,imm8 6/8 Save bit in carry flag and set

Operation

CF < BIT[LeftSRC, RightSRC];
BIT[LeftSRC, RightSRC] « 1;

Description

The BTS instruction saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the CF flag and then stores 1 in the bit.

Flags Affected

The CF flag contains the value of the selected bit

Protected Mode Exceptions

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3

Real Address Mode Exceptions

|
Interrupt 13 if any part of the operand would lie outside of the effective address space ||
from 0 to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

Notes

The index of the selected bit can be given by the immediate constant in the instruction
or by a value in a general register. Only an 8-bit immediate value is used in the instruc-
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0..31. This
allows any bit within a register to be selected. For memory bit strings, this immediate
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger
than 31 are supported by using the immediate bit offset field in combination with the

26-42

. ‘
intel INSTRUCTION SET
S . e ——
displacement field of the memory operand. The low-order 3 to 5 bits of the immediate
pit offset are stored in the immediate bit offset field, and the high order 27 to 29 bits are
shifted and combined with the byte displacement in the addressing mode.
ag and set
:g :gg :Z: When accessing a bit in memory, the processor may access four bytes starting from the
el b memory address given by:
Effective Address + (4 * (BitOffset DIV 32))
for a 32-bit operand size, or two bytes starting from the memory address given by:
Effective Address + (2 * (BitOffset DIV 16))
for a 16-bit operand size. It may do this even when only a single byte needs to be
accessed in order to get at the given bit. You must therefore be careful to avoid refer-
ase (first operand) and encing areas of memory F:lose to address space holes. In particular, avoid references to
1 in the bit. memory-mapped 1/O registers. Instead, use the MOV instructions to load from or store
to these addresses, and use the register form of these instructions to manipulate the
data.

llegal memory operand
or an illegal address in
ned memory reference

ffective address space

a page fault; #AC for

tant in the instruction
is used in the instruc-
it offsets is 0..31. This .
trings, this immediate

diate bit offsets larger
combination with the

26-43

Oprocessor does noy
ovide an equivalent
T detecting ap i486

INSTRUCTION SET

XCHG — Exchange Register/Memory with Register

Opcode Instruction Clocks Description
Q0+ T XCHG AX,r16 3 Exchange word register with AX
90+ r XCHG r16,AX 3 Exchange word register with AX
90+ r XCHG EAX,r32 3 Exchange dword register with EAX
90+ 1 XCHG r32EAX 3 Exchange dword register with EAX
86 /r XCHG r/m8,r8 3/5 Exchange byte register with EA byte
86 /r XCHG r8,r/m8 3/5 Exchange byte register with EA byte
87 /r XCHG r/m16,r16 3/5 Exchange word register with EA word
87 /I XCHG r16,r/m16 3/5 Exchange word register with EA word
87 /r XCHG r/m32,r32 3/5 Exchange dword register with EA dword
87 /r XCHG r32,r/m32 3/5 Exchange dword register with EA dword
Operation
temp < DEST
DEST < SRC
SRC <« temp

Description
The XCHG instruction exchanges two operands. The operands can be in either order. If
a memory operand is involved, the LOCK# signal is asserted for the duration of the

exchange, regardless of the presence or absence of the LOCK prefix or of the value of
the IOPL.

Flags Affected

None

Protected Mode Exceptions

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal

address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem-
ory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

