
All registers and memory locations are 32 bits, the concept of byte does not apply except in the few 
special string-processing instructions. When characters are stored to make a string, they are packed 
four per memory location, with the first character of the string being in the least-significant 8 bits. 
 
Negative numbers are represented in the two’s complement format. 
 
Floating point numbers are stored in the intel 32-bit floating format, whatever that is. 
 
Bits are numbered from 0, the least significant, to 31 the most significant. 

In numeric representations, bit 31 is the sign bit. 
 
There are 16 regular registers, numbered from 0 to 15. 

R0 is a scratch register, with slightly limited functionality 
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 are general purpose registers 
SP, the stack pointer, is encoded as register 13 
FP, the frame pointer, is encoded as register 14 
PC, the program counter, is encoded as register 15 

 
The instruction format 
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Operation 
 
 
 

I Main 
Register 

Index 
Register

 Numeric Operand 
 

 I is the Indirect bit. Two’s complement, range -32768 to +32767 
 
 
If bits 16-19 are all zero, i.e. “Index Register” indicates R0, then no index register is used when the 
instruction executes. Thus it is not possible to use R0 as an index register. 
 
In the description of an instruction, the term reg refers to the register indicated by bits 20 to 23 (main 
register), and operand refers to the combination of indirect bit, index register, and numeric operand as 
illustrated on the next two pages. 
 
If the term value appears in the description, it refers to the value of the operand, which is calculated as 
follows: 
 part1 = numeric operand; 
 part2 = 0; 
 if (index register ≠ 0) 
  part2 = contents of indicated index register 
 total = part1 + part2; 
 if (indirect bit ≠ 0) 
  value = contents of memory location [total]; 
 else 
  value = total; 
 

If the sequence “reg ← x” appears, it means that the content of the main register is replaced by x. 
 
If the sequence “destination ← x” appears, then the operand my consist of just an index register, in 
which case the content of the register is replaced by x, otherwise the indirect bit must be set, and the 
content of memory location [total] is replaced by x. 



Assembly Examples: 
 

RET Operation = 37 
 Indirect bit = 0 

0100101 0 0000 0000 0000000000000000 Main register = 0 
4AOOOOOO Index register = 0 

 Numeric = 0 
 

INC   R6 Operation = 4 
 Indirect bit = 0 

0000100 0 0110 0000 0000000000000000 Main register = 6 
O86OOOOO Index register = 0 

 Numeric = 0 
 

LOAD  R2, 36 Operation = 1 
 Indirect bit = 0 

0000001 0 0010 0000 0000000000100100 Main register = 2 
O22OOO24 Index register = 0 

 Numeric = 36 
 

ADD   R7, R3 Operation = 6 
 Indirect bit = 0 

0000110 0 0111 0011 0000000000000000 Main register = 7 
OC73OOOO Index register = 3 

 Numeric = 0 
 

LOAD  R7, R3 + 12 Operation = 1 
 Indirect bit = 0 

0000001 0 0111 0011 0000000000001100 Main register = 7 
O273OOOC Index register = 3 

 Numeric = 12 
 

ADD   R4, [R3] Operation = 6 
 Indirect bit = 1 

0000110 1 0100 0011 0000000000000000 Main register = 4 
OD43OOOO Index register = 3 

 Numeric = 0 
 

STORE R2, [1234] Operation = 3 
 Indirect bit = 1 

0000011 1 0010 0000 0000010011010010 Main register = 2 
O72OO4D2 Index register = 0 

 Numeric = 1234 
 

STORE R2, [R5 - 375] Operation = 3 
 Indirect bit = 1 

0000011 1 0010 0101 1111111010001001 Main register = 2 
O725FE89 Index register = 5 

 Numeric = -375 
 



Execution Examples, starting from these values already in memory: 
 

location contents 
27100 592 
27101 759 
27102 43 
27103 27105 
27104 2 
27105 682 
27106 11 
27107 22 
27108 33 

 
 

LOAD  R2, 5 
 The value stored in register 2 is now 5 
LOAD  R3, R2+4 
 The value stored in register 3 is now 9 
LOAD  R4, 27102 
 The value stored in register 4 is now 27102 
LOAD  R5, [27100] 
 The value stored in register 5 is now 592 
LOAD  R6, [R4] 
 The value stored in register 6 is now 43 
ADD   R6, R2 
 The value stored in register 6 is now 48 
STORE R6, [27101] 
 The content of memory location 27101 is changed from 759 to 48 
INC   R6 
 The value stored in register 6 is now 49 
STORE R6, [R4 - 2] 
 The content of memory location 27100 is changed from 592 to 49 
LOAD  SP, 27108 
 The value stored in register 13 (stack pointer) is now 27108 
PUSH  R2 
 The content of memory location 27107 is changed from 22 to 5 
 The value stored in register 13 (stack pointer) is now 27107 
PUSH  [R4] 
 The content of memory location 27106 is changed from 11 to 43 
 The value stored in register 13 (stack pointer) is now 27106 
POP   R4 
 The value stored in register 4 is now 43 
 The value stored in register 13 (stack pointer) is now 27107 
STORE R6, 27101 
 Fails to execute, as the operand does not address memory. 



 
opcode mnemonic action 

0 HALT  the processor is halted, execution of instructions stops. 

1 LOAD  reg, operand reg ← value 

2 LOADH  reg, operand reg ← ( reg ∧ FFFF ) + ( value « 16 ) 
the most significant 16 bits of the register are replaced 

3 STORE  reg, operand destination ← reg 

4 INC    operand destination ← value + 1 

5 DEC    operand destination ← value - 1 

6 ADD  reg, operand reg ← reg + value 

7 SUB  reg, operand reg ← reg - value 

8 MUL  reg, operand reg ← reg × value 

9 DIV  reg, operand reg ← reg ÷ value 

10 MOD  reg, operand reg ← reg  modulo value 

11 RSUB  reg, operand reg ← value - reg 

12 RDIV  reg, operand reg ← value ÷ reg 

13 RMOD  reg, operand reg ← value  modulo reg 

14 AND  reg, operand reg ← reg ∧ value 

15 OR  reg, operand reg ← reg ∨ value 

16 XOR  reg, operand reg ← reg ⊕ value 

17 NOT  reg, operand reg ← ~ value 

18 SHL  reg, operand flagZ ← 1 if most sig. (value) bits of reg all 0, otherwise 0 
reg ← reg « value,  zeros being inserted at the right 

19 SHR  reg, operand flagZ ← 1 if least sig. (value) bits of reg all 0, otherwise 0 
reg ← reg » value,  zeros being inserted at the left 

20 COMP  reg, operand flagZ ← 1 if reg = value, otherwise 0 
flagN ← 1 if reg < value, otherwise 0 

21 COMPZ   operand flagZ ← 1 if value = 0, otherwise 0 
flagN ← 1 if value < 0, otherwise 0 

22 TBIT  reg, operand flagZ ← valueth bit of reg 

23 SBIT  reg, operand valueth bit of reg ← 1 

24 CBIT  reg, operand valueth bit of reg ← 0 



25 JUMP  operand PC ← value 

26 JZER  reg, operand if  ( reg = 0 ) PC ← value 

27 JPOS  reg, operand if  ( reg ≥ 0 ) PC ← value 

28 JNEG  reg, operand if  ( reg < 0 ) PC ← value 

29 
 
 

0 
1 
2 
3 
4 
5 

JCOND 
 
 
JCOND EQL, operand 
JCOND NEQ, operand 
JCOND LSS, operand 
JCOND LEQ, operand 
JCOND GTR, operand 
JCOND GEQ, operand 

Note that no main register is used with the JCOND 
instruction. Instead, its 4 bits are used to encode one 
of the seven condition tests shown here. 

if  ( flagZ )  PC ← value 
if  ( ~ flagZ )  PC ← value 
if  ( flagN )  PC ← value 
if  ( flagZ ∨ flagN )  PC ← value 
if  ( ~flagZ ∧ ~flagN )  PC ← value 
if  ( ~flagN )  PC ← value 

30 GETFL  reg, operand reg ← flag[value] 

31 SETFL  reg, operand flag[value] ← reg 

32 GETSR  reg, operand reg ← specialregister[value] 

33 SETSR  reg, operand specialregister[value] ← reg 

34 PUSH  operand SP ← SP - 1 
memory[SP] ← value 

35 POP  operand destination ← memory[SP] 
SP ← SP + 1 

36 CALL  operand SP ← SP - 1 
memory[SP] ← PC 
PC ← value 

37 RET   PC ← memory[SP] 
SP ← SP + 1 

38 LDCH  reg, operand value is treated as a memory address. The regth 8-bit 
byte (character) starting from that address in memory 
is loaded into reg. i.e., 

reg ← byte (reg modulo 4) of memory[value + reg÷4] 

39 STCH  reg, operand value is treated as a memory address. The regth 8-bit 
byte (character) starting from that address is replaced 
by the value of register 0 without modifying the other 
24 bits of that word. 

byte (reg modulo 4) of memory[value + reg÷4]  ← R0 

40 PERI   Control peripheral activity: see separate documentation 

41 FLAGSJ  reg, operand   all flags ← reg 
PC ← value 



42 PAUSE  operand     CPU idles for approximately value mS, unless interrupted 

43 BREAK     Enter CPU single-stepping mode 

44 IRET   PC ← memory[SP] 
all flags ← memory[SP+2] 
FP ← memory[SP+6] 
SP ← memory[SP+7] 
R12 ← memory[SP+8] 
R11 ← memory[SP+9] 
R10 ← memory[SP+10] 
R9 ← memory[SP+11] 
R8 ← memory[SP+12] 
R7 ← memory[SP+13] 
R6 ← memory[SP+14] 
R5 ← memory[SP+15] 
R4 ← memory[SP+16] 
R3 ← memory[SP+17] 
R2 ← memory[SP+18] 
R1 ← memory[SP+19] 
R0 ← memory[SP+20] 
SP ← SP + 21 

45 SYSCALL  reg, code   memory[SP-1] ← R0 
memory[SP-2] ← R1 
memory[SP-3] ← R2 
memory[SP-4] ← R3 
memory[SP-5] ← R4 
memory[SP-6] ← R5 
memory[SP-7] ← R6 
memory[SP-8] ← R7 
memory[SP-9] ← R8 
memory[SP-10] ← R9 
memory[SP-11] ← R10 
memory[SP-12] ← R11 
memory[SP-13] ← R12 
memory[SP-14] ← SP 
memory[SP-15] ← FP 
memory[SP-16] ← main register number 
memory[SP-17] ← code 
memory[SP-18] ← 0 
memory[SP-29] ← all flags 
memory[SP-20] ← 38 
memory[SP-21] ← PC 
SP ← SP - 21 
PC ← memory[specialregister[CGBR] + code] 
flagSys ← 1 

46 ATAS  reg, operand   reg ← value ; destination ← 1 
performed indivisibly, ignoring interrupts 



47 PHLOAD  reg, operand reg ← physicalmemory[value] 

48 PHSTORE  reg, operand  physicalmemory[value] ← reg 

49 VTRAN  reg, operand  reg ← physical address for virtual address value 

50 MOVE  reg, reg2   while R0 > 0 repeat 
{ memory[reg2] ← memory[reg] 
   reg2 ← reg2 + 1 
   reg ← reg + 1 
   R0 ← R0 - 1 } 

51 SIGN  reg, operand reg ← -1 if value < 0, 0 if 0, 1 if > 0 

52 FADD  reg, operand floating point: reg ← reg + value 

53 FSUB  reg, operand floating point: reg ← reg - value 

54 FMUL  reg, operand floating point: reg ← reg × value 

55 FDIV  reg, operand floating point: reg ← reg ÷ value 

56 FCOMP  reg, operand floating point:  
    flagZ ← 1 if reg = value, otherwise 0 
    flagN ← 1 if reg < value, otherwise 0 

57 FCOMPZ  operand floating point:  
    flagZ ← 1 if operand = 0, otherwise 0 
    flagN ← 1 if operand < 0, otherwise 0 

58 FIX  reg, operand reg ← (int)value,  value interpreted as floating point  

59 FRND  reg, operand reg ← (float)(closest int to value),  both floating point  

60 FLOAT  reg, operand reg ← (float)value,  value interpreted as an integer  

61 FLOG  reg, operand floating point:  
    reg ← natural log(reg),  if  value = 0 
    reg ← log base value(reg),  otherwise 

62 FEXP  reg, operand floating point:  
    reg ← e to power(reg),  if  value = 0 
    reg ←value to power(reg),  otherwise 

63 FSQRT  reg, operand floating point: reg ← square root of value 
 

64 FSIN  reg, operand floating point: reg ← sine of value 
 

65 FCOS  reg, operand floating point: reg ← cosine of value 
 

66 FATAN  reg, operand floating point: reg ← arc-tangent of value 
 



67 FABS  reg, operand floating point: reg ← value if value >= 0, - value otherwise 
 

68 FLOOR  reg, operand floating point: reg ← value rounded towards - ∞ 
 

69 FSIGN  reg, operand floating point: reg ← integers -1 if value < 0, 0 if 0, 1 if > 0 
 

70 FFO  reg, operand   reg ← number of bits to right of leftmost 1 in value 
if value = 0: reg ← -1, flagZ ← 1, flagN ← 1 

71 FLZ  reg, operand   reg ← number of bits to right of rightmost 0 in value 
if value = -1: reg ← -1, flagZ ← 1, flagN ← 1 

72 RAND  reg reg ← random positive number  

73 TRACE reg, operand display PC, reg, and value on console  

74 TYPE operand send single character value to controlling teletype  

75 INCH operand   destination ← one character code from controlling keyboard 
                        or -1 if none available 

76 ANDN  reg, operand reg ← reg ∧ ~ value  

77 ORN reg, operand reg ← reg ∨ ~ value  

78 NEG  reg, operand reg ← - value  

79 FNEG  reg, operand reg ← - value,  value interpreted as floating point  

80 ROTL  reg, operand reg  is shifted value bits left, with the bits lost at the left 
being reinserted at the right. 

81 ROTR  reg, operand reg  is shifted value bits right, with the bits lost at the right 
being reinserted at the left.  

82 ASR  reg, operand flagZ ← 1 if least sig. (value) bits of reg all 0, otherwise 0 
reg ← reg » value,  the sign bit being duplicated at the left  

83 EXBR  reg, operand R0 ← bit range described by reg from value, 
with the most significant bit of the range giving the sign.  

84 EXBRV  reg, operand R0 ← bit range described by reg of value, 
with the most significant bit of the range giving the sign.  

85 DPBR  reg, operand bit range described by reg from value ← R0.  

86 DPBRV  reg, operand bit range described by reg of value ← R0.  

87 ADJS  reg, operand the bit range selector in reg is advanced by value positions, 
taking into account the range size and the requirement for 
ranges not to span two words. value may be negative.  



88 UEXBR  reg, operand R0 ← bit range described by reg from value, unsigned.  

89 UEXBRV  reg, operand R0 ← bit range described by reg of value, unsigned.  

90 UCOMP  reg, operand flagZ ← 1 if reg = value, otherwise 0 
flagN ← 1 if reg < value, otherwise 0, an unsigned comparison  

91 UMUL  reg, operand reg ← reg × value, unsigned  

92 UDIV  reg, operand reg ← reg ÷ value, unsigned 

93 UMOD  reg, operand reg ← reg  modulo value, unsigned 

94 CLRPP  operand page containing physical address value all set to zero 

95 ZERO  reg, reg2   (operand may only be a register, reg2) 
while reg > 0 repeat 
{ memory[reg2] ← 0 
   reg2 ← reg2 + 1 
   reg ← reg - 1 } 

96 LBITF  reg, operand value is treated as a memory address. The regth bit 
starting from that address in memory is loaded into 
reg. i.e., 

reg ← bit (reg modulo 32) of memory[value + reg÷32] 

97 LBITO  reg, operand The regth bit of value is loaded into reg. 

98 SBITF  reg, operand value is treated as a memory address. The regth bit 
starting from that address is replaced by the value of 
register 0 without modifying the other 31 bits of that 
word. i.e., 

bit (reg modulo 32) of memory[value + reg÷32]  ← R0 

99 SBITO  reg, operand operand ← value with its regth bit set to bit 0 of R0. 

100 PMEMR  reg, operand writes up to reg words into memory starting at destination, 
reg must be an even number, 
each pair of words written represents an area of memory 
starting with its first address and ending with its last, 
the first pair gives the area that the program was loaded into, 
subsequent pairs describe areas that exist, in order. 
reg ← number of words needed to cover all memory 

101 FFNZ  reg, operand while reg <= operand repeat 
{ if memory[reg] ≠ 0 
      return 
   reg ← reg + 1 } 
reg ← -1 

102 NOP nothing happens. 

103 SEXT  reg, operand bit number operand of reg is copied into every bit to the left 



of it (sign extension). The least significant bit is bit 0. 

104 INTR  reg, operand interrupt whose number is given by the operand is raised. 
The value of reg provides the “interrupt detail” that is 
pushed onto the system stack along with the other state 
information. 

105 MPUSH  reg, operand Multiple registers, determined by the operand value are 
pushed onto the stack, the smallest numbered registers first. 
Each bit in the operand represents one register, the least 
significant being R0. An operand value of 70 (10001102) 
would push R1 then R2 then R6. 

106 MPOP  reg, operand The opposite of MPUSH. The indicated registers are popped 
from the stack, smallest numbered last. 

107 FGOOD  operand flagZ ← 1 if operand is proper float number, otherwise 0 

127 NALT  same as HALT, used to trap accidental execution of data. 

   



 
SPECIAL REGISTERS 
 
There are fourteen special registers, as follows 
 FLAGS A single word containing all of the one-bit flags 
 PDBR Page Directory Base Register 
 INTVEC The address of the interrupt vector 
 CGBR Call Gate Base Register 
 CGLEN Number of call gates 
 DEBUG If the value of PC ever = this value, a debug interrupt is signalled 
 TIMER Reduced by 1 after each instruction, causes timer interrupt when zero 
 SYSSP System stack pointer. If in system mode, equivalent to SP 
 SYSFP System frame pointer, not so useful. 
 USRSP User mode stack pointer. If in user mode, equivalent to SP 
 USRFP User mode frame pointer. 
 WATCH Interrupt if address ever gets written to. 
 EXITCODE Exit code to be delivered to the host unix system. 
 IPL Interrupt processing level. 
 EMGRET Emergency return address, described alongside interrupts below. 
 
The assembler understands the names of these registers (put a $ sign in front), they stand for the 
numbers 0 to 13 in instruction operands. The BCPL compiler also understands them if you put SR$ at 
the front. 
 
There are two instructions that directly access the special registers: 
 GETSR loads a special register value into a normal register 
 SETSR stores a normal register value into a special register 
 
Example: how to set the TIMER register to 100: 
 LOAD R1, 100 
 SETSR R1, $TIMER 
 
The value stored in $PDBR is always treated as a physical memory address. 
The values stored in $INTVEC and $CGBR are physical addresses, but the entries in the interrupt vector 
and the call gate vector must be virtual addresses if virtual memory is turned on.  
$DEBUG, $SYSSP, and $SYSFP are treated as virtual addresses when virtual memory is turned on. 
 
FLAGS 
 
There are seven one-bit CPU flags, as follows 
 R Indicates that the CPU is running, not halted 
 Z Zero. Set by some instructions to indicate a zero (or equal) result. 
 N Negative. Set by some instructions to indicate a negative result. 
 SYS Set when CPU is in system mode, Zero when in user mode. 
 EM An emergency interrupt procedure is in progress, described under interrupts below. 
 INT Interrupts will be processed, initially 0. 
 VM Virtual Memory. If zero, all memory accesses use physical addresses, 
  if set, page tables must be correctly set up, all memory addresses are translated. 
The final four, SYS, EM, INT, and VM, may only be modified when the CPU is in system mode. 



At start-up, R=1, SYS=1, EM=0, INT=0, VM=0. 
 
The assembler understands the names of these flags (put a $ sign in front), they stand for the numbers 
5 to 11 in instruction operands. The BCPL compiler also understands them in two ways: put FLAG$ in 
front of the name and you get the interrupt number, put FLAG$MASK in front of the same and you get 
the corresponding bit-mask, a bitwise and of the value from the sr$flags special register and the 
flag$maskem constant is non-zero if the EM flag is on.  
 
There are two instructions that directly access the special registers: 
 GETFL loads the value of a single flag into a register 
 SETFL sets a single flag equal to a register value (0 for off, non-0 for on) 
The COMP and COMPZ instructions set or clear both Z and N, depending on the result. 
The JCOND instruction jumps if the flags have a particular combination of values. 
 
All the flag values may be read at once, using the GETSR instruction on the $FLAGS special register. 
The least significant five bits of the flags register are the IPL special register, it has no separate 
existence. The flags occupy the next seven bits of the value, in the order shown above. R bit 5 and INT 
is bit 11 (equivalent value 2048). 
 
All the flag values may be set at once using the SETSR instruction on the $FLAGS special register. 
 
Example: Turn the SYS flag off, and the VM flag on, leaving other flags untouched: 
 GETSR R1, $FLAGS 
 CBIT R1, $SYS 
 SBIT R1, $VM 
 SETSR R1, $FLAGS 
 
The special instruction FLAGSJ sets all the flags at once, and causes an unconditional jump by setting 
the PC. The only real point of this weird instruction is that it lets you turn on virtual memory without 
crashing the system. As soon as the VM flag is turned on, virtual-to-physical address translation begins 
for all memory accesses, so in the example above, if the program counter = 101 for the first instruction 
the GETSR is fetched from physical location 101, the CBIT is fetched from physical location 102, the 
SBIT is fetched from physical location 103, then suddenly physical addresses are not used any more, 
and the next instruction is fetched from virtual address 104. Unless virtual address 104 maps to 
physical address 104 (which would not make much sense), everything fails. This sequence: 
 GETSR R1, $FLAGS 
 CBIT R1, $SYS 
 SBIT R1, $VM 
 FLAGSJ R1, xxx 
is safe. Of course ‘xxx’ should be replaced by the correct virtual address for program continuation. 
 
 
BIT  RANGES 
 
The instructions EXBR, DPBR, etc extract or deposit a sequence of consecutive bits from within a single 
word. The desired bits are described by a single 32 bit value constructed thus: 

5 least significant bits: number of bits in the range, with 00000 indicating 32. 
5 next bits: the number of bits to the right of the range within its word. 
22 most significant bits: the number of whole words to be skipped before extracting the bits. 

EXBR and DPBR work directly on their operand, so the 22 most significant bits are ignored. 



EXBRV and DPBRV treat their operand as the address of the first word in a segment of memory. 
 
 
 
INTERRUPTS 
 
There are interrupts that represent a fatal problem (such as a user mode program attempting a 
privileged operation), there are interrupts that represent fixable problems (such as a page fault, 
described under virtual memory below), and there are interrupts that represent some useful notification 
(such as keyboard input ready, or countdown timer reached zero). If interrupts are being processed 
(that is, the INT flag is 1, and the INTVEC special register contains the address of a proper interrupt 
vector), then all interrupts are trappable, regardless of how fatal they are. 

If interrupts are being ignored (INT flag is 0 or INTVEC is 0), then all interrupts except from 
TIMER and KEYBD (which are just ignored) will stop a running program.  

If interrupts are being accepted (INT = 1) and a particular interrupt arises, but the interrupt vector is 
invalid, a second interrupt, INTRFAULT, is signalled. This may also be trapped, but given that it is 
caused by the failure to correctly process another interrupt, it will probably turn out to be fatal.  

If interrupts are being accepted (INT = 1) and a particular interrupt arises, but the interrupt vector 
contains a zero at its position, a second interrupt, INTRFAULT, is signalled. This may also be trapped, 
and in this case there is a chance for your program to survive. 

If an INTRFAULT interrupt occurs and the interrupt vector contains a zero at that position, the 
program will just stop. 

One way to stop all interrupts from ever having any effect whatsoever is to temporarily set the 
special register IPL (interrupt processing level) to INTRFAULT, which is the highest priority interrupt. 
The first action in processing any interrupt is to make sure it is higher than IPL, and completely ignore 
it if it isn't. 

Beware of this. Problems with regular programs (system or user mode) cause interrupts, and that is 
fine. The interrupt gives the system a chance to correct whatever condition caused it. BUT if 
something goes wrong while an interrupt is still being processed, it can be hard to handle. There are a 
few safety mechanisms described at the end of this section 

 
There are 21 interrupts defined, each with a name known to the assembler and the BCPL compiler, 
where their names are all prefixed with INT$. An interrupt vector is really an array, and must be at 
least 18 words long. To be used, its address must be stored in the special register INTVEC. Each entry 
in the array is either zero (the corresponding interrupt will not be handled) or the address of an almost 
perfectly normal function that will be called automatically whenever the relevant interrupt occurs. The 
only special requirement is that interrupt handling functions must use IRET in all places instead of 
RET, or in BCPL use an ireturn statement at the end of the handler and anywhere else it can exit. 
 

The defined interrupts are: 
 NONE = 0: (not a real interrupt code) 
  HALT = 1:  HALT instruction executed while in user mode 
    TIMER = 2:  Countdown timer reached zero 
   KEYBD = 3:  at least one keyboard character typed and ready 
    PRIVOP = 4:  Privileged operation attempted by user mode program 
    PAGEPRIV = 5:  User mode access to system mode page 
  DIVZERO = 6:  Division by zero 
  MEMORY = 7: Physical memory access failed 
  UNIMPOP = 8:  Unimplemented operation code (i.e. instruction opcode wrong) 
    UNWROP = 9:  Unwritable instruction operand  (e.g.  INC 72) 



    BADOP = 10:  Unsuitable operand for instruction. 
     BADCALL = 11: Bad SYSCALL index  (i.e. < 0 or >= CGLEN) 
   PAGEFAULT = 12:  Page fault 
   PAGEFAULT2 = 13:  Page fault occurred during processing of an earlier page fault 
    WATCH = 14:  Write to watch-point trap. 
     DEBUG = 15:  PC=$DEBUG trap 
    SYSSTKFL = 16:  Failure to process interrupt because the system stack is full. 
    INTRFAULT = 17:  Failure to process interrupt for some other reason. 
    FLTNEG = 18:  A floating point operation received an improper negative operand. 
    USRINT1 = 19:  deliberately caused by an INTR Rx, 19 instruction. 
    USRINT2 = 20:  deliberately caused by an INTR Rx, 20 instruction. 
    USRINT3 = 21:  deliberately caused by an INTR Rx, 21 instruction. 
    RTERROR = 22:  deliberately caused by an INTR Rx, 22 instruction to signal a run-

time error. The emulator is able to produce tailor-made error 
messages based on the contents of the registers. 

 
These values are the positions in the interrupt vector where the handler function’s address should be 
stored. 
 
Example: How to set up an interrupt handler that automatically prints a dot whenever a keyboard key 
is pressed, and a star whenever another 5000 instructions have been executed... 
 
   LOAD  R1,  TIMHANDLER 
   STORE  R1,  [IVEC + INT$TIMER] 
   LOAD  R1,  KBHANDLER 
   STORE  R1,  [IVEC + INT$KEYBD] 
   LOAD  R1,  IVEC 
   SETSR  R1,  $INTVEC 
   LOAD  R1, 0 
   SETFL  R1,  $IP 
   LOAD  R1,  5000 
   SETSR  R1,  $TIMER 
            ...... 
 
   TIMHANDLER:  
   LOAD R1, ‘*’ 
 CALL PRINTCHARACTER       // which you would have to write somewhere 
   LOAD  R1,  5000 
   SETSR  R1,  $TIMER 
 IRET 
 
    KBHANDLER: 
   LOAD  R1,  '.' 
   CALL PRINTCHARACTER  
NOTE this interrupt will be repeatedly signalled until the character is consumed. 
 IRET 
 
    IVEC:  
 .SPACE  16 
 



 
ACTIONS AUTOMATICALLY PERFORMED WHEN AN INTERRUPT OCCURS, IF INT FLAG IS 1. 
 
If an interrupt is already being processed when another interrupt occurs, and the code number (1 to 17) 
for this new interrupt is less than the code number for the interrupt already being processed (the value 
of the IPL special register), then the new interrupt is ignored. There is a special mechanism to ensure 
that when a KEYBD or TIMER interrupt is ignored, it will be reasserted when the IPL gets low 
enough to give it priority. Otherwise: 
 
  oldflags  = FLAGS register 
  flag SYS turned on.  (i.e. now using system SP and system stack) 
  special register IPL = code number for the interrupt. 
  PUSH R0 
  PUSH R1 
  ... 
  ... 
  PUSH R11 
  PUSH R12 
  PUSH SP 
  PUSH FP 
  PUSH additional interrupt information if available 
  PUSH interrupt-causing address 
  PUSH interrupt code (i.e. position in interrupt vector) 
  PUSH oldflags 
  PUSH 38 
  PUSH PC 
  PC = memory[INTVEC + interrupt code] 
 
These are exactly the same as the SYSCALL actions, except for the three values pushed after the 16 
registers. These are information that may be needed to correctly handle the interrupt. 

Note that if the interrupt handler behaves like a normal function, and performs “PUSH FP” and 
“LOAD FP, SP” as its first actions, then those three pieces of information will be available at 
[FP+3], [FP+4], and [FP+5], the locations of the first three parameters to a function in BCPL. 

let interrupt_handler(intcode, address, info) be 
{ ... 
  ireturn; } 

 
The first parameter is always the interrupt code, the INT$ value for the interrupt. 
 
For the following interrupts: 

PAGEFAULT, PAGEFAULT2, PAGEPRIV, 
the second parameter is the virtual address that caused the problem. 

 
For this interrupt: 

MEMORY, 
the second parameter is the address that caused the problem. 

 
For this interrupt: 

WATCH, 
the second parameter is the address that was about to be written to. 



 
For the following interrupts: 

UNIMPOP, HALT, DIVZERO, UNWROP, PRIVOP, BADCALL, DEBUG, BADOP, 
the second parameter is the address of the instruction that caused the problem (i.e. PC value). 

 
For this interrupt: 

BADCALL, 
the third parameter is the operand of the SYSCALL instruction that caused the problem. 

 
For these interrupts: 

INTRFAULT, SYSSTKFL, 
which are only caused by a fatal error during interrupt processing, the second parameter is left 
unchanged from the original interrupt’s setting, and the third parameter is set to the interrupt 
code for the original interrupt. 

 
For these interrupts: 

USRINT1, USRINT2, USRINT3,  
which are only caused deliberately by a program, the second parameter is whatever the cause, 
an INTR instruction provided through its main register. 

 
Realise that if each process has its own system stack, then each process must also have its own value 
for the system stack pointer, which must be saved and restored when processes are switched, but it is 
normal for all processes to share a single system stack. 
 
WHEN THINGS GO WRONG WITH AN INTERRUPT. 
 
Except for one case, once an interrupt handler has been successfully started everything behaves as 
normal. This section is mostly about when something goes wrong while the automatic actions 
described above are being carried out. 
 
The exception is for a page fault. Normally only higher priority interrupts can interrupt the handling of 
another interrupt. Others, including a recurrence of the same interrupt are ignored. But page faults are 
slightly different. Whenever a page fault occurs, it must be handled or nothing will be able to work. To 
allow this, the mechanism for page faults is different. If a new page fault occurs during the handling of 
an earlier page fault, it is converted to a PAGEFAULT2, which has a slightly higher priority. But there is 
nothing beyond this, just this one second chance. 
 
During the automatic actions, there are only a small number of things that can go wrong. It might be 
impossible to push those 22 values onto the system stack. Perhaps it is full or virtual memory is set up 
incorrectly. It is impossible to handle this as another higher priority interrupt because all interrupt 
processing requires the current state to be pushed onto the system stack. The emergency procedure to 
make this survivable has two steps: First, if there is a non-zero entry for SYSSTKFL in the interrupt 
vector, it will be jumped to, not called in the normal way. The EMGRET (emergency return) special 
register is set to the address of the next instruction after the jump, and the EM flag (emergency under 
way) is turned on. If the handler is able to fix the problem, then it should clear the EM flag and retrieve 
the address stored in EMGRET. EMGRET should then be zeroed before jumping to the address it used to 
contain. A normal IRET instruction would result in processing of the failed interrupt being terminated 
as though it has been successful. If this SYSSTKFL mechanism can not be performed, then exactly the 
same thing is tried but for INTRFAULT instead. If that fails, then a running program will be stopped 
and the emulator will enter single step mode for debugging. 



 
 
INPUT AND OUTPUT OPERATIONS 
 

All interactions with any hardware outside of the CPU are controlled by the PERI instruction. The 
PERI instruction is accessible through the BCPL library function devctl. These operations produce a 
positive or zero result when the operation is successful and a negative error code when it is not. The 
error codes listed for each operation are available to programmers by prefixing err$ in a BCPL 
program or just $ in assembly language to the name, so the MEMORY error code would be err$memory 
or $MEMORY. 

 
There are four general groups of IO operations supported: 

Disc Operations: These allow direct access to the emulated disc drives, permitting whole blocks 
(128 words, which is the same size as 512 bytes) to be transferred between memory and a specified 
location on the disc. These operations are necessary for file-system implementation. 

Magnetic Tape Operations: These provide a realistic way of accessing files in the real (i.e. outside 
the emulator, probably unix) file system. Without these it would be very difficult and time consuming 
to get useful test data into your own file system implementations. 

Terminal Operations: These allow characters to be read from the controlling keyboard or written to 
appear on the monitor. 

Network operations: these allow the use of a simulated IP network with six-byte IP addresses, 
using the real UDP interface to support it. Datagrams of up to 1024 words may be sent or received. 

Time Operations: reading the emulated hardware clock and telling you the date and time. 
 
All IO operations are controlled in the same way. A small lump of memory is filled with 

information describing the operation to be performed, and with space to receive the results. The PERI 
instruction sends these few words to the appropriate piece of hardware. When the operation is 
complete, data returned by the hardware, if any, is stored back into the small lump of memory, a 
success-or-error code (zero or positive for success, negative for failure) is put into the instruction’s 
main register, and execution continues. The ERR flag is also cleared for success and set for failure. 

Example: Finding the total size of disc drive number one. 
The DISCCHECK IO operation requires a two-word control structure. All IO control structures must 
have the required operation code, in this case $DISCCHECK, stored in the first word. This particular 
operation also requires the second word to contain the disc drive number.  
  LOAD R2, control 
  LOAD R1, $DISCCHECK 
  STORE R1, [R2] 
  LOAD R1, 1 
  STORE R1, [R2+1] 
  PERI R3, control 
  JCOND ERR, failed 
  ...etc... 
 control: .SPACE 3 
 
If the operation is not successful, the ERR flag will be set, and the program will jump to the 
“failed:” label to deal with the situation, and R3 will contain a negative number as an error code. If 
the operation is successful, then R3 will contain the total number of blocks in disc number 1. 
 
Of course, control structures may be set up in advance, like this: 
  PERI R3, control 



  JCOND ERR, failed 
  ...etc... 
 control: .DATA $DISCCHECK 
  .DATA 1 
This style requires fewer instructions, but is slightly less flexible. 
PERI is a privileged operation, and can not be executed in user mode. 
 
If the operation code is not recognised, nothing happens except that the error code -1 
(ERR_BAD_CODE) is stored in the register. 
 
DISC OPERATIONS 
 
Disc drives are set up at system initialisation. The system.setup file describes the disc drives that 
are needed. An example line from system.setup is “disc 1 maindrive 6000”, it means that 
disc drive number 1 should be at least 6000 blocks long, and will actually be kept in the real file 
maindrive.disc. If such a file does not exist, it is created. If the file does exist, it is used as-is. The 
size of maindrive.disc will of course be 6000×512 bytes. The disc file is not actually created until 
it is first accessed, and even then it is only made big enough to store the blocks that have so far been 
written. Reading from a block that has never been written is not an error. 
 

DISCCHECK 
 
 Requires a 2 word control structure, as follows 
 0: the value DISCCHECK 
 1: disc drive number 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: drive number < 1 or > 8. 
 
 Successful result (returned in register): 
  disc size, in blocks, or 
  0 if the indicated disc does not exist. 
 

DISCREAD 
 
 Requires a 4 word control structure, as follows 
 0: the value DISCREAD 
 1: disc drive number 
 2: (disc address) the number of the first block to be read 
 3: (memory address) the address into which the data should be stored. 
  make sure that there are at least 128 words of space there. 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: indicated disc not available 
 -4, POSITION: attempt to read a block number < 0 or >= size. 
 -5, MEMORY: memory access problem reading the data 
 
 Successful result (returned in register): 



  number of blocks transferred from disc to memory. 
 
DISCWRITE 

 
 Requires a 4 word control structure, as follows 
 0: the value DISCWRITE 
 1: disc drive number 
 2: (disc address) the number of the first block to be written 
 3: (memory address) the address of the data to be written. 
  make sure that there are at least 128 words of memory set aside there. 
 
 Error codes same as for DISCREAD plus 
 -6, DEVFAILED: real failure to write all the data 
 
 Successful result (returned in register): 
  number of blocks transferred from memory to disc. 

 
DISCCLEAR 

 
 Completely erases a disc, setting every byte to zero. 
 
 Requires a 2 word control structure, as follows 
 0: the value DISCCLEAR 
 1: disc drive number 
 
 Error codes same as for DISCREAD plus 
 -2, READPARAMS: memory access problem reading the control struction 
 -6, DEVFAILED: real failure to write all the data 
 
 Successful result (returned in register): 
  number of blocks transferred from memory to disc. 
 
 
MAGNETIC TAPE OPERATIONS 
 
Real files in the outside operating system are made available in the guise of magnetic tapes. To access 
a real file, a program must first load that file onto a tape drive. It may then either read from the file 
sequentially in units of 128 word blocks, or it may write units of 128 word blocks into the file. Finally, 
the tape drive must be unloaded. Files/tapes are automatically rewound to the beginning when they are 
loaded. 

Magnetic tape drives are referred to by their unit number in the range 1 to 8. All blocks on a tape 
must be exactly 128 words (512 bytes), except that the last one may be smaller because they 
correspond to real files whose sizes are fixed. 
 

TAPECHECK 
 
 Requires a 2 word control structure, as follows 
 0: the value TAPECHECK 
 1: tape unit number 
 



 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: drive number < 1 or > 8. 
 
 Successful result (returned in register): 
  ‘R’ if the tape is readable, 
  ‘W’ if the tape is writable, or 
  0 if the indicated tape has not been loaded. 

 
 
TAPEREWIND 

 
 Requires a 2 word control structure, as follows 
 0: the value TAPEREWIND 
 1: the tape unit number 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: tape unit not available. 
 
 Repositions the tape to its beginning. 
 

Successful result (returned in register): 
  1 

 
TAPELOAD 

 
 Requires a 4 word control structure, as follows 
 0: the value TAPELOAD 
 1: the tape unit number 
 2: pointer to a string containing the real file name on the host system 
 3: mode, either ‘R’ for read only or ‘W’ for write only 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: tape unit not available. 
 -5, MEMORY: memory access problem reading the filename string 
 -7, NOTFOUND: the file is not accessible. 
 -8, BADPARAM: mode is neither ‘R’ nor ‘W’. 
 
 Successful result (returned in register): 
  1 

 
TAPELENGTH 

 
 Requires a 2 word control structure, as follows 
 0: the value TAPELENGTH 
 1: the tape unit number 
 
 Error codes (returned in register): 



 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: tape unit not available. 
 -7, NOTFOUND: the tape is not loaded or the associated file is not accessible. 
 
 Successful result (returned in register): 
  Length in bytes of the real file on the host system 
 

TAPEUNLOAD 
 
 Requires a 2 word control structure, as follows 
 0: the value TAPEUNLOAD 
 1: the tape unit number 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: tape unit not available. 
 -7, NOTFOUND: tape unit was not loaded. 
 
 Successful result (returned in register): 
  1 
 

TAPEREAD 
 

Reads the next block from tape into memory 
 
 Requires a 3 word control structure, as follows 
 0: the value TAPEREAD 
 1: tape unit number 
 2: (memory address) the address into which the data should be stored. 
  make sure that there are at least 128 words of space there. 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -3, DEVNUMBER: tape unit not available 
 -5, MEMORY: memory access problem reading the data 
 
 Successful result (returned in register): 
  number of bytes transferred from tape to memory, or 
  0 if the end of the tape had already been reached. 
 
 

TAPEWRITE 
 
 Requires a 4 word control structure, as follows 
 0: the value TAPEWRITE 
 1: tape unit number 
 2: (memory address) the address of the data to be written. 
 3: the number of bytes to be written 
 
 Error codes same as for $DISCREAD plus 



 -6, DEVFAILED: real failure to write all the data 
 
 Successful result (returned in register): 
  number of bytes transferred from memory to tape. 
 

TAPELOADFILE 
 
 Requires a 3 word control structure, as follows 
 0: the value TAPELOADFILE 
 1: a string, the name of the real unix file to be read 
 2: an address, the beginning of an area of free memory big enough to hold the whole file. 
 

The entire file is read into memory in a single operation. 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -5, MEMORY: memory access problem reading the filename string 
 -7, NOTFOUND: the file is not accessible. 
 
 Successful result (returned in register): 
  number of words read. 
 
Example: Reading the first 512 characters from a real unix file and displaying them. 
 

LOAD  R1, control 
LOAD  R2, $TAPELOAD  
STORE R2, [R1] 
LOAD  R2, 1   // unit number 
STORE R2, [R1+1] 
LOAD  R2, filename 
STORE R2, [R1+2] 
LOAD  R2, ‘R’ 
STORE R2, [R1+3]  // READ ONLY 
PERI R3, control  // have the tape loaded 
JCOND ERR, failed 
  
 LOAD  R2, $TAPEREAD 
STORE R2, [R1] 
LOAD  R2, 1   // unit number 
STORE R2, [R1+1] 
LOAD  R2, space   // where to put those characters 
STORE R2, [R1+2] 
PERI R3, control  // read from the tape 
JCOND ERR, failed 
 
LOAD  R2, $TERMOUTC 
STORE R2, [R1] 
LOAD  R2, 512   // number of characters 
STORE R2, [R1+1] 
LOAD  R2, space   // where those characters are 



STORE R2, [R1+2] 
PERI R3, control  // print 
  
LOAD  R2, $TAPEUNLOAD 
STORE R2, [R1] 
LOAD  R2, 1   // unit number 
STORE R2, [R1+1] 
PERI R3, control   // close the real file 
HALT 
 

filename: 
.STRING "tests/file.txt" 

control:  
.SPACE  4 

space:  
.SPACE  128 

 
 
TERMINAL OPERATIONS 
 
There are two essential operations: read a bunch of characters from the keyboard and write a bunch of 
characters to the screen. The read function is compatible with interrupt-driven user input: when a 
program is running (not just single stepping) and interrupts are enabled, every time a keyboard key is 
pressed its ASCII code is added to the end of the hardware keyboard buffer and a $KEYBD interrupt is 
signalled. The $TERMINC operation takes characters from the beginning of the hardware keyboard 
buffer. 

Character codes are available as soon as the key is pressed, the system does not wait until a whole 
line is available. This means that any special behaviour associated with particular keys (such as 
ENTER or BACKSPACE) must be programmed. The one exception is control-c; that will always 
interrupt a running program and return to single stepping mode. 
 

TERMIN 
 
 Requires 3 word control structure, as follows 
 0: the value TERMIN 
 1: the maximum number of characters to be read 
 2: (memory address) the address into which the characters should be stored. 
  make sure that there are at least maximum number / 4 + 1 words of space there. 
 
 Error codes (returned in register): 
 -2, READPARAMS: memory access problem reading the control structure. 
 -5, MEMORY: memory access problem storing the characters 
 
 Successful result (returned in register): 
 number of characters actually read. 
 
 Notes: 

It is not an error to attempt to read when the keyboard buffer is empty. 
If no characters are already in the keyboard buffer, it will not wait for input. 



The characters received are packed four per word to make a proper string, and that string 
will be zero terminated. Strings are organised so that the first character goes in the 
least-significant bits of the first word. This means that if just a single character is read, 
the first word of the result will simply be its ASCII code. 

Any characters left unread in the buffer will be received by the next TERMINC. 
 

TERMOUT 
 
 Requires 3 word control structure, as follows 
 0: the value $TERMOUT 
 1: the number of characters to be printed 
 2: (memory address) the address at which the characters may be found. 
 
 Error codes are the same as for $TERMIN 
 
 Successful result (returned in register): 
 the number of characters actually printed 
 
 Notes: 

The characters to be printed should be in the form of a proper string (packed four per 
word) starting at the given memory location. The string does not need to be zero-
terminated. 

If the number of characters is specified to be zero, the string will be assumed to be zero-
terminated, and an unlimited number of characters will be printed. 

If the number of characters is specified to be non-zero, that number of characters will be 
printed, even if they include some zeros. 

If the number of characters is specified to be one, then the memory location may just 
contain the character’s ASCII code; no extra formatting is required to make it into a 
string. 

 
 
NETWORK OPERATIONS 

 
The emulator uses UDP to simulate an IP network. Simulated IP addresses are six bytes long, 

consisting of the real IP address of the computer and a two byte UDP port number that may be 
requested by the programmer. Packets of data consist of any number of bytes up to 1024. Network 
devices must be started before they can be used, and should be stopped when they are no longer 
needed. 

 
NETSS 

 
 Start or stop a network device. 
 Requires 4 word control structure, as follows 
 0: the value NETSS 
 1: the unit number. Currently up to two network interfaces are supported, numbered 1  and 2. 
 2: the value 0 to turn a device off, or 1 to turn it on.  
 3: A pointer to two words of memory. The first word should be zero, and the second should 

be the requested real UDP port number to use, or zero to let the system select an unused 
port. 

  When the call terminates, these two words will contain the six byte simulated IP address. 



 
 Error codes: 
 -2, READPARAMS: memory access reading or writing the control structure. 
 -3, DEVNUMBER: unit < 1 or > 2, or when closing a device, unit not in use. 
 -5, MEMORY: error while accessing the two-word IP address.. 
 -9, INUSE: when starting a device, unit already in use. 

 
NETSEND 

 
 Send a packet of data. 
 Requires 4 word control structure, as follows 
 0: the value NETSEND 
 1: the unit number, 1 or 2. 
 2: A pointer to two words of memory, containing the destination IP address.  
 3: The number of bytes to be sent. 
 4:  (memory address) the address at which those bytes may be found. 
 
 Error codes: 
 -2, READPARAMS: memory access reading or writing the control structure. 
 -3, DEVNUMBER: unit < 1 or > 2, or when closing a device, unit not in use. 
 -5, MEMORY: error accessing IP address or data to be sent. 
 -6, DEVFAILED: the underlying unix call used to simulate IP transmission  
   failed. 
 -8, BADPARAM: number of bytes < 0 or > 1024 

 
NETRECV 

 
 Receive a packet of data. 

This is a non-blocking operation. If no packet has been received yet, it will immediately return 
a code of -11 

 Requires 4 word control structure, as follows 
 0: the value NETRECV 
 1: the unit number, 1 or 2. 
 2: A pointer to two words of memory, which will be set to contain the source IP  
  address of the packet received.  
 3:  (memory address) the address at which the bytes received should be stored. 
 
 Error codes: 
 -2, READPARAMS: memory access reading or writing the control structure. 
 -3, DEVNUMBER: unit < 1 or > 2, or when closing a device, unit not in use. 
 -5, MEMORY: error accessing IP address or the read-data buffer. 
 -6, DEVFAILED: the underlying unix call used to simulate IP transmission  
   failed. 
 -11, NODATA: (not an error) no data has been received yet, just try again  
   later. 
 
 
TIME OPERATIONS 

 
SECONDS 



 
 Requires 1 word control structure, as follows 
 0: the value SECONDS 
 
 Error codes: 
 -2, ERR_READPARAMS: memory access reading or writing the control structure. 
 
 Successful result (returned in register): 
 The number of seconds elapsed since midnight (0000 hours) on 1st January 2000. 

 
USECONDS 

 
 Requires 3 word control structure, as follows 
 0: the value USECONDS 
 1: a memory address, there must be at least two free words starting here. 
 
 Error codes: 
 -2, READPARAMS: memory access reading or writing the control structure. 
 -5, MEMORY: error writing the time data to memory. 
 
 Successful result (returned in memory whose address was given): 
 Position 0: the number of seconds elapsed since midnight (0000 hours) on 1st January 2000. 
 Position 1: the number of microseconds elapsed since the beginning of that second. 

 
DATETIME 

 
 Splits a date/time value into its human-oriented parts. 
 
 Requires 9 word control structure, as follows 
 0: the value DATETIME 
 1: a time value of the kind returned by $SECONDS or $USECONDS 
  If the value here is -1, the current date and time will be used. 
 2: a memory address, there must be at least seven free words starting here. 
 
 Error codes: 
 -2, READPARAMS: memory access reading or writing the control structure. 
 -5, MEMORY: error writing the time data to memory. 
 
 Successful result (returned in memory whose address was given): 
 Position 0: the year. 
 Position 1: the month. 
 Position 2: the day of the month. 
 Position 3: the day of the week, 0 means Sunday. 
 Position 4: the hour. 
 Position 5: the minute. 
 Position 6: the second. 
 

This operation is something of a cheat. No real computer would have hardware for this task, but 
converting seconds to a date is very difficult. It would be easy, but you'd have to know the exact 
dates for daylight saving time for any year past or future, and those dates change sometimes. 



 
MISCELLANEOUS OPERATIONS 

 
FLOATFORMAT 

 
 Requires 4 word control structure, as follows 
 0: the value FLOATFORMAT 
 1: a floating point number 
 2: a format string 
 3: a destination 
 
 Error codes: 
 -2, ERR_READPARAMS: memory access reading or writing the control structure. 
 -5, MEMORY: error accessing either of the strings. 
 

The format string must contain a format that could be used exactly by C's printf function to 
print a floating point number. the destination must be the address of an area of free memory 
large enough to contain the string that printf would have printed. This is a bit of a cheat, no 
real computer would have hardware for such a purpose, but again it is very difficult to do 
properly. 

 
 
VIRTUAL MEMORY 
 

Because the emulator uses 32 bit words instead of 8 bit bytes, the Intel scheme of splitting a virtual 
address into a 10 bit page table number, a 10 bit page number, and a 12 bit offset can not be used 
exactly. 

A 12 bit offset means that there would be 4096 memory locations in a page, and that would mean 
that a page table could hold the addresses of 4096 pages instead of 1024, so we would not need so 
many of them. 

 
In the emulator a page of memory consists of 2048 32-bit locations requiring only an 11 bit offset. 

That means that a page table can hold the addresses of 2048 pages, so 11 bits are required for page 
numbers. That leaves only 10 bits for the page table number, meaning that page directories only fill 
half a page. 

 
A Virtual Address 
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There are two advantages to this changed layout: pages are smaller, so more of them are available 
without using up so much real memory, and page directories only fill half a page, so it is quite possible 
that you can store everything you need to know about a process in one single page. 

Only the most significant 22 bits of the value stored in the Page Directory Base Register are looked 
at during virtual address translation. Page directories must occupy complete half-pages; their addresses 
must be multiples of 1024 (i.e. in binary they must end in 10 zeros). 



Only the most significant 21 bits of the values stored in the Page Directories are looked at during 
virtual address translation. Page tables must occupy whole pages; their addresses must be multiples of 
2048 (i.e. in binary they must end in 11 zeros). 

The entries in page tables include two page status bits in the least significant bits. They are the 
Valid bit (in bit 0) and the System bit (in bit 1). The meaning of a page table entry depends upon the 
value of the Resident bit. The BCPL compiler has constants for referring to these bits: 
page$validbitnum and page$systembitnum (0 and 1) and page$validmask and 
page$systemmask (1 and 1). It also has constants that make the layout of page directory and table 
entries transparent: page$size (2048), page$tablenumbits (10), page$pageintablebits (11), 
page$pagenumbits (21), page$offsetbits (11), page$tablenummask (binary ten ones 
followed by 22 zeros), page$pageintablemask (binary ten zeros then eleven ones then eleven 
zeros), page$pagenummask (binary twenty-one ones followed by eleven zeros), and 
page$offsetmask (binary twenty-one zeros followed by eleven ones). 

 
A Page Table Entry, which is the same as a Page Directory Entry. 
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If the Valid bit is 0, any access to this virtual page will immediately cause a PAGEFAULT interrupt, 
and the other 31 bits will not even be seen. They may be used for any purpose whatsoever. 

If the System bit is 1, any attempted access to this virtual page while in user mode will result in a 
PAGEPRIV interrupt, and the access will not occur. 

In all cases, bits 2 to 10 have no assigned meaning, and may be used for any purpose whatsoever. 
 

MEMORY ACCESS ALGORITHM (using C/C++ syntax for expressions) 
 
let A be the address in memory referenced by an instruction. 
if $VM flag is OFF: 
 Use physical memory at address A 
otherwise, if $VM flag is ON: 
 // A is a virtual address and will be translated. 
  let DIR be (A >> 22) & 0x3FF  // most significant 10 bits 
  let PG be (A >> 11) & 0x7FF  // next 11 bits 
  let OFFS be A & 0x7FF   // least significant 11 bits 
 let POS be DIR + contents of PDBR register 
 read PTADDR from physical memory address POS 
 if PTADDR is Zero: 
  PAGEFAULT, translation abandoned 
 PTADDR &= 0xFFFFF800   // zero out least significant 11 bits 
  read PGADDR from physical memory address (PTADDR + PG) 
 let V be PGADDR & 1    // least significant bit 
 if V is zero: 
  PAGEFAULT, translation abandoned 
 let S be (PGADDR & 2) >> 1  // second least significant bit 
 if S is one and SYS flag is zero: 
  PAGEPRIV, translation abandoned 
 PGADDR &= 0xFFFFF800   // zero out least significant 11 bits 
 let PHYS be PGADDR + OFFS 
 Use physical memory at address PHYS 



 
 
PRIVILEGED OPERATIONS 
 

If any of the following instructions are executed when the SYS flag is off (zero), a PRIVOP 
interrupt will be triggered and the operation will not be performed. 

SETSR, PERI, IRET, PHLOAD, PHSTORE, FLAGSJ, CLRPP 
 

If a HALT instruction is executed when the SYS flag is off (zero), a HALT interrupt will be triggered 
and the processor will not be halted. 

 
If a SETFL instruction is executed when the SYS flag is off (zero), and it attempts to modify either 

the R, SYS, VM, INT or EM flag, a PRIVOP interrupt will be triggered and the operation will not be 
performed. 

 


