
HARDWARE INFORMATION

SPECIAL REGISTERS

There are nine special registers, as follows
 FLAGS A single word containing all of the one-bit flags
 PDBR Page Directory Base Register
 INTVEC The address of the interrupt vector
 CGBR Call Gate Base Register
 CGLEN Number of call gates
 DEBUG If the value of PC ever = this value, a debug interrupt is signalled
 TIMER Reduced by 1 after each instruction, causes timer interrupt when zero
 SYSSP System stack pointer. If in system mode, equivalent to SP
 SYSFP System frame pointer, not so useful.
 USRSP User mode stack pointer. If in user mode, equivalent to SP
 USRFP User mode frame pointer.

The assembler understands the names of these registers (put a $ sign in front), they stand for the
numbers 0 to 9 in instruction operands.

There are two instructions that directly access the special registers:
 GETSR loads a special register value into a normal register
 SETSR stores a normal register value into a special register

Example: how to set the TIMER register to 100:
 LOAD R1, 100
 SETSR R1, $TIMER

The value stored in $PDBR is always treated as a physical memory address.
The values stored in $INTVEC and $CGBR are physical addresses, but the entries in the interrupt
vector and the call gate vector must be virtual addresses if virtual memory is turned on.
$DEBUG, $SYSSP, and $SYSFP are treated as virtual addresses when virtual memory is turned
on.

FLAGS

There are seven one-bit CPU flags, as follows
 R Indicates that the CPU is running, not halted
 Z Zero. Set by some instructions to indicate a zero (or equal) result.
 N Negative. Set by some instructions to indicate a negative result.
 ERR Error. Used only by the PERI instruction. Zero means success.
 SYS Set when CPU is in system mode, Zero when in user mode.
 IP Interrupt in progress. Set to 1 to ignore interrupts.
 VM Virtual Memory. If zero, all memory accesses use physical addresses,
 if set, page tables must be correctly set up, all memory addresses are translated.
The final three, SYS, IP, and VM, may only be modified when the CPU is in system mode.
At start-up, SYS=1, IP=1, VM=0.

The assembler understands the names of these flags (put a $ sign in front), they stand for the
numbers 0 to 6 in instruction operands.

There are two instructions that directly access the special registers:
 GETFL loads the value of a single flag into a register
 SETFL sets a single flag equal to a register value (0 for off, non-0 for on)
The COMP and COMPZ instructions set or clear both Z and N, depending on the result.
The JCOND instruction jumps if the flags have a particular combination of values.

All the flag values may be read at once, using the GETSR instruction on the $FLAGS special
register. The flags occupy the least significant bits of the value, in the order shown above. R is
the least significant bit, VM is bit 6 (equivalent value 64).

All the flag values may be set at once using the SETSR instruction on the $FLAGS special
register.

Example: Turn the SYS flag off, and the VM flag on, leaving other flags untouched:
 GETSR R1, $FLAGS
 CBIT R1, $SYS
 SBIT R1, $VM
 SETSR R1, $FLAGS

The special instruction FLAGSJ sets all the flags at once, and causes an unconditional jump by
setting the PC. The only real point of this weird instruction is that it lets you turn on virtual
memory without crashing the system. As soon as the VM flag is turned on, virtual-to-physical
address translation begins for all memory accesses, so in the example above, if the program
counter = 101 for the first instruction the GETSR is fetched from physical location 101, the CBIT
is fetched from physical location 102, the SBIT is fetched from physical location 103, then
suddenly physical addresses are not used any more, and the next instruction is fetched from
virtual address 104. Unless virtual address 104 maps to physical address 104 (which would not
make much sense), everything fails. This sequence:
 GETSR R1, $FLAGS
 CBIT R1, $SYS
 SBIT R1, $VM
 FLAGSJ R1, xxx
is safe. Of course ‘xxx’ should be replaced by the correct virtual address for program
continuation.

BIT RANGES

The instructions EXBR, DPBR, etc extract or deposit a sequence of consecutive bits from within a
single word. The desired bits are described by a single 32 bit value constructed thus:

5 least significant bits: number of bits in the range, with 00000 indicating 32.
5 next bits: the number of bits to the right of the range within its word.
22 most significant bits: the number of whole words to be skipped before extracting the bits.

EXBR and DPBR work directly on their operand, so the 22 most significant bits are ignored.
EXBRV and DPBRV treat their operand as the address of the first word in a segment of memory.

INTERRUPTS

There are interrupts that represent a fatal problem (such as a user mode program attempting a
privileged operation) and there are interrupts that represent some useful notification (such as
keyboard input ready, or countdown timer reached zero). If interrupts are being processed (that
is, the IP flag is 0, and the INTVEC special register contains the address of a proper interrupt
vector), then all interrupts are trappable, regardless of how fatal they are.

If interrupts are being ignored (IP flag is 1), then fatal interrupts still stop a program, but
notification interrupts are just ignored.

If interrupts are being accepted (IP=0) and a particular interrupt arises, but the interrupt
vector is invalid, a second interrupt, INTRFAULT, is signalled. This may also be trapped, but
given that it is caused by the failure to correctly process another interrupt, it will probably turn
out to be fatal.

Beware of this. Problems with regular programs (system or user mode) cause interrupts, and
that is fine. The interrupt gives the system a chance to correct whatever condition caused it. BUT
interrupt handling functions have no backup. If an interrupt handler causes a non-trivial interrupt,
even a page fault, it will normally be fatal.

The INTRFAULT interrupt is the last chance to avoid a big crash. If you have a handling
function for INTRFAULT stored in the interrupt vector, it will be called if a fatal interrupt occurs
during interrupt processing, but it will not be able to return to processing the original interrupt
after fixing the situation.

There are 14 interrupts defined, each with a name known to the assembler. Their names all begin
with “IV$”. An interrupt vector is really an array, and must be at least 14 words long. To be
used, its address must be stored in the special register INTVEC. Each entry in the array is either
zero (the corresponding interrupt will not be handled) or the address of an almost perfectly
normal function that will be called automatically whenever the relevant interrupt occurs. The
only special requirement is that interrupt handling functions must use IRET in all places instead
of RET.

The defined interrupts are:
 IV$NONE = 0: (not a real interrupt code)
 IV$MEMORY = 1: Physical memory access failed
 IV$PAGEFAULT = 2: Page fault
 IV$UNIMPOP = 3: Unimplemented operation code (i.e. instruction opcode wrong)
 IV$HALT = 4: HALT instruction executed
 IV$DIVZERO = 5: Division by zero
 IV$UNWROP = 6: Unwritable instruction operand (e.g. INC 72)
 IV$TIMER = 7: Countdown timer reached zero
 IV$PRIVOP = 8: Privileged operation attempted by user mode program
 IV$KEYBD = 9: at least one keyboard character typed and ready
 IV$BADCALL = 10: Bad SYSCALL index (i.e. <0 or >=$CGLEN)

 IV$PAGEPRIV = 11: User mode access to system mode page
 IV$DEBUG = 12: PC=$DEBUG trap
 IV$INTRFAULT = 13: Failure to process interrupt.

The IV$ values are the positions in the interrupt vector where the handler function’s address
should be stored.

Example: How to set up an interrupt handler that automatically prints a dot whenever a keyboard
key is pressed, and a star whenever another 5000 instructions have been executed...

 LOAD R1, TIMHANDLER
 STORE R1, [IVEC+IV$TIMER]
 LOAD R1, KBHANDLER
 STORE R1, [IVEC+IV$KEYBD]
 LOAD R1, IVEC
 SETSR R1, $INTVEC
 LOAD R1, 0
 SETFL R1, $IP
 LOAD R1, 5000
 SETSR R1, $TIMER

 TIMHANDLER:
 LOAD R1, ‘*’
 CALL PRINTCHARACTER // which you would have to write somewhere
 LOAD R1, 5000
 SETSR R1, $TIMER
 IRET

 KBHANDLER:
 LOAD R1, '.'
 CALL PRINTCHARACTER
NOTE this interrupt will be repeatedly signalled until the character is consumed.
 IRET

 IVEC:
 .SPACE 16

ACTIONS AUTOMATICALLY PERFORMED WHEN AN INTERRUPT OCCURS, IF IP FLAG IS 0.

 oldflags = FLAGS register
 flag SYS turned on. (i.e. now using system SP and system stack)
 flag IP turned on.
 PUSH R0
 PUSH R1
 ...

 ...
 PUSH R11
 PUSH R12
 PUSH SP
 PUSH FP
 PUSH PC
 PUSH additional interrupt information if available
 PUSH interrupt-causing address
 PUSH interrupt code (i.e. position in interrupt vector)
 PUSH oldflags
 PUSH 40
 PC = memory[$INTVEC + interrupt code]

These are exactly the same as the SYSCALL actions, except for the three values pushed after the
16 registers. These are information that may be needed to correctly handle the interrupt.

Note that if the interrupt handler behaves like a normal function, and performs “PUSH FP”
and “LOAD FP, SP” as its first actions, then those three pieces of information will be available
at [FP+3], [FP+4], and [FP+5], the locations of the first three parameters to a function in
BCPL.

let interrupt_handler(intcode, address, info) be
{ ...
 ireturn; }

The first parameter is always the interrupt code, the IV$ value for the interrupt.

For the following interrupts:

PAGEFAULT, PAGEPRIV,
the second parameter is the virtual address that caused the problem.

For this interrupt:

MEMORY,
the second parameter is the physical address that caused the problem.

For the following interrupts:

UNIMPOP, HALT, DIVZERO, UNWROP, PRIVOP, BADCALL, DEBUG,
the second parameter is the address of the instruction that caused the problem (i.e. PC
value).

For this interrupt:

BADCALL,
the third parameter is the operand of the SYSCALL instruction that caused the problem.

For this interrupt:

INTRFAULT,
which is only caused by a fatal error during interrupt processing, the second parameter is
left unchanged from the original interrupt’s setting, and the third parameter is set to the
interrupt code for the original interrupt.

Realise that if each process has its own system stack, then each process must also have its own
value for the system stack pointer, which must be saved and restored when processes are
switched.

INPUT AND OUTPUT OPERATIONS

All interactions with any hardware outside of the CPU are controlled by the PERI instruction.
There are four general groups of IO operations supported:

Disc Operations: These allow direct access to the emulated disc drives, permitting whole
blocks (128 words, which is the same size as 512 bytes) to be transferred between memory and a
specified location on the disc. These operations are necessary for file-system implementation.

Magnetic Tape Operations: These provide a realistic way of accessing files in the real (i.e.
outside the emulator, probably unix) file system. Without these it would be very difficult and
time consuming to get useful test data into your own file system implementations.

Terminal Operations: These allow characters to be read from the controlling keyboard or
written to appear on the monitor.

Network operations: these allow the use of a simulated IP network with six-byte IP
addresses, using the real UDP interface to support it. Datagrams of up to 1024 words may be sent
or received.

Time Operations: reading the emulated hardware clock and telling you the date and time.

All IO operations are controlled in the same way. A small lump of memory is filled with

information describing the operation to be performed, and with space to receive the results. The
PERI instruction sends these few words to the appropriate piece of hardware. When the
operation is complete, data returned by the hardware, if any, is stored back into the small lump of
memory, a success-or-error code (zero or positive for success, negative for failure) is put into the
instruction’s main register, and execution continues. The ERR flag is also cleared for success and
set for failure.

Example: Finding the total size of disc drive number one.
The DISCCHECK IO operation requires a two-word control structure. All IO control structures
must have the required operation code, in this case $DISCCHECK, stored in the first word. This
particular operation also requires the second word to contain the disc drive number.
 LOAD R2, control
 LOAD R1, $DISCCHECK
 STORE R1, [R2]
 LOAD R1, 1
 STORE R1, [R2+1]
 PERI R3, control
 JCOND ERR, failed
 ...etc...
 control: .SPACE 3

If the operation is not successful, the ERR flag will be set, and the program will jump to the
“failed:” label to deal with the situation, and R3 will contain a negative number as an error
code. If the operation is successful, then R3 will contain the total number of blocks in disc
number 1.

Of course, control structures may be set up in advance, like this:
 PERI R3, control
 JCOND ERR, failed
 ...etc...
 control: .DATA $SIZEDISC
 .DATA 1
This style requires fewer instructions, but is slightly less flexible.
PERI is a privileged operation, and can not be executed in user mode.

If the operation code is not recognised, nothing happens except that the error code ‐1
(ERR_BAD_CODE) is stored in the register and the ERR flag is set.

DISC OPERATIONS

Disc drives are set up at system initialisation. The system.setup file describes the disc drives
that are needed. An example line from system.setup is “disc 1 maindrive 6000”, it
means that disc drive number 1 should be at least 6000 blocks long, and will actually be kept in
the real file maindrive.disc. If such a file does not exist, it is created. If the file does exist, it
is used as-is. The size of maindrive.disc will of course be 6000*512 bytes. The disc file is
not actually created until it is first accessed, and even then it is only made big enough to store the
blocks that have so far been written. Reading from a block that has never been written is not an
error.

$DISCCHECK

 Requires a 2 word control structure, as follows
 0: the value $DISCCHECK
 1: disc drive number

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: drive number < 1 or > 8.

 Successful result (returned in register):
 disc size, in blocks, or
 0 if the indicated disc does not exist.

$DISCREAD

 Requires a 5 word control structure, as follows
 0: the value $DISCREAD
 1: disc drive number
 2: (disc address) the number of the first block to be read
 3: the number of consecutive blocks to be read
 4: (memory address) the address into which the data should be stored.
 make sure that there are at least (number of blocks * 128) words of space there.

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: indicated disc not available
 ‐4, ERR_POSITION: attempt to read a block number < 0 or >= size.
 ‐5, ERR_MEMORY: memory access problem reading the data

 Successful result (returned in register):
 number of blocks transferred from disc to memory.

$DISCWRITE

 Requires a 5 word control structure, as follows
 0: the value $DISCWRITE
 1: disc drive number
 2: (disc address) the number of the first block to be written
 3: the number of consecutive blocks to be written
 4: (memory address) the address of the data to be written.
 make sure that there are at least (number of blocks * 128) words of space there.

 Error codes same as for $DISCREAD plus
 ‐6, ERR_DEV_FAILED: real failure to write all the data

 Successful result (returned in register):
 number of blocks transferred from memory to disc.

MAGNETIC TAPE OPERATIONS

Real files in the outside operating system are made available in the guise of magnetic tapes. To
access a real file, a program must first load that file onto a tape drive. It may then either read
from the file sequentially in units of 128 word blocks, or it may write units of 128 word blocks
into the file. Finally, the tape drive must be unloaded. Files/tapes are automatically rewound to
the beginning when they are loaded.

Magnetic tape drives are referred to by their unit number in the range 1 to 8. All blocks on a
tape must be exactly 128 words (512 bytes), except that the last one may be smaller because they
correspond to real files whose sizes are fixed.

$TAPECHECK

 Requires a 2 word control structure, as follows
 0: the value $TAPECHECK
 1: tape unit number

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: drive number < 1 or > 8.

 Successful result (returned in register):
 ‘R’ if the tape is readable,
 ‘W’ if the tape is writable, or
 0 if the indicated tape has not been loaded.

$TAPEREWIND

 Requires a 2 word control structure, as follows
 0: the value $TAPEREWIND
 1: the tape unit number

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: tape unit not available.

 Successful result (returned in register):
 1

$TAPELOAD

 Requires a 4 word control structure, as follows
 0: the value $TAPELOAD
 1: the tape unit number
 2: pointer to a string containing the real file name on the host system
 3: mode, either ‘R’ for read only or ‘W’ for write only

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: tape unit not available.
 ‐5, ERR_MEMORY: memory access problem reading the filename string
 ‐7, ERR_NOT_FOUND: the file is not accessible.
 ‐8, ERR_BAD_PARAM: mode is neither ‘R’ nor ‘W’.

 Successful result (returned in register):
 1

$TAPELENGTH

 Requires a 2 word control structure, as follows
 0: the value $TAPELENGTH
 1: the tape unit number

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: tape unit not available.
 ‐7, ERR_NOT_FOUND: the tape is not loaded or the associated file is not accessible.

 Successful result (returned in register):
 Length in bytes of the real file on the host system

$TAPEUNLOAD

 Requires a 2 word control structure, as follows
 0: the value $TAPEUNLOAD
 1: the tape unit number

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: tape unit not available.
 ‐7, ERR_NOT_FOUND: tape unit was not loaded.

 Successful result (returned in register):
 1

$TAPEREAD

Reads the next block from tape into memory

 Requires a 3 word control structure, as follows
 0: the value $TAPEREAD
 1: tape unit number
 2: (memory address) the address into which the data should be stored.
 make sure that there are at least 128 words of space there.

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐3, ERR_DEV_NUMBER: tape unit not available
 ‐5, ERR_MEMORY: memory access problem reading the data

 Successful result (returned in register):
 number of bytes transferred from tape to memory, or
 0 if the end of the tape had already been reached.

$TAPEWRITE

 Requires a 4 word control structure, as follows
 0: the value $TAPEWRITE
 1: tape unit number
 2: (memory address) the address of the data to be written.
 3: the number of bytes to be written

 Error codes same as for $DISCREAD plus
 ‐6, ERR_DEV_FAILED: real failure to write all the data

 Successful result (returned in register):
 number of bytes transferred from memory to tape.

Example: Reading the first 512 characters from a real unix file and displaying them.

LOAD R1, control
LOAD R2, $TAPELOAD
STORE R2, [R1]
LOAD R2, 1 // unit number
STORE R2, [R1+1]
LOAD R2, filename
STORE R2, [R1+2]
LOAD R2, ‘R’
STORE R2, [R1+3] // READ ONLY
PERI R3, control // have the tape loaded
JCOND ERR, failed

 LOAD R2, $TAPEREAD
STORE R2, [R1]
LOAD R2, 1 // unit number
STORE R2, [R1+1]
LOAD R2, space // where to put those characters
STORE R2, [R1+2]
PERI R3, control // read from the tape
JCOND ERR, failed

LOAD R2, $TERMOUTC
STORE R2, [R1]
LOAD R2, 512 // number of characters
STORE R2, [R1+1]
LOAD R2, space // where those characters are
STORE R2, [R1+2]
PERI R3, control // print

LOAD R2, $TAPEUNLOAD
STORE R2, [R1]
LOAD R2, 1 // unit number
STORE R2, [R1+1]
PERI R3, control // close the real file
HALT

filename:
.STRING "tests/file.txt"

control:
.SPACE 4

space:
.SPACE 128

TERMINAL OPERATIONS

There are two essential operations: read a bunch of characters from the keyboard and write a
bunch of characters to the screen. The read function is compatible with interrupt-driven user
input: when a program is running (not just single stepping) and interrupts are enabled, every time
a keyboard key is pressed its ASCII code is added to the end of the hardware keyboard buffer
and a $KEYBD interrupt is signalled. The $TERMINC operation takes characters from the
beginning of the hardware keyboard buffer.

Character codes are available as soon as the key is pressed, the system does not wait until a
whole line is available. This means that any special behaviour associated with particular keys
(such as ENTER or BACKSPACE) must be programmed. The one exception is control-c; that
will always interrupt a running program and return to single stepping mode.

$TERMINC

 Requires 3 word control structure, as follows
 0: the value $TERMINC
 1: the maximum number of characters to be read
 2: (memory address) the address into which the characters should be stored.
 make sure that there are at least ((maximum number + 1) / 4) words of space there.

 Error codes (returned in register):
 ‐2, ERR_READ_PARAMS: memory access problem reading the control structure.
 ‐5, ERR_MEMORY: memory access problem storing the characters

 Successful result (returned in register):
 number of characters actually read.

 Notes:

It is not an error to attempt to read when the keyboard buffer is empty.
If no characters are already in the keyboard buffer, it will not wait for input.
The characters received are packed four per word to make a proper string, and that

string will be zero terminated. Strings are organised so that the first character
goes in the least-significant bits of the first word. This means that if just a single
character is read, the first word of the result will simply be its ASCII code.

Any characters left unread in the buffer will be received by the next TERMINC.

$TERMOUTC

 Requires 3 word control structure, as follows
 0: the value $TERMOUTC
 1: the number of characters to be printed
 2: (memory address) the address at which the characters may be found.

 Error codes are the same as for $TERMINC

 Successful result (returned in register):
 the number of characters actually printed

 Notes:

The characters to be printed should be in the form of a proper string (packed four
per word) starting at the given memory location. The string does not need to be
zero-terminated.

If the number of characters is specified to be zero, the string will be assumed to be
zero-terminated, and an unlimited number of characters will be printed.

If the number of characters is specified to be non-zero, that number of characters
will be printed, even if they include some zeros.

If the number of characters is specified to be one, then the memory location may
just contain the character’s ASCII code; no extra formatting is required to make
it into a string.

$TERMINW and
$TERMOUTW

These operations perform exactly as TERMINC and TERMOUTC with the following
exceptions:

The data is not formatted as a string. Reading or printing N characters requires
exactly N words of memory, containing one ASCII code each.

The input operation will not zero-terminate the array of characters.

NETWORK OPERATIONS

The emulator uses UDP to simulate an IP network. Simulated IP addresses are six bytes long,

consisting of the real IP address of the computer and a two byte UDP port number that may be
requested by the programmer. Packets of data consist of any number of bytes up to 1024.
Network devices must be started before they can be used, and should be stopped when they are
no longer needed.

$NETSS

 Start or stop an network device.
 Requires 4 word control structure, as follows
 0: the value $NETSS
 1: the unit number. Currently up to two network interfaces are supported, numbered 1

 and 2.
 2: the value 0 to turn a device off, or 1 to turn it on.
 3: A pointer to two words of memory. The first word should be zero, and the second

 should be the requested real UDP port number to use, or zero to let the system
 select an unused port.

 When the call terminates, these two words will contain the six byte simulated IP
 address.

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.
 ‐5, ERR_MEMORY: error while accessing the two-word IP address..
 ‐3, ERR_DEV_NUMBER: unit < 1 or > 2, or when closing a device, unit not in use.
 ‐9, ERR_IN_USE: when starting a device, unit already in use.

$NETSEND

 Send a packet of data.
 Requires 4 word control structure, as follows
 0: the value $NETSEND
 1: the unit number, 1 or 2.
 2: A pointer to two words of memory, containing the destination IP address.
 3: The number of bytes to be sent.
 4: (memory address) the address at which those bytes may be found.

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.
 ‐5, ERR_MEMORY: error accessing IP address or data to be sent.
 ‐3, ERR_DEV_NUMBER: unit < 1 or > 2, or when closing a device, unit not in use.
 ‐8, ERR_BAD_PARAM: number of bytes < 0 or > 1024
 ‐6, ERR_DEV_FAILED: the underlying unix call used to simulate IP transmission
 failed.

$NETRECV

 Receive a packet of data.
 This is a non-blocking operation. If no packet has been received yet, it will immediately
 return a code of -11
 Requires 4 word control structure, as follows
 0: the value $NETRECV
 1: the unit number, 1 or 2.
 2: A pointer to two words of memory, which will be set to contain the source IP
 address of the packet received.
 3: (memory address) the address at which the bytes received should be stored.

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.
 ‐5, ERR_MEMORY: error accessing IP address or the read-data buffer.
 ‐3, ERR_DEV_NUMBER: unit < 1 or > 2, or when closing a device, unit not in use.
 ‐6, ERR_DEV_FAILED: the underlying unix call used to simulate IP transmission
 failed.
 ‐11, ERR_NO_DATA: (not an error) no data has bee received yet, just try again
 later.

TIME OPERATIONS

$SECONDS

 Requires 1 word control structure, as follows
 0: the value $SECONDS

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.

 Successful result (returned in register):
 The number of seconds elapsed since midnight (0000 hours) on 1st January 2000.

$USECONDS

 Requires 3 word control structure, as follows
 0: the value $SECONDS
 1: output only: receives the number of seconds
 2: output only: receives the number of microseconds

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.

 Successful result (returned in the control structure):
 The number of microseconds elapsed since midnight (0000 hours) on 1st January
 2000, split into separate integers for seconds and microseconds.

$DATETIME

 Splits a date/time value into its human-oriented parts.

 Requires 9 word control structure, as follows
 0: the value $DATETIME
 1: a time value of the kind returned by $SECONDS
 2: output only: receives the year
 3: output only: receives the month, 1 to 12
 4: output only: receives the day of the month, 1 to 31
 5: output only: receives the day of the week, 0 to 6, 0 = Sunday
 6: output only: receives the hour, 0 to 23
 7: output only: receives the minute, 0 to 59
 8: output only: receives the second, 0 to 59

 Error codes:
 ‐2, ERR_READ_PARAMS: memory access reading or writing the control structure.

VIRTUAL MEMORY

Because the emulator uses 32 bit words instead of 8 bit bytes, the Intel scheme of splitting a

virtual address into a 10 bit page table number, a 10 bit page number, and a 12 bit offset can not
be used exactly.

A 12 bit offset means that there would be 4096 memory locations in a page, and that would
mean that a page table could hold the addresses of 4096 pages instead of 1024, so we would not
need so many of them.

In the emulator a page of memory consists of 2048 32-bit locations requiring only an 11 bit

offset. That means that a page table can hold the addresses of 2048 pages, so 11 bits are required
for page numbers. That leaves only 10 bits for the page table number, meaning that page
directories only fill half a page.

A Virtual Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page Table Number Page Number Offset

There are two advantages to this changed layout: pages are smaller, so more of them are
available without using up so much real memory, and page directories only fill half a page, so it
is quite possible that you can store everything you need to know about a process in one single
page.

Only the most significant 22 bits of the value stored in the Page Directory Base Register are
looked at during virtual address translation. Page directories must occupy complete half-pages;
their addresses must be multiples of 1024 (i.e. in binary they must end in 10 zeros).

Only the most significant 21 bits of the values stored in the Page Directories are looked at
during virtual address translation. Page tables must occupy whole pages; their addresses must be
multiples of 2048 (i.e. in binary they must end in 11 zeros).

The entries in page tables include two page status bits in the least significant bits. They are
the Resident or Valid bit (in bit 0) and the System bit (in bit 1). The meaning of a page table
entry depends upon the value of the Resident bit.

A Page Table Entry, which is the same as a Page Directory Entry.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Address Unassigned S R

If the Resident bit is Zero, any access to this virtual page will immediately cause a
PAGEFAULT interrupt, and the other 31 bits will not even be seen. They may be used for any
purpose whatsoever.

If the System bit is 1, any attempted access to this virtual page while in User mode will result
in a PAGEPRIV interrupt, and the access will not occur.

In all cases, bits 2 to 10 have no assigned meaning, and may be used for any purpose
whatsoever.

MEMORY ACCESS ALGORITHM

let A be the address in memory referenced by an instruction.
if $VM flag is OFF:
 Use physical memory at address A
otherwise, if $VM flag is ON:
 // A is a virtual address and will be translated.
 let DIR be (A>>22)&0x3FF // most significant 10 bits
 let PG be (A>>11)&0x7FF // next 11 bits
 let OFFS be A&0x7FF // least significant 11 bits
 let POS be DIR + contents of $PDBR register
 read PTADDR from physical memory address POS
 if PTADDR is Zero:
 PAGEFAULT, translation abandoned
 PTADDR &= 0xFFFFF800 // zero out least significant 11 bits
 read PGADDR from physical memory address (PG + PTADDR)
 let R be PGADDR & 1 // least significant bit
 if R is Zero:
 PAGEFAULT, translation abandoned
 let S be (PGADDR & 2)>>1 // second least significant bit
 if S is One and $SYS flag is Zero:
 PAGEPRIV, translation abandoned
 PGADDR &= 0xFFFFF800 // zero out least significant 11 bits
 let PHYS be PGADDR + OFFS
 Use physical memory at address PHYS

PRIVILEGED OPERATIONS

If any of the following instructions are executed when the $SYS flag is off (zero), a PRIVOP
interrupt will be triggered and the operation will not be performed.

SETSR, PERI, IRET, PHLOAD, PHSTORE, FLAGSJ, CLRPP

If a HALT instruction is executed when the $SYS flag is off (zero), a HALT interrupt will be
triggered and the processor will not be halted.

If a SETFL instruction is executed when the $SYS flag is off (zero), and it attempts to modify

either the R, SYS, VM, or IP flag, a PRIVOP interrupt will be triggered and the operation will not
be performed.

