
This is the traditional “hello world” program.
1

import "io"

let start() be
 out("Greetings, Human.\n")

• import is a lot like import in java, and a bit like #include in C++.
• “io” is the standard library with input/output and other very basic functions.
• let introduces most simple declarations, it is not a type. There are no types.
• start serves the same purpose as main in java and C++.
• be is required when defining a function like this.
• The body of a function is a single statement, but see the next example.
• out is the ancestor of C’s printf and java’s System.out.printf.

Here is a bigger version.

import "io"

let start() be
{ out("Greetings, Human.\n");
 out("Now go away and leave me alone.\n") }

• Curly brackets combine multiple statements into one statement, called a block.
• Semicolons are only required between statements, as a separator.

(the original BCPL didn’t require semicolons at all, but that leads to too
many preventable mistakes, so I made a change there)

• But if you forget and put an extra one before the }, the compiler won’t complain.

Now for some local variables. (from now on, I won’t show the import statement)



2

let start() be
{ let x = 5, y = 10, z;
 x := x + 1;
 z := x * (y + 1);
 y +:= 2;
 out("x=%d, y=%d, z=%d\n", x, y, z) }

• let introduces the declaration again. You know that x, y, and z are variables and

not functions because they are not followed by ().
• let is followed by any number of variable names all separated by commas. each

variable may be given an initial value (like x and y), or left uninitialised (like z).
• There can be any number of lets, you don’t have to declare all your variables on

one line.
• Unlike in the original BCPL, lets and other declarations can appear anywhere in a

block. Originally, all declarations had to come before any executable statements.


3

• := is the symbol for an assignment statement. Unlike in C++, you can’t give
yourself a hard-to-debug problem by accidentally typing = instead of ==.

• Assignments are statements, not expressions. := can not be used as an operator in
an expression.

• +:= is an update assignment just like += in C and java. You can use it with all the
operators you’d reasonably expect: *:=, -:=, /:=, /\:=, !:=, etc.

• The full list of arithmetic operators are:
Dyadic signed integer operations: + - * / rem **
Dyadic floating point operations: #+ #- #* #/ #**
Dyadic unsigned integer operations: ##* ##/ ##rem
Monadic signed integer operations: + - abs
Monadic floating point operations: #- #abs



4
Names of variables and functions and other things
• Must begin with a letter
• May also include any number of letters, digits, underlines, and dots.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 _ .

• Capital letters and little letters are not distinguished.
• cat, CAT, Cat, and cAt are just four ways of typing the same variable.
• That applies to the rest of the language too: let, LET, and Let are the same thing.


5

let start() be
{ let x;
 x := 123;
 out("x=%d\n", x);
 x := "hello";
 out("x=%s\n", x);
 x := 12.34;
 out("x=%f\n", x) }

• Variables do not have types, you can store anything you like in any variable.
• It is up to the programmer to remember what kind of thing has been put in which

variables.
• Every variable is just a 32 bit value. How those bits are interpreted or used is

determined by what you do with that variable.
• The 32-bit values and memory locations are called “Words”, regardless of their use.

All of memory is a giant array of words.


6
let start() be
{ let x = 84;
 out("%d in decimal is:\n", x);
 out(" %x in hexadecimal and %b in binary\n", x, x);
 out(" and is the ascii code for the letter %c\n", x) }

• out uses %d for integers to be printed in decimal,
• %x or %X for integers to be printed in hexadecimal,
• %h also prints in hexadecimal, except that zeros appear as lower case 'o'. This

sometimes makes numbers easier to read.
• %b for integers to be printed in binary,
• %c for integers to be printed as characters,
• %C for integers to be printed as characters, but every character, even a control code,

is made explicitly visible. ASCII code 0 appears as \0, \ as \\, quotes as \' and \",
newlines as \n, returns as \r, tabs as \t, backspaces as \b, ordinary spaces as \s,
and any other invisible character as \abc where abc is the three digit octal
rendering of the character's ASCII code.

• %f prints floating point values, always according to this format: +3.141593e+00
• %s prints strings,
• %v prints strings using the %C format for every character, even the terminating 0 is

displayed as \0.
• With the formats d, x, h, b, s, and v, a width may appear between the % and the

format letter, as in %7d. In the case of the numeric formats, this is a minimum
width, if the number requires fewer digits than this, extra spaces are added. For %v,
the width is the number of characters from the string that will be printed, not the
number of characters that will be needed to display them.

• A width may also be specified for the formats c and C, it must be between 0 and 4
inclusive. Normally the c and C formats ignore all but the 8 least significant of the
value being printed, but 32 bit word can hold up to four bytes or character codes.
When a width is provided, exactly that number of bytes will be printed, even if they
are equal to zero.

• If the width is preceded by a '-', as in %-7d, spaces will be added to the right.
Otherwise they will be added to the left.

• With the formats d, x, h, and b, if the size is preceded by a zero, as in %08x and
%-07d, zeros will be used for the padding instead of spaces.

• With the format s, if the size is preceded by a zero, as in %08s and %-07s, the size
is exact. Short strings are padded as usual, but strings longer than the given size
are cut short.

• With the d and b formats only, the % sign may be followed by a comma. If a comma
appears then the digits printed will be separated into groups of three (for %,d) or
four (for %,b), separated by commas in the traditional way.



7
Input from the user

let start() be
{ let x, y;
 out("type a number. ");
 x := inno();
 out("and another one: ");
 y := inno();
 out("%d times %d is %d\n", x, y, x*y) }

• inno waits for the user to type an integer in decimal, and returns its value.

• inch reads a single character and returns its ascii value.
• If you want to read anything more complicated than a decimal integer, you’ll have

to write a function for it.

let inbin() be
{ let value = 0;
 while true do
 { let char = inch();
 if char < '0' \/ char > '1' then
 resultis value;
 value := value * 2 + char - '0' } }

let start() be
{ let x;
 out("type a number in binary. ");
 x := inbin();
 out("that is %d in decimal\n", x) }

With that definition, inbin reads an integer from the user in binary.

• while means the same as it does in C++ and java, but

• you don’t need to put parentheses around the condition, and
• you do need to put the word do after the condition.

• true is exactly equivalent to -1, false is exactly equivalent to O.
• while, and all other conditionals, accepts any non-zero value as being true.

• if means the same as it does in C++ and java, but

• you don’t need to put parentheses around the condition, and
• you do need to put the word then or do after the condition.
• if statements never have an else.



8
• The logical operators are /\ for and, \/ for or, and not or ~ for not.

• /\ and \/ use short-circuit evaluation:
in A /\ B, if A is false, B will not even be evaluated.
in A \/ B, if A is true, B will not even be evaluated.

• not replaces 0 (which is false) to -1 (which is true),
 it replaces everything other than 0 with 0.
• ~ is exactly the same thing as not.
• The bit-wise logical operators are bitnot, bitand, bitor, eqv, and neqv.



9
• The relational operators for integer values are

• < for less than,
• > for greater than,
• <= for less than or equal to,
• >= for greater than or equal to,

• = for equal to, don’t use ==.
• <> for not equal to (it is saying less than or greater than)
• /= also means not equal to, and so does \=, the three are identical.
• For floating point comparisons use

#< #> #<= #>= #= #<> #/= #\=
• For unsigned integer comparisons use

##< ##> ##<= ##>= ##= ##<> ##/= ##\=
• Relational operators may be strung together: a<b<c means a<b /\ b<c.



10
• resultis X means the same as return X; does in C++ and java: the function exits

immediately, and returns X as its value, but.
• resultis must always be given a value to return.
• return is used to exit from a function that does not produce a value.



11

• Single quotes mean the same as in C++ and java: a character enclosed in single
quotes is the integer value of its Ascii code, but up to four characters may be
enclosed in the single quotes, because 4 character codes can fit in 32 bits:

'' = 0,
'a' = 97, that is the ASCII code for the letter a.
'ab' = 'a'×256 + 'b',
'abc' = 'a'×256×256 + 'b'×256 + 'c',
'abcd' = 'a'×256×256×256 + 'b'×256×256 + 'c'×256 + 'd'.

• Recall that the out functions %c and %C formats can take a width between 0 and 4.
The hexadecimal values 0x45, 0x46, 0x47, and 0x20 are the Ascii codes for E, F, G,
and space respectively, so out("'%4c'", 0x20454647) would print ' EFG'.


12

Conditional Statements

if x < 0 then count := count + 1;
if y >= 0 do count := count - 1;
if a + b > 100 then
{ out("Too big!\n");
 finish }

• In an if statement, then and do mean exactly the same thing.
• finish is the same as exit() in C++ and java, except that it is a statement, not a

function, so there is no () pair following it. It just stops the whole program.
• But finish may be followed by an expression that should evaluate to a small

integer. This is the exit code that will be delivered to the host system. If there is no
expression, the exit code is zero.

unless x >= 0 do count := count + 1;
unless y < 0 do count := count - 1;

unless a + b <= 100 then
{ out("Too big!\n");
 finish }

• unless X means the same as if not(X).

test 1 <= x <= 10 then
 out("Everything is fine\n")
else
 out("Panic! x = %d, out of range\n", x);

• Neither if nor unless may take an else.
• Allowing that in C++ and java makes the meanings some programs unclear in a

way that most programmers are unaware of.
• test is the thing to use. test is the same as if in C++ and java, but it must

always have an else, else is not optional with test.

test x < 1 then
 out("Too small\n")
else test x > 10 then
 out("Too big\n")
else
 out("OK\n")

• Of course tests may be strung together like that.
• The word or may be used instead of else, they mean exactly the same thing.


13

Loops

x := 1;
while x < 10 do
{ out("%d ", x);
 x +:= 1 }

• That prints 1 2 3 4 5 6 7 8 9

x := 1;
until x > 10 do
{ out("%d ", x);
 x +:= 1 }

• That prints 1 2 3 4 5 6 7 8 9 10
• until is just a reader-friendly way of saying while not.
• until X means exactly the same as while not(X).

x := 1;
{ out("%d ", x);
 x +:= 1 } repeat

• That prints 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... and never stops

• repeat is the same as do ... while (true) in C++ and java.

x := 1;
{ out("%d ", x);
 x +:= 1 } repeatwhile x < 10

• That prints 1 2 3 4 5 6 7 8 9
• repeatwhile is the same as do ... while in C++ and java, the body of the loop gets

executed once even if the condition is initially false.

x := 1;
{ out("%d ", x);
 x +:= 1 } repeatuntil x > 10

• That prints 1 2 3 4 5 6 7 8 9 10
• repeatuntil X is the same as repeatwhile not(X).


14

{ let x = 0;
 while true do
 { x +:= 1;
 if x rem 3 = 0 then loop;
 if x > 16 then break;
 out("%d ", x) }
 out("end\n") }

• That prints 1 2 4 5 7 8 1O 11 13 14 16 end
• rem is the remainder or modulo operator, like % in C++ and java.
• Try to remember that % means something else and will cause very odd errors.
• break means exactly the same as in C++ and java, it immediately terminates the

loop that it is inside. It can only be used in a loop.
• loop means exactly the same as in continue does in C++ and java, it abandons the

current iteration loop that it is inside, and starts on the next. It can only be used in
a loop.


15

{ let i = 1234, sum = 0;
 for i = 3 to 25 by 3 do
 { sum +:= i;
 out("%d ", i) }
 out("i=%d\n", i) }

• That prints 3 6 9 12 15 18 21 24 i=1234
• A for loop always creates a new temporary control variable, that variable does not

exist any more once the loop ends.
• The initial value and the final value may given by any expression.
• The by value must be a compile time constant, meaning that the compiler must be

able to work out its value before the program runs, so it can’t involve any variables.

max := 9;
for i = 1 to max+1 do
{ if i = 5 then max := 20;
 out("%d ", i) }
out("max=%d\n", max) }

• That prints 1 2 3 4 5 6 7 8 9 1O max=2O
• The terminating value for a for loop is calculated just as the loop starts, and is

stored until the loop ends. It is not recalculated at each iteration. In the example,
changing the value of max had no effect on how many times the loop ran.

• If you don’t provide a by value, the compiler assumes 1.

for i = 10 to 1 do
 out("%d ", i)

• That prints nothing at all.
• If you want the loop to count backwards you must explicitly say by -1.
• If the by value is positive, the loop runs while the variable is <= to the to value.
• If the by value is negative, the loop runs while the variable is >= to the to value.


16

while true do
{ let c = inch();
 switchon c into
 { case ' ':
 out("a space\n");
 endcase;
 case '.':
 out("a dot\n");
 endcase;
 case '+':
 out("a plus sign, ");
 case '-': case '*': case '/':
 out("an operator\n");
 endcase;
 case '0' ... '9':
 out("a digit\n");
 endcase;
 case 'A' ... 'Z': case 'a' ... 'z':
 out("a letter\n");
 endcase;
 default:
 out("something else\n") } }

• switchon X into is just the same as switch (X) in C++ and java.
• Execution jumps immediately and efficiently to the case label matching the value of

the expression, which should be an integer.
• switchon does not use a series of comparisons, so it is faster than a sequence of

test else test else ...

• endcase causes a jump to the end of the switchon statement. If no endcase is met,
execution runs into the next case. In the example, a '+' gets the response “a plus
sign, an operator”.

• The case labels must be constants, and there may be no repetition (or in the case of
ranges given with ..., there must be no overlap). Each possible value may only
appear once.

• The default label catches all values that are not covered by a case label.
• default is not required. Without it, unmatched values do nothing.
• The overall range of all the case values must not be very large, or the resulting

executable code will be too big to run.


17
if count = 0 then
 $debug(12)

• $debug causes program execution to be suspended, and control is delivered to the
assembly language debugger. The parameter given to $debug is made visible when
the debugger takes over, so you can tell which is which when you have multiple
debugging points. For details on how to debug programs, see the commands
described in the separate documentation for the emulator.


18

Disapproved-of Statements

let start() be
{ let a = 0;
 start: a +:= 1;
 if a rem 10 = 4 then goto start;
 if a > 100 then goto elephant;
 out("%d ", a);
 goto start;
 elephant: }

• That program will count from 1 to 100, skipping numbers whose last digit is 4,

then stop.
• Any statement or } may be given a label. Labels are names with the same rules as

variables, and are attached to a statement with a colon.
• Reaching a label has no effect on execution.
• A goto statement causes an immediate jump to the statement with the matching

label.
• It is not possible to jump into a block from outside it, and it is not possible to jump

to a label in a different function. Labels are in fact local variables. A new value may
be assigned to a label at any time (e.g. elephant := start).

• goto may be followed by an expression. If the value of the expression does not turn
out to be a label, the results are unpredictable.

• Anything that happens in a program that uses a goto is the programmer’s own

fault, and no sympathy will be received.


19

let start() be
{ /* this function is to demonstrate
 the use of comments in a program.
 comments may be very big or very
 small or anything in between */
 let a = 0;
 let b = 0; // b is the hypotenuse
 let c = 5, d = 99;
 a := (c + 1) * (d - 1);
 if a < 20 /* not good */ then out("%d ", a);
 d := c - 4;
 a := 0 // the curly bracket on this line is ignored }
} // so we need an extra one here

• Comments can go anywhere, they have the same effect as a space.


20

Functions

import "io"

let factorial(n) be
{ let f = 1;
 for i = 1 to n do
 f *:= i;
 resultis f; }

let display(a, b) be
{ out(" N N!\n");
 out("---------\n");
 for i = a to b do
 out(" %d %d\n", i, factorial(i));
 out("----------\n") }

let average(x, y) = (x+y)/2

let start() be
 display(3, average(7, 11))

• That program prints a table of factorials from 3 to 9.
• If a function has parameters, there names are listed between the parentheses in its

declaration, separated by commas. Nothing else can go in there, there is nothing to
say about a parameter except for its name.

• Parameters behave just like local variables.
• If a function’s result can be expressed as a single expression, the simplified form as

used for average may be used. Any expression may follow the =.
• If a function only consists of a single statement, the { and } are not required.
• resultis is used to exit a function and return a value,
• return is used to exit a function without returning a value.

• When a function is called, it is not necessary to provide the correct number of
parameter values. If too few values are provided, the last parameters will simply be
uninitialised variables.

• BUT: any attempt to assign to or modify an un-passed parameter will have
disastrous and hard-to-trace consequences.


21

let f(x, y) be { ... }
and g(a) be { ... }
and h(p, q, r) be { ... }

• Every function must be declared before it is used. There are no prototypes,
simultaneous declaration is used instead.

• When function definitions are linked together using and instead of repeated lets,
all of those functions are declared before any of their defining statements are
processed.

• In the example above, each of the three functions f, g, and h may call any or all of
those same three functions.


22

let process(a, b) be
{ let f(z) = (z + 10) * (z - 10);
 let modify(x) be
 { let z = f(x + 1);
 if z < 0 then resultis 1;
 resultis x + 3 }
 let sum = 0;
 for i = a to b do
 sum +:= modify(i);
 resultis sum }

• Functions may have their own local function definitions.
• In the example, the function modify is only available within the function process.

Elsewhere the name modify has no meaning, just as with local variables.
• This feature is of limited usefulness; modify is not permitted to access any of

process’s parameters or local variables, although it can access other local
functions.


23

let increment(x) be
{ let total;
 if numbargs() = 0 then total := 0;
 total +:= x;
 out(" the total is now %d\n", total) }

let start() be
{ out("reset\n"); increment();
 out("add 1\n"); increment(1);
 out("add 2\n"); increment(2);
 out("add 1\n"); increment(1);
 out("add 1\n"); increment(1);

 out("reset\n"); increment();
 out("add 2\n"); increment(2);
 out("add 1\n"); increment(1);
 out("add 3\n"); increment(3) }

• The library function numbargs() returns the number of parameters (arguments)

that the current function was called with.
• The idea of the example is that the variable total is used to accumulate all the

values increment has been given. Calling increment with no parameters is a signal
to reset the total back to zero.

• Naively we might expect it to report totals of 0, 1, 3, 4, 5, 0, 2, 3, and 6.
• Of course it doesn’t work. Local variables are created anew each time a function is

called, and lost when it exits.

let total = 0;

let increment(x) be
{ if numbargs() = 0 then total := 0;
 total +:= x;
 out(" the total is now %d\n", total) }

• This alternative definition does work. let creates local or global variables depending
upon whether it is used inside or outside of a function.

• A global variable isn’t the ideal solution here. total is supposed to be private to
increment. Now there is a risk that other functions could change it.


24

let increment(x) be
{ static { total = 0 }
 if numbargs() = 0 then total := 0;
 total +:= x;
 out(" the total is now %d\n", total) }

• This version solves both problems. It works.
• A static variable is a private global variable. It is created and initialised only once,

when the program is started, and it exists until the program ends, but it is only
visible inside its enclosing function. Elsewhere the name is unknown.

• A number of static variables may be declared at once, inside the same static { },
as in static { total=0, min=99, max=-1 }.

• If increment had any local functions, they would be permitted to access increment’s
static variables.


25

let array(a, b) be
{ test lhs() then
 out("you said array(%d) := %d\n", a, b)
 else test numbargs() = 1 then
 { out("you said array(%d)\n", a);
 resultis 555 }
 else

 out("you said array(%d, %d)\n", a, b) }

let start() be
{ let v, w;
 array(2) := 345;
 array(3) := 9876;
 v := array(2);
 w := array(3);
 out("v + w = %d\n", v + w) }

• There are no arrays is this example, array is just a normal function.
• A function call may appear on the left-hand-side of an assignment statement, as in

array(2) := 345 or
storage(34, x + 9) := y * z

• When that happens, it is just treated as a normal function call, but the expression
to the right of the := becomes an extra parameter,

• and inside the function, the library function lhs() returns true instead of its
normal value of false. lhs() is true if the function call is the left-hand-side of an
assignment.

• This allows an approximation of the get and set methods of object oriented
programming to be implemented with a reader-friendly syntax, as the example is
hinting.

• The example prints
you said array(2) := 345
you said array(3) := 9876
you said array(2)
you said array(3)
v+w = 1110


26

Very Local Variables

let start() be
{ let a = 3, b = 4, c, d;
 c := t * (t + 1) where t = a + 2 * b - 1;
 d := x * x + y * y where x = a + b + 1, y = a - b - 2;
 out("c = %d, d = %d\n", c, d) }

• The where clause introduces one or more temporary local variables.
• where attaches to a whole single statement. Of course, that statement could be a

block of many statements inside { }.
• Those variables exist only for the execution of that one statement, then they are

destroyed leaving no trace.
• The example prints c=110, d=73.


27

manifest
{ pi = 3.14159,
 size = 1000,
 maximum = 9999,

 half = maximum/2 }

• A manifest declaration introduces one or more named constants.
• The value of a manifest constant can not be changed deliberately or accidentally by

a running program.
• manifest declarations may be global or local inside a function.
• The values given to manifest constants must be compile time constants, values that

the compiler can easily work out before the program runs. They may not make use
of any variables or functions, nor may they be strings.

• manifest is the ancestor of const in C++ and final in java.


28

let addup(a) be
{ let sum = 0, ptr = @ a;
 for i = 0 to numbargs() - 1 do
 { sum +:= ! ptr;
 ptr +:= 1 }
 resultis sum }

let start() be
{ out("1 to 5: %d\n", addup(1, 2, 3, 4, 5));
 out("3 + 12 + 7: %d\n", addup(3, 12 ,7));
 out("nothing: %d\n", addup()) }

• @ is the address-of operator. It provides the numeric address of the memory

location that a variable is stored in.
• ! is the follow-the-pointer operator. It assumes that its operand is a memory

address and provides the contents of that location.
• Every variable and every value is 32 bits long, and memory locations are 32 bits

long.
• Parameters to a function are always stored in neighbouring memory locations, in

ascending order, so addup successfully adds up all its parameters regardless of how
many there are. This is also how out works.


29

let glo = 7

let start() be
{ let var = 10101;
 let ptr = @ glo;
 ! ptr := 111;
 ! ptr *:= 2;
 ptr := @ var;
 ! ptr +:= 2020;
 out("glo = %d, var = %d\n", glo, var) }

• An ! expression can be the destination in an assignment.
• The sample program prints glo = 222, var = 12121.



30
let start() be
{ let fib = vec 20;
 fib ! 0 := 1;
 fib ! 1 := 1;
 for i = 2 to 19 do
 fib ! i := fib ! (i - 1) + fib ! (i - 2);
 for i = 0 to 19 do
 out("%d\n", fib ! i) }

• vec is a special form that can be used as the initial value for any variable. It is not

an expression that can be used in assignments or anywhere else.
• Its argument must be a compile-time constant.
• When name = vec size appears, name is declared as an ordinary variable, and

immediately next to it in memory a space of exactly size words is left uninitialised.
The value of name is set to the address of the first of these locations.

• So fib is a pointer to an array of twenty 32-bit values.
• If vec appears as the value of a local variable, it is a local temporary array with the

same lifetime as the variable. If vec appears as the value of a static or global
variable, it is a permanent array.

• The infix form of the ! operator is very simple. Its exact definition is

A ! B ≡ ! (A + B)
• It is like using [] to access an array in C++ and java, except that it is symmetric,

A ! B is always the same thing as B ! A.
• fib was initialised to vec 2O, which means fib is a variable that contains the

address of the first of an array of 20 memory locations. Thus fib+1 is the address
of the second in that array, and fib!1 accesses the value stored there.

• The sample prints the first 20 fibonacci numbers.


31
let total(v, n) be
{ let sum = 0;
 for i = 0 to n - 1 do
 sum +:= v ! i;
 resultis sum }

let start() be
{ let items = table 23, 1, 2 * 3, 9, 10;
 let twice = vec(5);
 for i = 0 to 4 do
 twice ! i := 2 * items ! i;
 out("the total of items is %d\n", total(items, 5));
 out("the total of twice is %d\n", total(twice, 5)) }

• A table is a pre-initialised array. The value of items is the address of the first of a

sequence of five memory locations. When the program first starts, the values 23, 1,
6, 9, and 10 are stored in those locations, and they are never re-initialised. The
elements of a table behave like static variables.

• The values in a table must be compile-time constants, strings, or other tables.

• The variables items and twice both contain pointers to arrays, when they are used
as parameters in a function call, it is those pointers that are copied, the @ operator
is not used.

• Inside the function, the parameter v has exactly the same value as items or twice,
so it is used in exactly the same way.


32

let makearray() be
{ let a = vec(10);
 for i = 0 to 9 do
 a ! i := 2 ** i;
 resultis a }

let start() be
{ let powers = makearray();
 out("The answer is\n");
 for i = 0 to 9 do
 out(" %d\n", powers ! i) }

• ** is the to-the-power-of operator for integers.
• The makearray function is wrong. The memory occupied by a, i, and the array itself

is temporary and local to the function. As soon as the function exits, it will be re-
used for something else.

• powers does receive the address of the memory locations that the array used to
occupy, but it has been re-used, so the expected values are no longer there.

• To do this correctly, the newvec library function is used. newvec is a bit like new in
C++ and java, but much more basic. It is closer to malloc in C.

This is selection sort.

let sort(array, size) be
{ for i = 0 to size-1 do
 { let minpos = i, minval = array ! i;
 for j = i + 1 to size - 1 do
 if array ! j < minval then
 { minpos := j;
 minval := array ! j }
 array ! minpos := array ! i;
 array ! i := minval } }

let start() be
{ manifest { N = 20 }
 let data = vec(N);
 random(-1);
 for i = 0 to n - 1 do
 data ! i := random(99);
 sort(data, N);
 for i = 0 to n - 1 do
 out("%2d\n", data ! i);
 out("\n") }

• Normally random(N) will produce a random number between 0 and N inclusive.
• It is of course a pseudo-random number generator: every time you run the program

it will produce the same sequence of numbers.
• random(-1) changes that. It should be used just once in a program, it randomises

the pseudo-random number sequence so that it will not be predictable.


33
import "io"
import "heap0"

let makearray(n) be
{ let a = newvec(n+1);
 for i = 0 to n do
 a ! i := 2 ** i;
 resultis a }

let start() be
{ let powers1, powers2;
 init();
 powers1 := makearray(10);
 powers2 := makearray(20);
 out("The answers are\n");
 for i = 0 to 10 do
 out(" %d\n", powers1 ! i);
 for i = 0 to 20 do
 out(" %d\n", powers2 ! i);
 freevec(powers1);
 freevec(powers2) }

• This is from an earlier example of something that didn’t work, but now corrected.
• Note that it is importing a second library heap0 as well as the usual io.
• newvec is like vec, it gives a pointer to an array. But it doesn’t use temporary

memory that is local to the function, it uses permanent heap memory that will
never be recycled, so the pointer remains valid for ever. newvec is similar to new in
C++ and java, and more similar to malloc in C.

• Unlike vec, newvec(X) is a normal function call, it can be used anywhere in a
program, and its parameter can be any expression.

• In every other way, an array created by newvec is indistinguishable from an array
created by vec.

• freevec is the function used to release newvec allocations for recycling.
• The version of newvec provided by heap0 is extremely primitive. It can not request

additional memory allocations from the operating system because there is no
operating system. It doesn't even do its advertised job: it makes no attempt to
recycle memory. In fact it does nothing at all, it just serves as a place-folder for
when you create your own heap system.

• Before first using newvec in a program, the programmer must call the init
function. In its simplest parameterless form, init takes over all of the computer's
memory that is not in use, and uses it as the heap. This is nearly always the best
approach.

• If the programmer wishes to control the memory that is used for the heap, they can
use any memory that is available. This would normally be done by creating a large
local array in start, and giving it to init:

let start() be
{ let heap = vec(10000);
 init(heap, 10000);
 ...

The parameters to init, if supplied, are the address of the beginning of the area of
memory to be used as the heap, and the number of words that are available.

These are the definitions of newvec and freevec from the heap0 library:

export { newvec, freevec, init }
static { vecsize = 0, vecused = 0, vecspace }

let newvec(n) be
{ let r = vecspace + vecused;
 if vecused + n > vecsize then
 { print("\nnewvec: insufficient free memory\n");
 resultis nil }
 vecused +:= n;
 resultis r }

let freevec(v) be
{ }

let init(address, size) be ...

I have left out the definition of print, it does the same thing as outs.

• These default versions of newvec and freevec don't do much at all. newvec

constantly takes away from the heap space and will eventually run out. freevec
does nothing at all, so there is no recycling. That is why this library is called heap0
rather than just heap.

• The point is that programmers can still do effective programming before eventually
creating their own heap library defining new versions of init, newvec, and freevec
that will do the job effectively.

• But if the programmer is not interested in the educational value of creating their
own heap, there is also a library just called heap which does it properly, so just
import heap instead of heap0.


34

manifest
{ node_data = 0,
 node_left = 1,
 node_right = 2,
 sizeof_node = 3 }

let new_node(x) be

{ let p = newvec(sizeof_node);
 p ! node_data := x;
 p ! node_left := nil;
 p ! node_right := nil;
 resultis p }

• When implementing a binary tree of integers, each node is a very small object. It
just contains three 32-bit values: the data item, the address of the node to the left,
and the address of the node to the right.

• It might as well just be a three element array. The programmer decides which array
positions the three items will occupy and defines well-named constants to make the
program comprehensible.

• new_node is effectively a constructor for such a node.
• nil is a constant equal to 0. It does the same job as NULL in C++ and null in java.

Its only purpose is to indicate “no pointer here”.

let add_to_tree(ptr, value) be
{ if ptr = nil then
 resultis new_node(value);
 test value < ptr ! node_data then
 ptr ! node_left := add_to_tree(ptr ! node_left, value)
 else
 ptr ! node_right := add_to_tree(ptr ! node_right, value);
 resultis ptr }

let inorder_print(ptr) be
{ if ptr = nil then return;
 inorder_print(ptr ! node_left);
 out("%d ", ptr ! node_data);
 inorder_print(ptr ! node_right) }

let start() be
{ let heap = vec(10000);
 let tree = nil;
 init(heap, 10000);
 for i = 1 to 20 do
 { let v = random(99);
 tree := add_to_tree(tree, v);
 out("%d ", v) }
 out("\n");
 inorder_print(tree);
 out("\n") }

• Those three functions are nothing special. They just create a tree of random
numbers, then print them in order.

• When dealing with a linked list, you will often find loops containing statements like
ptr := ptr ! link_next. That could be abbreviated to ptr !:= link_next, but
that's pretty ugly.


35

• Builtins are things that look like functions but really aren't. Their names always
begin with a $ sign, and can only be used with the syntax of a function call, e.g. n
:= $find_first_non_zero(ptr1, ptr2);. Names that begin with a $ sign can
not be used anywhere else, they do not denote values.

• Builtins give direct access to hardware features that would otherwise require the
programmer to insert portions of assembly language. They often provide operations
that need to be performed quickly, but would otherwise require a slow BCPL loop.

• The builtins are all described in section 57.


36
Strings are like strings in other languages, except for one small complication.
Because our memory has a 32 bit word as its basic unit, rather than the 8 bit byte
that is currently popular, accessing the individual characters of a string takes a
little more effort than usual. For efficiency, the characters of a string are packed
together four per word so that there is no wasted space.

let start() be
{ let s = "ABCDEFGHIJKLMN";
 for i = 0 to 3 do
 out("%08x\n", s ! i) }

44434241
48474645
4C4B4A49
00004E4D

• Every memory location is 32 bits wide, ASCII characters only require 8 bits. A

string is just an array in which character codes are packed 4 per entry.
• The %O8x format prints a number in hexadecimal, stretched out to the full 8 digits,

with leading zeros added if necessary.
• In hexadecimal, the ASCII codes for the letters A, B, C, D, E are 41, 42, 43, 44, 45

and so on.
• The first character is stored in the least significant 8 bits of a string. That makes

the output look backwards, but it makes more sense for programming.
• A string is always 8 bits longer than would be required for the characters alone.

The end of a string is marked by 8 bits of zero.

let start() be
{ let a = vec(6);
 a ! 0 := 0x44434241;
 a ! 1 := 0x48474645;
 a ! 2 := 0x4C4B4A49;
 a ! 3 := 0x4E4D;
 out("%s\n", a) }

ABCDEFGHIJKLMN

• A constant string in "double quotes" is just an array (in static memory) initialised

with the character codes when the program starts, just like a table.
• But naturally, any array that is big enough can be used as a string.

• Ox prefixes a numeric constant written in hexadecimal. Oo may be used for octal,
and Ob for binary.

let strlen(s) be
{ let i = 0;
 until byte i of s = 0 do
 i +:= 1;
 resultis i }

• That is the strlen function from the standard library io, it returns the length

(number of characters not including the terminating zero) of a string. It is the only
library function that does anything with strings other than printing them. You will
need to make your own string functions for comparing, copying, and so on.


37

The escape codes that may appear inside string and character constants are:

\\ which represents \
\" "
\' '
\n newline, ascii 10
\r return, ascii 13
\t tab, ascii 9
\b backspace, ascii 8
\s ordinary space, just so it can be made explicit
\nnn nnn is three octal digits: char with that ascii code



38
• of is an ordinary two-operand operator. Its left operand describes a sequence of

bits within a larger object. Its right operand should be a pointer (memory address).
• byte is an ordinary one-operand operator. Its result is a perfectly ordinary number

that is interpreted by of to describe one single character of a string.
• Due to hardware limits, byte and of can only be used to access the first 8,388,604

characters of a string.

let start() be
{ let alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 let p;
 out("byte 23 of alpha = '%c'\n", byte 23 of alpha);
 p := byte 23;
 out("byte 23 = %d\n", p);
 out("5896 of alpha = '%c'\n", 5896 of alpha) }

byte 23 of alpha = 'X'
byte 23 = 5896
5896 of alpha = 'X'

• byte is a perfectly ordinary operator whose result is a perfectly ordinary number.

let start() be
{ let s = vec(8);
 let letter = 'z';
 for i = 0 to 25 do
 { byte i of s := letter;
 letter -:= 1 }
 byte 13 of s -:= 32;
 out("%s\n", s) }

zyxwvutsrqponMlkjihgfedcba

• byte ... of can be used as the destination in an assignment or an update.
• The letter M became capital because the difference between the codes for capital

letters and little letters in ASCII is 32.
• Writing byte 13 of s -:= 'a' - 'A'; would have made that clear.


39

let start() be
{ let bits = 0b10001000100010001101101101100010;
 let sel = selector 11 : 5;
 let part = sel from bits;
 out("%b\n", bits);
 out(" %b\n", part);
 sel from bits := 0b01010101010;
 out("%b\n", bits) }

10001000100010001101101101100010
 11011011011
10001000100010000101010101000010

• selector is like byte, but it is not limited to describing 8-bit items.
• selector B : R describes the B-bit region of a word that has R bits to the right of

it.
• B may not be more than 32 nor equal to 0.
• B + R may not be more than 32.
• B and R do not have to be constants, any expression will do.
• from is like of, but it is not given a pointer, it is given the actual 32-bit value to

select bits from.
• from may be used as the destination in an assignment or an update.
• All of this is mainly for packing a number of small values efficiently in a single

word. If you were working with 5-bit values, all in the range 0 to 31, you could fit
six of them into a single word, wasting the two most significant bits. If the value of
v is 0b00001000100010001101101101100010 the six 5-bit values would be
0b00100, 0b01000, 0b10001, 0b10110, 0b11011, and 0b00010, or 4, 8, 17, 22, 27,
and 2. selector 5 : 5 from v would deliver the 27, of and from assume
everything is unsigned.

• If you are dealing with signed 5-bit values, they would be in the range -16 to +15,
their most significant bits determining the sign. That means that the six values
shown in the previous paragraph should really be interpreted as 4, 8, -15, -10, -5,

and 2. To achieve this, just use the $sign_extend(val, bit) builtin function.
val is the number that needs to be reinterpreted and bit says which bit should be
taken as the sign bit (count bits from the left starting with 0). In the example we are
using 5-bit values, the bit numbers will be 0, 1, 2, 3, and 4. Bit 4, being the most
significant, would be the sign bit. Taking the specific example of 0b10110, which
gave val = 22, the assignment val := $sign_extend(val, 4) would set val to
the intended value of -10.

let start() be
{ manifest { those = selector 16 : 8 : 2 }
 let them = table 0x13578642, 0xBEEFFACE, 0x1A2B3C4D, 0xE8500C2A;
 out("%x\n", them ! 2);
 out(" %x\n", those of them);
 those of them := 0x9988;
 out("%x\n", them ! 2);
 selector 1 : 31 : 2 of them := 1;
 out("%x\n", them ! 2) }

1A2B3C4D
 2B3C
1A99884D
9A99884D

• selector B : R : N describes the B-bit region of a word that has R bits to the right

of it, in word N of an array.
• selector B : R is an abbreviation for selector B : R : O.
• When a selector value is used with the from operator, the N portion is ignored

because from works on a single word, not an array.
• byte X is exactly equivalent to selector 8 : (X rem 4) * 8 : X / 4.
• There is no form of selector that can describe a sequence of bits that are not all

contained within the same word.
• The result of selector is a single value that contains B, R, and N. B occupies the

least significant 5 bits (with 32 being represented by 00000), R occupies the next 5
bits, and N the remaining 22 bits. N can be negative. Thus N can not exceed
2,097,151.

• x := selector B : R : N is equivalent to the three assignment sequence
selector 5 : 0 from x := B;
selector 5 : 5 from x := R = 32 -> 0, R;
selector 22 : 10 from x := N


40

• bit is very similar to byte, except of course that it selects a single bit. Examples:
{ let x = 8362 * 94721, v = vec(10), y;
 bit 13 from x := 1;
 y := bit 0 from x;
 bit 200 of v := 1;
 y := bit 99 of v;
 bit 123 of v +:= 1;
 ...



41
• A -> B, C is the conditional operator that is spelled A ? B : C in C++ and java.
• If A is false (i.e. zero), its value is the value of C, and B is never evaluated.
• If A is not zero, its value is the value of B, and C is never evaluated.


42

 let x = 0x98765432;
 out("%08x\n%08x\n%08x\n", x, x << 12, x >> 12)

98765432
65432000
00098765

• << is the left shift operator.
• A << B is the value of A shifted B bits to the left. The leftmost B bits are lost, the

rightmost B bits become zero.
• One hexadecimal digit equals four binary digits, so << 12 is a 3 digit hexadecimal

shift.
• >> is the right shift operator.

 out("%08x\n%08x\n%08x\n", x, x alshift 12, x arshift 12)

98765432
65432000
FFF98765

• alshift and arshift are the arithmetic left and right shift operators.
• alshift is exactly the same as <<, it is only included for completeness.
• arshift preserves the sign (most significant) bit, so for negative numbers the new

bits appearing from the left are ones.
• A alshift B computes A * 2B.
• A arshift B computes A / 2B.

 out("%08x\n%08x\n%08x\n", x, x rotl 12, x rotr 12)

98765432
65432987
43298765

• rotl and rotr are the bitwise left and right rotate operators.
• They perform normal shifts, but the bits that fall off at one end reappear at the

other instead of zeros, so nothing is lost.


43
 let a = 0b10011001110101100100111001100101,
 b = 0b11001010101110001010010011111100,
 s = "--------------------------------";
 out("%032b\n%032b\n%s\n%032b\n", A, B, S, A bitand B)

10011001110101100100111001100101

11001010101110001010010011111100

10001000100100000000010001100100

• bitand is the bit-by-bit and operator, the same as & in C++ and java.
• Each bit in the result is 1 only when both corresponding bits in the operands are

also 1.

 out("%032b\n%032b\n%s\n%032b\n", A, B, S, A bitor B)

10011001110101100100111001100101
11001010101110001010010011111100

11011011111111101110111011111101

• bitor is the bit-by-bit or operator, the same as | in C++ and java.
• Each bit in the result is 1 when any of the corresponding bits in the operands is

also 1.

 out("%032b\n%s\n%032b\n", A, S, bitnot A)

10011001110101100100111001100101

01100110001010011011000110011010

• bitnot is the bit-by-bit not operator, the same as ~ in C++ and java.
• Each bit in the result is the opposite of the corresponding bit in the operand.

 out("%032b\n%032b\n%s\n%032b\n%032b\n",
 A, B, S, A eqv B, A neqv B);

10011001110101100100111001100101
11001010101110001010010011111100

10101100100100010001010101100110
01010011011011101110101010011001

• eqv is the bit-by-bit logical equivalence operator.
• Each bit in the result is 1 when only when the corresponding bits in the operands

are equal, either both 0 or both 1.
• neqv is the opposite of eqv, usually called “exclusive or”, and the same as ^ in C++

and java.
• Each bit in the result is 1 when only when the corresponding bits in the operands

are different.


44
let count = 0;
for i = 1 to 32 do
{ if n bitand 1 then count +:= 1;
 n rotl:= 1 }

• That code fragment counts the number of ones in the binary representation of N,

without changing the value of N.
• BEWARE! The bit-by-bit operators have the same priority as the corresponding

logical operators, which are lower than the relational operators. That is not the
same as in C++ and java.

• if n bitand 1 = 1 then ... would be interpreted as
if n bitand (1 = 1) then ..., which is the same as
if n bitand true then ..., which is the same as
if n bitand 0b11111111111111111111111111111111 then ..., which is the same as
if n then ...


45

manifest { pi = 3.1415927 }

let start() be
{ let width = 2.75, height = 6.125;
 let area = width #* height;
 let perimeter = (width #+ height) #* 2.0;
 let circarea = pi #* width #** 2;
 out("area = %f\n", area);
 out("perimeter = %f\n", perimeter);
 out("circle area = %f\n", circarea) }

area = +1.684375e+01
perimeter = +1.775000e+01
circumference = +2.375829e+01

• The floating point operators are the same as the integer operators, but with a #

prefixed to their names.
• #+, #-, #*, and #/ assume their operands are both floating point values, and

produce a floating point result. If the operands are of the wrong type the results are
meaningless.

• #** raises a floating point number to an integer power.
• #<, #>, #<=, #>=, #=, #<>, (and #/= and #\=) assume their operands are both floating

point values, and produce result of either true or false. If the operands are of the
wrong type the results are meaningless.

• Exception: O and O.O have the same representation, so are interchangeable.
• There are no special variations of the %f output format.


46

manifest { pi = 3.1415927 }

let start() be
{ let radius = 10;
 let circumf1 = 2.0 #* pi #* radius;
 let circumf2 = 2.0 #* pi #* float radius;
 let millpi = (fix (1000.0 #* pi)) * 1000;
 out("circumf1 = %f\n", circumf1);
 out("circumf2 = %f\n", circumf2);

 out("million pi about %d\n", millpi) }

circumf1 = +8.828181e-44
circumf2 = +6.283185e+01
million pi about 3141000

• See what happens when integers and floating point values are carelessly mixed?
• float takes an integer operand and converts it to floating point format.
• fix takes an floating point operand and converts it to integer format. It uses

truncation towards zero, not rounding.
• float and fix are not functions, they are operators with high priority.


47

 let ia = 123, ib = -456;
 let fa = 3.2714e9, fb = -1.044e-11;
 let fc = #- fa;
 out("%d -> %d\n", ia, abs ia);
 out("%d -> %d\n", ib, abs ib);
 out("%f -> %f\n", fa, #abs fa);
 out("%f -> %f\n", fb, #abs fb);
 out("%f -> %f\n", fc, #abs fc) }

123 -> 123
-456 -> 456
+3.271399e+09 -> +3.271399e+09
-1.044000e-11 -> +1.044000e-11
-3.271399e+09 -> +3.271399e+09

• abs and #abs are also high priority operators. They find absolute values.
• The e notation for times-ten-to-the-power-of may be used in floating point

constants. It is not an operator, it is part of the denotation of the number.
• +, -, and #- have unary versions too.
• A leading - attached to a numeric constant is part of the number, not an operator,

so negative floating point numbers may be written in the normal way, without a #.


48
• Special operators are defined for unsigned integer arithmetic. They treat their

operands as 32-bit magnitudes without a sign bit. They are:
 ##* ##/ ##rem
 ##< ##> ##<= ##>= ##= ##<> ##/=
There are no special operators for unsigned + or - because those operations work
the same way as the signed versions. Just use + and - as usual.


49

 a := 7;
 b := 10;
 c := 1;
 d := b * valof { let f = 1;
 for i = 1 to a do
 f *:= i;
 resultis f } + c;

• valof is a unary operator whose operand is a block - even if it is just one

statement, it still needs the enclosing { }.
• The sample code sets d to ten times the factorial of 7 plus 1.
• valofs are of marginal usefulness.


50

let max(a, b) be test a>b then resultis a else resultis b;
let min(a, b) be test a<b then resultis a else resultis b;

let start() be
{ let x = 37, y = 12;
 let range = x %max y - x %min y;
 out("the range is %d\n", range) }

• The % sign allows a function to be used as an infix operator.
• % must be prefixed directly to a function name, it is not itself an operator, and can

not be applied to an expression whose value is a function.
• x %name y means exactly the same as name(x, y).
• %name has a higher priority than any other operator except the unary ones.


51

This was not part of traditional BCPL.

The start function may be given a parameter. It is similar to the char * argv[]
parameter in C and C++ and to the string [] args parameter in Java. The value of
the parameter will be a nil-terminated vector of strings supplied on the command
line. To provide strings on the command line, use the -c flag when running the
program. Follow the -c flag with a single string. Spaces will be taken as separators.
e.g.
 run prog -c inputs.txt

An example use:

$ cat cline.b
let start(argv) be
{ let i = 0;
 while argv ! i <> nil do
 { out("%d: \"%s\"\n", i, argv ! i);
 i +:= 1 } }

$ prep cline
ok
$run cline -c "one two three"
0: "one"
1: "two"
2: "three"

The escape sequences \ (a \ followed by a space), \n, \t, \\, \’, and \” may appear in
the command line string, but remember that your unix shell also processes those
characters.


52

This was not part of traditional BCPL.

If any program file contains a function called pre_start, it will be executed before the
normal start function executes. If different .b files are compiled then linked together,
then all or their pre_starts will execute (in an undertermined order) before the one
start. pre_start will not receive any parameters. Beware: each file's pre_start is
called after that file's globals have been initialised, but the order in which linked-
together files are processed is undefined. This means that any file's pre_start and
initialisations could override those of other files.


53

Assembly language may be incorporated directly into programs

let f(x, y) = x * 1000 + y

manifest { number = 123 }

let hippo = 0

let start() be
{ let cat = 7, goldfish = 3;
 assembly
 { load r1, [<goldfish>]
 add r1, <number>
 mul r1, 10
 store r1, [<hippo>]
 push 77
 load r1, [<cat>]
 mul r1, [<goldfish>]
 push r1
 push 4
 call <f>
 add sp, 3
 store r1, [<goldfish>] }
 out("hippo=%d, goldfish=%d\n", hippo, goldfish) }

• After the word assembly, the assembly language must be enclosed in { } even if it
consists of only one statement.

• Inside the assembly language, names surrounded by < > will be replaced by their
correct form in assembly language, but they must be the names of variables,
functions, or manifest constants.

• Everything else is passed directly to the assembler without any further processing.
Any errors will be reported by the assembler in a possibly unhelpful way after
compilation is complete.

• The assembly language in the example is equivalent to
hippo := (goldfish + number) * 10;
goldfish := f(cat * goldfish, 77)

the program prints hippo=1260, goldfish=21077
• The assembly language and machine architecture are documented separately.

• The calling convention is that parameter values are pushed in reverse order, then a
value equal to numbargs() * 2 + (lhs() -> 1, 0) for the called function is
pushed, then the function is called, then the stack is adjusted to remove the
pushed values.



54
When programming for an operating system, you sometimes have to write interrupt
handling functions and system calls. Both are handled in exactly the same way. These
are just like ordinary functions except that they do everything they can to avoid
changing anything that a user's program might be able to detect. For this to happen,
such functions need to exit in a very particular way, not using the ordinary return
statement. When you write an interrupt handler in BCPL, just insert the key word
handler between the let and the function's name. When this is done, every return
statement and the automatic return at the end of the function are automatically
changed to the special required form. Interrupt handlers also do not return values, so
inside a handler resultis statements are forbidden. This is a basic example of a
handler for the timer interrupt:

let handler tim() be
{ outs("Ding!\n");
 $set_special_register(sr$timer, 3000) }

For full access to everything, an interrupt handler would ideally be declared like this:

let handler whatever(oldflags, interruptcode, info1, info2,
 fp, sp, r12, r11, r10, r9, r8, r7, r6,
 r5, r4, r3 ,r2, r1, r0) be
{ let pcaddr = @ oldflags - 2;
 ... }

With that setup, the parameters r0 to fp will be equal to the values those registers
had when the interrupt occurred. If you assign a new value to one of those
parameters, the corresponding register will be set to that new value when control
returns to the interrupted program. That would be a very bad thing for an interrupt
handler to do, they are not supposed to make detectable changes. But it is a very
useful thing for a system call. That is how they return results. Every function that
returns a result just stores it in register R1 before exitting, so the assignment R1 :=
99 will make your syscall return 99 as its result. The variable pcaddr holds the
address of the stack memory location where the interrupted code's program counter
was stored. If an interrupt is unable to correct the problem that caused it (this is most
likely with a division-by-zero interrupt) but you want the program to continue anyway,
it should add 1 to that value.

! pcaddr +:= 1;
Normally, when an interrupt handler finishes, the instruction that was interrupted is
given another chance and re-executed. If the problem hasn't been fixed, that will cause
the same interrupt again immediately. Adding 1 to the program counter means that
the offending instruction will be skipped.



55
Extremely long programs can cause trouble. Everything except for constants is
accessed through its position relative to the value of some CPU register. Machine code
instructions only have 16 bits to represent the numeric part of an operand, so things
can only be accessed if they are between 32768 words before and 32767 words after
their reference point. The reference point for local variables and parameters is the
frame pointer register FP. The reference point for everything else is the program
counter PC.
• When a local variable or parameter is too far away, the compiler is able to handle it,

it produces extra instructions to make the access work correctly. This is automatic,
the programmer does not have to do anything at all.

• When something else, like a function or label or global or static variable or string or
table, the compiler has no way of knowing. Sometimes the assembler will be the
component that detects the problem. In this case the assembler's error message will
include the line number for the place in the original BCPL program where the
access occurred. Assembler-detected errors also include the line number within the
assembly language .ass file, which can be helpful.

• In other cases, such as when something imported from a library file is too far away,
the problem may only be detected when the linker tries to make the final executable
file. The linker's error message will contain the one thing it knows, the name of the
symbol (variable name, function name, etc) the caused the problem. It is not able to
determine where, in either the BCPL file or the assembly language file, the problem
happened.

• If you are able to determine where the too-distant access occurred, just add the
keyword distant immediately before the reference. So outs("hello") could
become distant outs("hello"), outs(distant "hello"), or distant
outs(distant "hello").

• In cases where an assembler-generated error mentions a local label (they always
consist of a capital L followed by a number, e.g. L314), that means you have put far
too much code inside a loop or conditional, or between a goto and its target. That
is just bad programming.

• If you do have to use distant a lot, you would probably be better off using indirect
addressing and dynamic loading with jump tables for your libraries. That is quite
complex.



56
The solution to the problem of a file getting too long is the creation of dynamically
loaded libraries (.dll files). These are almost the same as executable files, except that
they include a table of the addresses of those functions that the programmer decided
to make public. If you know where the table is, and you know what the index of a
function in that table is, you can call that function indirectly through the table without
any need for distant declarations.
• The programmer creating a dll only needs to do three things: declare the functions

that are to be made available using the keyword dynamic; define manifest
constants for the functions’ positions in the table; export those constants. Assume
this example is in a file called lib.b:

export { idx_one, idx_two }
manifest { idx_one = 3, idx_two = 1 }

dynamic { one: idx_one, two: idx_two }
let one(x) be
 resultis x * x;
let two(a, b) be
 resultis (a - 1) * (b + 1);

• This file would be compiled in exactly the normal way. Whenever a file contains any
dynamic declarations, a .dll file is created instead of the usual .exe. If a .dll file
has a start function, it can be run by itself in the normal way in order to make
debugging and testing convenient. On loading a .dll, the emulator adjusts its
settings so that the user will not have to do anything unusual.

• The dll file is exactly the same as an exe file except that the first word is a JUMP
instruction to make the program skip to the beginning of the executable code. The
least significant 16 bits of this instruction are the number of entries in the function
table. Following this first word is a list of the addresses of each of the dynamic
functions. The addresses are relative to the beginning of the file.

• A program wishing to use this library only needs to import the indexes, read the file
into memory, and calculate the address to call as a function. Imagining that
somehow we know there is a lot of free memory starting at address 0x2000:

import "lib"
...
r := devctl(dc$tapeloadfile, "lib.dll", 0x2000);
max := (! 0x2000) bitand 0xFFFF;
functions := 0x2001;
x := (0x2000 + functions ! idx_one)(12);

• devctl is a function from the "io" library that handles hardware operations.
dc$tapeloadfile is the operation code for reading a file from the unix host
system. The dc$... codes are listed in section 59. r will be negative if the
operation failed, otherwise the number of words that were read.

• max extracts the least significant 16 bits from the JUMP instruction at the
beginning of the loaded file. For foolproof operations you would check that any
function index you use is >= 0 and < max. lib had two dynamic functions, but
specified that their indexes would be 3 and 1, so max will be 4 because there is
space for indexes 0, 1, 2, and 3.

• functions is the address of the beginning of the function table.
• functions ! idx_one is entry number 3 in the function table. That is the

address of the function one relative to the beginning of its file, so the load
address 0x2000 has to be added to it to find the true address of the function.

• The last line of the example is just a normal function call with a parameter equal
to 12. The address of the function is calculated rather than just being a name as
usual. x will be 144.

• Normally you will not know where a large amount of free memory can be found.
The $memory_available builtin function, described in section 55, will let you
find where free memory is.



57

• Many builtins refer to areas of memory, they are called src, dst, first, last,
addr, and array in the following. The values provided should be simple numeric
addresses. The name of a vec, table or function, the result of a newvec, or one of
those plus or minus some offset are all suitable values. num, val, s, and size
should evaluate to ordinary integers. var should be a variable or something else
that can be assigned to.

• The builtin functions are:
o $memory_move(dst, src, num) - copy num consecutive words from src to dst.
o $memory_zero(dst, num) - overwrite num consecutive words from dst with 0.
o r := $find_first_non_zero(first, last) - scan all memory starting from

first and running up to last (inclusive). As soon as a location is found that
contains a non-zero value, the search stops and that location's address is
returned as the value of r. If no such location is found, r is set to -1.

o r := $find_first_one_bit(val) - The single word val is inspected starting
with the leftmost (most significant) bit until a 1 is found, then r is set to the
number of bits remaining to the right of that first 1. If there are no 1's, r is set to
-1.

o r := $find_last_zero_bit(val) - The single word val is inspected starting
with the rightmost (least significant) bit until a 0 is found, then r is set to the
number of bits remaining to the right of that first 0. If there are no 0's, r is set to
-1.

o s := $adjust_selector(s, num) - s must be a selector as created by the
selector, byte, and bit operators. The selector is adjusted by moving it on by
num units of its own size, taking into account the fact that selectors can not
spread across two words. For example, if s is originally equal to byte 17 and
num is 5, then s will become equal to byte 22. num may also be negative. In
selector B : R : N, B is the size. In byte N the size is 8, in bit N the size is
1.

o r := $memory_available(array, size) - array must be an array or vector of
at least size words. size should be an even number. The array is filled with
pairs of numbers where the first is the beginning address of an area of memory,
and the second is its end address. array ! 0 is set to the first location occupied
by anything loaded from the .exe file being executed, array ! 1 is set to the
last such address. After that, array ! e and array ! (e + 1), where e is an
even number, are set to the beginning and end addresses of all areas of memory
that actually exist, in order of increasing address. The range between array ! 0
and array ! 1 will almost always be inside the range between array ! 2 and
array ! 3. All other ranges will be non-overlapping. Nothing is written beyond
array ! (size - 1). r is set to the value size should have had to cover all
ranges of existing memory exactly.

 Example:
 manifest { size = 10 }
 let v = vec(size);
 let r = $memory_available(v, size);
 out("The program uses addresses %08X to %08X\n", v ! 0, v ! 1);
 if r > size then
 { out("for complete information, size should be %d\n", r);
 r := size }
 for i = 2 to r - 1 by 2 do

 out("Memory exists from %08X to %08X\n", v ! i, v ! (i + 1));
o $clear_physical_page(addr) - the 2048 word page of memory that includes

physical address addr is set to all zeros.
o r := $atomic_test_and_set(var) - the variable var is read and set to 1

instantaneously. r is set to the original value that was read. var should be the
variable itself, not a pointer to it.

o $set_flags_and_jump(val, dst) - all of the CPU flags are set to the value of
the bit in their position within val, so val might be (1 << flag$vm) + (1 <<
flag$r) for example, and the program jumps to dest in the manner of a goto,
simultaneously. dest must be a pointer to some executable code, possibly a
function name, possibly a vector or other address containing data read from an
.exe file. This is the last step in turning virtual memory on, dest should be a
physical address.

o r := $get_special_register(num) - r is set to the value of the special CPU
register indicated by num, typically a builtin name beginning with sr$, see the
next section.

o $set_special_register(num, val) - The special CPU register indicated by
num, typically a builtin name beginning with sr$, is set to val.

o r := $get_flag(num) - r is set to the one-bit value of the CPU flag indicated
by num, typically a builtin name beginning with flag$, see the next section.

o $set_flag(num, val) - The CPU flag indicated by num, typically a builtin name
beginning with flag$, is set to val.

o $enable_interrupts() - With no parameters, interrupt processing is enabled:
the CPU's IP flag is set to zero. $enable_interrupts(addr) - With one
parameter, first the special register INTVEC is set to the address given, then
interrupt processing is enabled

o $pause(num) - The CPU pauses for num milliseconds without consuming any
resources.

o $debug(num) - The program stops and goes into single-step mode, the
instruction about to be executed will be displayed as " BREAK num". Press enter
to execute the instruction or 'r' to continue running normally. See the
documentation on the emulator for more options.

o $file_name() - Evaluates to a string giving the name of the BCPL file that this
call appeared in.

o $line_number() - Returns an integer being the line number that this call
appeared on in the BCPL file.

o $get_sp(), $get_fp(), $get_pc() - Return the value of the stack pointer,
frame pointer, or program counter.

o $set_sp(num), $set_fp(num), $set_pc(num) - Set the stack pointer, frame
pointer, or program counter to the value of num.

o $sign_extend(val, num) - val is treated as a signed value num bits long and
is stretched to the full 32 bits of a word. In a num-bit value, bit (num - 1) is the
sign bit. This bit's value is copied over all the bits to the left of it. The result is
returned.

o $bits_in(val) - Returns the number of bits required to hold val. If val is 5,
that is 101 in binary so the result would be three. If val is 618, that is
1001101010 in binary so the result would be ten. It is an approximation of the
base-two logarithm. Zero is considered to be zero bits long, and negative
numbers will be 32 bits long.



58
• The compiler has a number of built-in constants that are used to identify some

hardware-specific things. The all have a $ sign in their names, not at the beginning.
Programmer-defined identifiers may not contain $ signs.
o The following refer to individual one bit CPU flags by number: flag$r, flag$z,

flag$n, flag$sys, flag$ip, flag$vm, flag$int, and as bit masks:
flag$maskr, flag$maskz, flag$maskn, flag$masksys, flag$maskip,
flag$maskvm, flag$maskint.

o The following refer to special CPU registers: sr$flags, sr$pdbr, sr$intvec,
sr$cgbr, sr$cglen, sr$debug, sr$timer, sr$syssp, sr$sysfp, sr$usrsp,
sr$usrfp, sr$watch, sr$exitcode, sr$ipl, sr$emgret.

o The following are interrupt numbers: int$none, int$memory, int$pagefault,
int$pagefault2, int$unimpop, int$halt, int$divzero, int$unwrop,
int$timer, int$privop, int$keybd, int$badcall, int$pagepriv, int$debug,
int$intrfault, int$sysstkfl, int$badop, int$watch.

o The following are device control operations: dc$disccheck, dc$discread,
dc$discwrite, dc$discclear, dc$tapecheck, dc$taperead, dc$tapewrite,
dc$taperewind, dc$tapeload, dc$tapeloadfile, dc$tapeunload, dc$termin,
dc$termout, dc$seconds, dc$useconds, dc$datetime, dc$netss, dc$netsend,
dc$netrecv, dc$tapelength.

o The following apply to the virtual memory system, six numbers:
page$validbitnum, page$systembitnum, page$size, page$tablenumbits,
page$pageintablebits, page$pagenumbits, page$offsetbits, six bit masks:
page$validmask, page$systemmask, page$tablenummask,
page$pageintablemask, page$pagenummask, page$offsetmask, and four
selectors: page$tablenumsel, page$pageintablesel, page$pagenumsel,
page$offsetsel.

o The following two numbers are for use with the disc system: disc$blockwords,
disc$blockbytes.

o The following are error codes returned by the devctl library function:
err$badcode, err$readparams, err$devnumber, err$position, err$memory,
err$devfailed, err$notfound, err$badparam, err$inuse, err$cantcreate,
err$nodata.



59
Summary of Priorities within Expressions

priority section
17, highest distant

constants, identifiers,
parenthesised subexpressions,
valof block

55
4

46

16 F(A, B, C, ...) function calls 20, 56
15 +, -, #-,

not, ~, unary operators 44
8

bitnot,
!, @,
abs, #abs,
float, fix

40
30
44
43

14 %name infix function call 46
13 ! array access 30
12 **, #** to the power of 32, 42
11 *, #*, /, #/, rem

##*, ##/, ##rem multiplicative 14, 42,
45

10 +, #+, -, #- additive 42
9 selector, byte, from, of, bit bit ranges 36 - 38
8 <<, >>,

alshift, arshift, rotl, rotr shifts and rotations 39

7 <, >, <=, >=, <>, /=, \=,
#<, #>, #<=, #>=, #<>, #/=, #\=
##<, ##>, ##<=, ##>=, ##=,
##<>, ##/=

relational

9
42
45
48

6 /\, bitand conjunctions 8, 40
5 \/, bitor disjunctions 8, 40
4 eqv equivalence 40
3 neqv exclusive or 40
2 -> , conditional 37
1, lowest table tables 38


60

Functions in the library “io”

out(format, ...)
 See sections 1, 2, 5, 6, and 32.

outch(c) print a single character
outno(n) print a single integer in decimal
outhex(n) print a single integer in hexadecimal
outbin(n) print a single integer in binary
outf(f) print a single floating point number
outs(s) print a single string
outsv(s) print a single string, with every character explicitly visible
 These functions add nothing. The are the helper functions used by out().

floatformat(val, fmt, str)

val should be a floating point number, fmt should be a string containing
exactly a format that C's printf function could use to format a floating point
number, and str should be a vector or other memory address where there is
enough space to store the entire string that printf would have printed. The
address of the string is also returned so that this can be conveniently used for
printing, e.g.

outs(floatformat(pi, "%12.6f\n", str))

inch()

Read a single character from the input stream, return its ASCII code. inch()
does not return a value until a whole line has been typed and terminated with
ENTER, apart from this the only characters given special treatment are control-C
which stops a program, and backspace. The default buffer used to store the
input until ENTER is pressed has space for only 100 characters.

set_kb_buffer(V, size)

V should be a vector size words long. V replaces the default buffer used by
inch(), so that up to size*4-5 characters may be typed before pressing ENTER.

inno()
 Read an integer in decimal, return its value. Uses inch().

numbargs()

Returns the number of parameters the current function was called with, see
section 23.

lhs()

Returns true if the current function call was the left hand side of an assignment.
See section 25.

thiscall()

Returns a reference to the current stack frame.

returnto(sf, value)

Returns from all active functions until the one represented by sf (previously
obtained from thiscall()) is reached. value is used as the resultis value
from the last exitted function. value is optional.

seconds()

Returns the number of seconds since midnight 1st January 2000, local time.

useconds(v)

The parameter must be a vector of at least two words. v ! 0 is set to the number
of seconds exactly as described for seconds. v ! 1 is set to the current number
of microseconds into that second.

datetime(t, v)

t is a time as obtained from seconds(), v must be a vector of at least 7 words.
The time in t is decoded as follows:
 v ! 0 := year
 v ! 1 := month, 1-12
 v ! 2 := day, 1-31
 v ! 3 := day of week, 0 = Sunday
 v ! 4 := hour, 0-23
 v ! 5 := minute, 0-59
 v ! 6 := second, 0-59

datetime2(tsec, tusec, v)
The date and time represented by tsec and tusec (which should be values as
produced by useconds) sre stored in compressed form in v. v must be a vector of
at least 2 words. If tsec is -1, the current date and time are used.
 v ! 0 : 13 most significant bits = year
 4 next bits = month
 5 next bits = day
 3 next bits = day of week, 0 = Sunday
 7 least significant bits not used
 v ! 1 : 5 most significant bits = hour
 6 next bits = minute
 6 next bits = second
 10 next bits = milliseconds
 5 least significant bits not used
The library also defines these selectors dt2_year, dt2_month, dt2_day,
dt2_dow, dt2_hour, dt_minute, dt2_second, and dt2_millisec, which may
be used to extract these values, e.g. dt2_minute of v would produce the
minutes value.

strlen(s)

Returns the length in characters of the string s, not including the zero
terminator.

random(max)

Returns a random integer between 0 and max, inclusive.

devctl(op, arg1, arg2, arg3,...)

Input/output device control functions, see section 50.

devctlv(v)

Has the same functionality as devctl(), but the parameters op, arg1, arg2, etc
are provided as elements 0, 1, 2, etc of the vector v.

netaddresstostring(addr, str)

addr should be the two vector containing an IP address as returned by the
dc$netss command to devctl(). str should be a vector of at least 6 words. It
is filled with a human readable rendition of the given IP address, e.g.
129.171.33.6.188.233.

stringtonetaddress(str, addr)

str Should be a string containing the human readable version of an IP address,
e.g. "129.171.33.6.188.233". addr should be a vector of two words, it will be
filled with the properly encoded version of an IP address for use with the
network-related devctl operations.



61
DEVCTL operations

Unit numbers identify individual discs or magnetic tape drives, numbered from 1 up.
Tapes and Discs are numbered independently, there can be a tape number 1 and a disc
number 1 at the same time. All of these operations may return a negative value to indicate
an error.

op = dc$termin
 arg1 = maximum number of characters to read
 arg2 = memory address

As many characters as are inside the hardware keyboard buffer, up to the given
maximum, are copied into memory packed four per word and zero terminated to
form a proper string. Space for the zero terminator must be included in the
value of arg1. The number of characters actually read, not including the
terminator, is returned. There must be at least arg1 / 4 + 1 words available
staring from arg2.

op = dc$termout
 arg1 = maximum number of characters to write
 arg2 = memory address

arg1 characters are taken from memory at the given address, which must
contain characters packed four to a word as in a normal string, and displayed
on the monitor. If a zero character is encountered, the process terminates
immediately. The number of characters written is returned.

op = dc$disccheck
 arg1 = unit number

If the disc unit is available returns the total number of blocks it contains
Otherwise returns 0

op = dc$discread
 arg1 = unit number
 arg2 = first block number
 arg3 = memory address

The indicated block (512 bytes or 128 words) are is read directly into memory
starting at the address given. On success returns 1. On failure returns a
negative error code.

op = dc$discwrite
 arg1 = unit number
 arg2 = first block number
 arg3 = memory address

128 words of memory starting from the address given are written directly into
the indicated block. On success returns 1. On failure returns a negative error
code.

op = dc$discclear
 arg1 = unit number

Completely erases the entire contents of the disc. On failure returns a negative
error code. On success returns number of blocks in the disc.

op = dc$tapecheck

 arg1 = unit number
If the disc unit is available returns ‘R’ or ‘W’ indicating whether the tape was
mounted for reading or for writing. Returns 0 if not available.

op = dc$tapelength
 arg1 = unit number

The length (in bytes) of the real file currently loaded on the given magnetic tape
unit is returned.

op = dc$taperead
 arg1 = unit number
 arg2 = memory address

One block is read from the tape unit directly into memory at the address given,
returns the number of bytes in the block. All blocks are 512 bytes except that
the last block of a tape may be shorter.

op = dc$tapewrite
 arg1 = unit number
 arg2 = memory address
 arg3 = size of block in bytes

The indicated number of bytes, which must not exceed 512, of memory starting
from the address given are written directly as a single block to the tape. Returns
the number of bytes written.

op = dc$tapeloadfile
 arg1 = file name
 arg2 = memory address

The entire named file is copied from the host unix system into memory starting
at the given address. No tape unit number is needed, the file does not need to be
loaded first or unloaded afterwards. On success returns the number of words
read.

op = dc$taperewind
 arg1 = unit number

Rewinds the tape to the beginning.

op = dc$tapeload
 arg1 = unit number
 arg2 = string, the filename of the tape
 arg3 = the letter ‘R’ or ‘W’.

The named file is made available as a magnetic tape unit. The letter R indicates
that it is read only, and W that it is write only. Returns 1 on success, or a
negative error code.

op = dc$tapeunload
 arg1 = unit number

The tape is removed from the drive, returns 1 for success or a negative error
code.

op = dc$netss

 arg1 = unit number
 arg2: 1 = turn on, 0 = turn off.
 arg3: = address, a vector of two words.

Addresses are 6 byte values, based on IP addresses, e.g. 129.171.33.6.210.4
On calling netss, the first word should be zero, and the second word can be zero
to request an ephemeral port, or N to request specific port N.
On return from netss, the two words will be filled with the actual local ‘IP’
address (6 bytes).

op = dc$netsend
 arg1 = unit number
 arg2 = to-address, a vector of two words as returned by NETSS
 arg3 = pointer to buffer containing the bytes to be sent.
 arg4 = number of bytes to send. Up to 1024 bytes may be sent.

The bytes are sent to the destination address.

op = dc$netrecv
 arg1 = unit number
 arg2 = from-address, a vector of two words
 arg3 = pointer to buffer to contain the bytes received
 arg4 = the length of the vector in words

If no bytes have been received, err$nodata (minus eleven) is returned.
If any bytes are received, they (up to 1024 of them) are stored in arg3, and their
number is returned by devctl. The from-address vector is filled with the ‘IP’
address of the sender.

op = dc$seconds

The number of seconds since 00:00 on 1st January 2000 is returned.

op = dc$useconds
 arg1 = pointer to two words of memory

The number of seconds (as described for dc$seconds) is stored in the first word,
and the number of microseconds into the current second is stored in the second
word.

op = dc$datetime
 arg1 = a number of seconds as returned by dc$seconds.
 arg2 = pointer to seven words of memory

If the number of seconds given is -1, the current date and time are used.
The given time is decoded into human-understandable components, which are
written into the seven words as follows. 0: year, 1: month, 2: day of month, 3:
day of week (0 means Sunday), 4: hour, 5: minute, 6: second.

op = dc$floatformat
 arg1 = any floating point number.
 arg2 = a string containing a printf format suitable for floating point numbers.
 arg3 = a pointer to memory where the resultant string will be stored.

This provides the functionality of the floatformat library function described in
section 58. Slightly more detail is provided there.


62

Compiling and running on rabbit.

The program should be in a file whose name ends with .b. Here it is

$ ls hello.*
hello.b
$ cat hello.b

import "io"

let start() be
{ out("Greetings, Human.\n");
 out("Now go away and leave me alone.\n") }

First run the compiler (you don’t need to type the .b in the file name). It creates an
assembly language file whose name ends with .ass. The .ass file is human
readable, you can look in it if you want.

$ bcpl hello
$ ls hello.*
hello.ass hello.b

Then run the assembler. It produces an object file which is not human readable.

$ assemble hello
$ ls hello.*
hello.ass hello.b hello.obj

Then use the linker to combine your object file with the object files for the libraries
it uses. The result is an executable image file whose name ends in .exe

$ linker hello
$ ls hello.*
hello.ass hello.b hello.exe hello.obj

Fortunately there is a single command that does all three of those steps for you. It
is called prep, short for prepare.

Finally tell the emulator to start up and run that executable file

$ run hello
Greetings, Human.
Now go away and leave me alone.

So all that could have been done with just

$ prep hello
$ run hello

If your program goes wrong while it is running, control-C will stop it, but you’ll
need to type a few more control-Cs to stop the emulator too.

Additional files to help with debugging are also produced. hello.das contains
debugging information provided by the assembler and hello.dli contains such
information from the linker. The emulator uses them automatically when the
occasion arises.

Other files or features may be enabled by providing flags to the commands:

 -la creates an assembly listing file whose name ends in .las. It shows every
instruction that went into the program, along with its hexadecimal
encoding and information on where it will be when the program is
running.

 -ll creates an linker listing file whose name ends in .lli. It shows all of the
things that were taken from different .obj files and gives information on
where they will be in the running program.

 -d suppresses the creation of the debugging information files.
 -exe only works for very simple programs that import no libraries. The

assembler produces an executable file directly and the linking phase is
skipped.

