
Chapter 5 – Functional Decomposition

Motivation – System Design

- Team of engineers who build a system need:
- An abstraction of the system
- An unambiguous communication medium
- A way to describe the subsystems
 - Inputs
 - Outputs
 - Behavior
- Functional Decomposition
 - Function transformation from inputs to outputs
 - Decomposition reduce to constituent parts

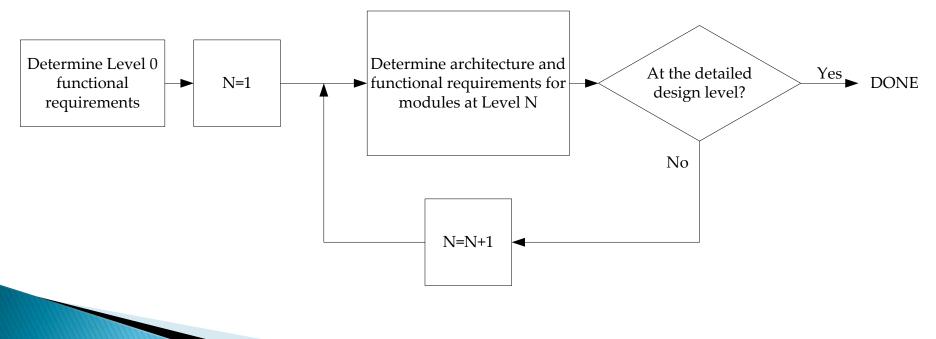
Learning Objectives

- Understand the differences between bottomup and top-down design.
- Know what functional decomposition is and how to apply it.
- Be able to apply functional decomposition to different problem domains.
- Understand the concept of coupling and cohesion, and how they impact design.

5.1 Bottom Up

- Given constituent parts
- Develop a working system
 - Build modules to accomplish specific tasks
 - Integrate modules together into working system
- For example
 - Given a power supply AND, OR and NOT gates.
 - Build a computer
- Pros
 - Leads to efficient subsystem. Lends itself to creativity.
- Cons
 - Complexity is difficult to manage
 - Little thought to designing reusable modules
 - Redesign cycles

Top Down


- Given the specification of a system
- Develop a working system
 - Divide the problem into abstract modules
 - Reiterate until constituent parts are reached
- Pros
 - Highly predictable design cycle
 - Efficient division of labor
- Cons
 - More time spent in planning
 - May limit innovation

5.2 Functional Decomposition

Recursively divide and conquer (top down)

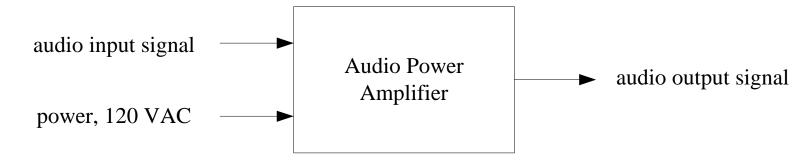
- Split a module into several submodules
- Define the input, output, and behavior
- Stop when you reach realizable components

5.3 Guidance

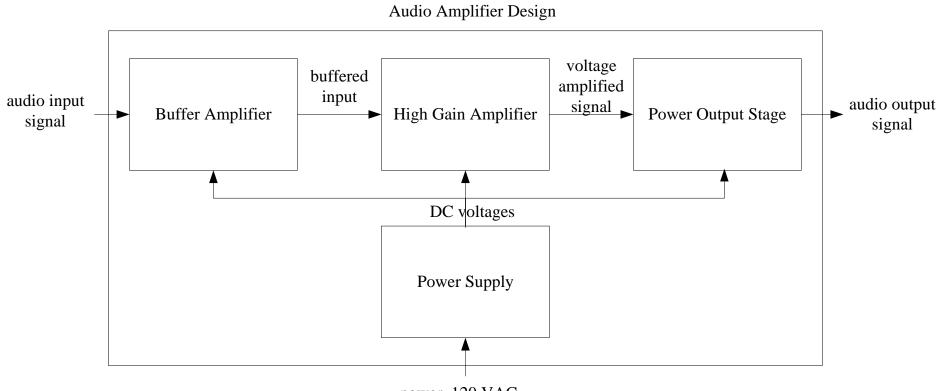
- 1. The design process is iterative
- 2. Upfront time saves redesign time later
- 3. Submodules should have similar complexity
- 4. Precise input, output, and behavior specifications
- 5. Look for innovation
- 6. Don't decompose ad infinitium

Guidance, continued

- 7. Use suitable abstraction to describe submodules
- 8. Look at how it has been done before
- 9. Use existing technology
- 10. Keep it simple
- 11. Communicate results


5.4 Application: Audio Power Amplifier

The system must


- Accept an audio input signal source with a maximum input voltage of 0.5V peak.
- Have adjustable volume control between zero volume and the maximum volume level.
- Deliver a maximum of 50W to an 8Ω speaker.
- Be powered by a standard 120V 60Hz AC outlet.

Module	Audio Power Amplifier
Inputs	Audio input signal: 0.5V peak. Power: 120 volts AC rms, 60Hz. User volume control: variable control.
Outputs	Audio output signal: <u>?</u> V peak value.
Functionality	Amplify the input signal to produce a 50W maximum output signal. The amplification should have variable user control. The output volume should be variable between no volume and a maximum volume level.

power, 120 VAC

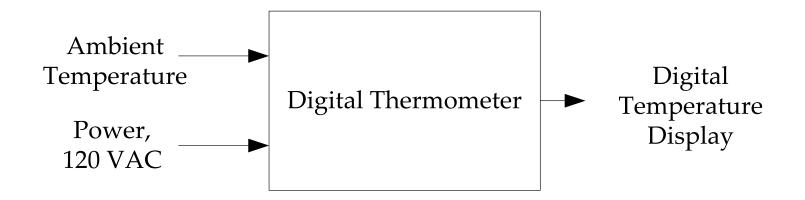
Level 1 – Buffer amp

Module	Buffer Amplifier
Inputs	 Audio input signal: 0.5V peak. Power: ± <u>25</u>V DC.
Outputs	- Audio signal: 0.5V peak.
Functionality	Buffer the input signal and provide unity voltage gain. It should have an input resistance $> 1M\Omega$ and an output resistance $< 100\Omega$.

Level 1 - High gain amp

Module	High Gain Amplifier
Inputs	 Audio input signal: 0.5V peak. User volume control: variable control. Power: ± 25V DC
Outputs	- Audio signal: <u>20</u> V peak.
Functionality	Provide an adjustable voltage gain, between <u>1 and 40</u> . It should have an input resistance > <u>100k</u> Ω and an output resistance < <u>100</u> Ω .

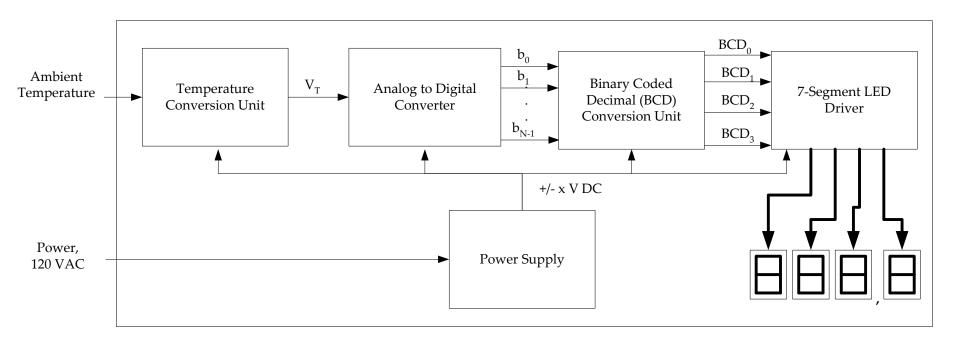
Application Domains

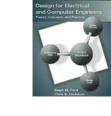

- Electronics Design
- Digital Design
- Software Design
- See the book for more in-depth examples

5.7 Example: Thermometer Design

The system must

- Measure temperature between 0 and 200°C.
- Have an accuracy of 0.4% of full scale.
- Display the temperature digitally, including one digit beyond the decimal point.
- Be powered by a standard 120V 60Hz AC outlet.
- Use an RTD (thermal resistive device) that has an accuracy of 0.55°C over the range. The resistance of the RTD varies linearly with temperature from 100Ω at 0°C to 178Ω at 200°C.



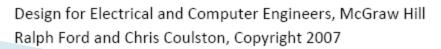


Module	Digital Thermometer
Inputs	 Ambient temperature: 0-200°C. Power: 120V AC power.
Outputs	- Digital temperature display: A four digit display, including one digit beyond the decimal point.
Functionality	Displays temperature on digital readout with an accuracy of 0.4% of full scale.

Design for Electrical and Computer Engineers, McGraw Hill Ralph Ford and Chris Coulston, Copyright 2007

Level 1

Module	Temperature Conversion Unit
Inputs	 Ambient temperature: 0-200°C. Power: <u>?</u>V DC (to power the electronics).
Outputs	- V_T : temperature proportional voltage. $V_T = \underline{\alpha}T$, and ranges from <u>?</u> to <u>?</u> V.
Functionality	Produces an output voltage that is linearly proportional to temperature. It must achieve an accuracy of <u>?</u> %.



	A/D Converter
Module	
Inputs	 V_T: voltage proportional to temperature that ranges from <u>?</u> to <u>?</u>V. Power: <u>?</u>V DC.
Outputs	- $b_{N-1} - b_0 : \underline{?-}$ bit binary representation of V_T .
Functionality	Converts analog input to binary digital output.

Design Details

How would you determine the unknown details in the previous 2 slides?

5.8 Coupling and Cohesion

• What is coupling?

- How much coupling is there in the modules in the Level 1 of the previous amplifier example?
- Phenomena of highly coupled systems
 - A failure in 1 module propagates
 - Difficult to redesign 1 module
- Phenomena of low coupled systems
 - Discourages reutilization of a module

Cohesion

What is cohesion?

- Phenomena of highly cohesive systems
 - Easy to test modules independently
 - Simple (non-existent) control interface
- Phenomena of low cohesive systems
 - Less reuse of modules

5.9 Project Application: The Functional Design

Design Level 0

- Present a single module block diagram with inputs and outputs identified.
- Present the functional requirements: inputs, outputs, and functionality.

Design Level 1

- Present the Level 1 diagram (system architecture) with all modules and interconnections shown.
- Describe the theory of operation. This should explain how the modules work together to achieve the functional objectives.
- Present the functional requirements for each module at this level.

Design Level N (for N>1)

• Repeat the process from design Level 1 as necessary.

Design Alternatives

 Describe the different alternatives that were considered, the tradeoffs, and the rationale for the choices made. This should be based upon concept evaluation methods in Chapter 4.

Design for Electrical and Computer Engineers that Scheme at these these scheme at these these schemes at these these schemes at the electric terms at the

5.10 Summary

- Design approach: top-down and bottom-up
- Functional Decomposition
 - Iterative decomposition
 - Input, output, and function
 - Applicable to many problem domains
- Coupling interconnectedness of modules
- Cohesion focus of modules