ECE 318 Algorithms 3 credits Required for CE

Contact hours: Three 50 minute lectures per week OR two 75 minute lectures per week

Course Instructor or Coordinator: Stephen Murrell

21st September 2017

Textbook: Algorithms in C++ parts 1-5, Robert Sedgewick, ISBN 020172684X or 978-0201726848, 2002.

Other supplementary material:

a. Class web site, http://rabbit.eng.miami.edu/class/een318

Special for fall 2017:

Last day of class: Wednesday 20th December. Final Examination: Wednesday 13th December.

2017-2018 University of Miami Academic Bulletin Description: Continuation of the

programming sequence. Object oriented programming with C++, emphasizing the skills required of a professional programmer. Essential data structures and algorithms: graphs, hash tables, parsing, and text processing. Advanced sorting and data management algorithms. Advanced features of C++.

Prerequisites or co-requisites: ECE 218

Specific outcomes of instruction: The student will be able to:

- 1. Design and implement complete working programs making suitable use of complex data structures and algorithms.
- 2. Determine which techniques are appropriate for use in given circumstances.
- 3. Make use of the advanced features of object oriented programming as provided by C++

Topics

- 1. Inheritance and code reuse; protected and private members
- 2. Virtual methods and polymorphism; static and dynamic typing
- 3. Fast (O(NlogN) or better) sorting algorithms
- 4. Hashing, hash tables, and other fast data retrieval methods
- 5. Advanced tree structures and related algorithms
- 6. Graph structures and basic graph algorithms
- 7. Analysis of data structures and algorithms

Student outcomes strongly addressed by the course:

(a) an ability to apply knowledge of mathematics, science, and engineering (4): Students must design and implement programs to test and explore computer engineering principles and solve real world problems.

- (b) an ability to design and conduct experiments, as well as to analyze and interpret data (3): Calculated algorithm complexities are verified experimentally.
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (4): The entire class is about designing software systems, components, and processes.
- (e) an ability to identify, formulate, and solve engineering problems (4): As for c, the class is about identifying and solving problems in programming.
- (*i*) a recognition of the need for, and an ability to engage in life-long learning (4): A programming course covering algorithms and data structures really makes it clear that there is no end to things to be learned and that technology never stands still.
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (4): Students gets extensive experience programming, testing, debugging, and refining programs.

Outcome		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
a	A1	Mathematics	2	2	3													
	A2	Science and Engineering	4	4	2													
b	B1	Conduct experiments	0	0	0	0	2	2	3	3	2	0						
c	C1	Fundamental design capabilities	4	3	3	3												
	C2	System design capabilities	3	2	0	0	0	0	0	0	4	4	0	0				
d	D1	Teamwork	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	E1	Identify, formulate, solve	2	4	4	1	2	0	1	1	4	4	4	2				
f	F1	Professional and Ethical	0	0	0	0	0	0	0	0								
g	G1	Oral Communications	0	0	0	0	0	0	0	0								
	G2	Written communications	0	0	0	0	0	0	0	0	0	0	0					
	G3	Graphical communications	0	0	0	0	0	0	2									
h	H1	Broad education	1	1	0	1	1											
i	I1	Life-long learning	4	4	4	0	1	2	2	4								
j	J1	Contemporary issues	0	0	2	1	2											
k	K1	Analog simulation	0	0	0	0	0											
	K2	Matlab	0	0	0	0	0	0	0	0								
	K3	Computer-aided digital design	0	0	0	0	0	0	0	0								
	K4	Test equipment	0	0	0	0	0	0	0	0								
	K5	Application development	4	4	2	0	0	0										
	K6	Programming Tools	4	4	4	4	4	4	3	2	0	0						
	K7	Development tools	0	0	3	0												

Course contributions to student outcomes