_ hpdvvaez

Quicksort
By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer. The
method compares very favourably with other known methods in speed, in economy of storage, and
in ease of programming. Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. Each of these subproblems may be
resolved to produce yet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer, may be
reduced to that of sorting two lesser segments of data,
provided that it is known that the keys of each of the
items held in locations lower than a certain dividing line
are Jess than the keys of all the items held in locations
above this dividing line. In this case the two segments
may be sorted separately, and as a result the whole mass
of data will be sorted.

In practice, the existence of such a dividing line will
be rare, and even if it did exist its position would be
unknown. It is, however, quite easy to rearrange the
items in such a way that a dividing line is brought into
existence, and its position is known. The method of
doing this has been given the name partition. The
description given below is adapted for a computer
which has an exchange instruction; z method more
suited for computers without such an instruction will be
given in the second part of this paper.

The first step of the partition process is to choose a
particular key value which is known to be within the
range of the keys of the items in the segment which is
to be sorted. A simple method of ensuring this is to
choose the actual key value of one of the items in the
segment. The chosen key value will be called the
bound. The aim is now to produce a situation in which
the keys of all items below a certain dividing line are
equal to or less than the bound, while the keys of all
items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance; its position
is determined only at the end of the partition process.

The items to be sorted are scanned by two pointers;
one of them, the Jower pointer, starts at the item with
lowest address, and moves upward in the store, while
the other, the upper pointer, starts at the item with the

The Compukey Sowenad.

Volume 5 Nunder |

10

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts its scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange, each pointer is stepped one item in its appro-
priate direction, and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other, so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed, the dividing line is
drawn between the two pointers, and the partition
process is at an end. '

An awkward situation is lable to arise if the value of’
the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. The
danger is that the dividing line, according to the rule
given above, will have to be placed outside the segment
which was supposed to be partitioned, and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of each application of the partitioning
process. If the item from which the value of the bound
has been taken turns out to be in the lower of the two
resulting segments, it is known to have a key value which
is equal to or greater than that of all the other items of
this segment. It may therefore be exchanged with the
item which occupies the highest-addressed locations in
the segment, and the size of the lower resulting segment
may be reduced by one. The same applies, mutaris
muiandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is always one less than the
number of items in the original segment, so that it is

L.

"4certﬂiﬂ that the stage will be reached, by repeated

artitioning, when each segment will contain one or no
jtems. At this stage the process will be terminated.

Quicksort

After each application of the partitioning process
there remain two segments to be sorted. 1If either of
these segments is empty or consists of a single item, then
it may be ignored, and the process will be continued on
the other segment only. Furthermore, if a segment
consists of less than three or four items (depending on
the characteristics of the computer), then it will be
advantageous to sort it by the use of a program specially
written for sorting a particular small number of items.
Finally, if both segments are fairly large, it will be
necessary to postpone the processing of one of them
until the other has been fully sorted. Meanwhile, the
addresses of the first and last items of the postponed
segment must be stored. It is very important to econo-
mize on storage of the segment details, since the number
of segments altogether is proportional to the number
of items being sorted. Fortunately, it is not necessary
to store the details of all segments simultaneously, since
the details of segments which have already been fully
sorted are no longer required. .

The recommended method of storage makes use of
a nesi, i.e. a block of consecutive locations associated
with a pointer. This pointer always refers to the
lowest-addressed location of the block whose contents
may be overwritten. Initially the pointer refers to the
first location of the block. When information is to be
stored in the nest, it is stored in the location referred to
by the pointer, and the pointer is stepped on to refer
to the next higher location. When information is taken
from the list, the pointer is stepped back, and the
information will be found in the location referred to by
the pointer. The important properties of a nest are
that information is read out in the reverse order to that
in which it is written, and that the reading of information
automatically frees the locations in which it has been
held, for the storage of further information.

When the processing of a segment has to be postponed,
the necessary details are placed in the nest. When a
segment is found to consist of one or no items, or when
it has been sorted by some other method which is used
on small segments, then it is possible to turn to the
processing of one of the postponed segments; the
segment chosen should always be the one most recently
postponed, and its details may therefore be read from
the nest. During the processing of this segment, it
may be necessary to make further postponements, but
now the segment details may overwrite the locations
used during the processing of the previous segment.
This is, in fact, achieved automatically by the use of a
nest.

It is important to know in advance the maximum
number of locations used by the nest; in order to ensure
that the number of segments postponed at any one time
never exceeds the logarithm (base 2) of the number of

11

d Quicksort

items to be sorted, it is sufficient to adopt the rule of
always postponing the processing of the larger of the
two segments.®

Estimate of Time Taken

The number of key comparisons necessary to partition
a segment of N items will depend on the details of the
method used to choose the bound, or to test for the
completion of the partition process. In any case the
number of comparisons is of the form N + k, where
k may be —1, 0, 1, 2.

The number of exchanges will vary from occasion to
occasion, and therefore only the expected number can
be given. An assumption has to be made-that the value
of the bound is a random sample from the population
of key values of the items in the segment. If this
assumption is not justified by the nature of the data
being sorted, it will be advisable to cheose the item
which yields the bound value af random, so that in any
case the assumption of randomness will be valid.

In the calculations which follow, use is made of the
principle of conditional expectation. We consider
separately the case where the bound is the rth in order
of magnitude of all the key values in the segment; the
value of the conditional expectation of the quantity
which interests us may now be expressed quite simply as
a function of r. The rule of conditional expectation
states that if each conditional expectation is multiplied
by the probability of occurrence of the condition, and
they are summed over the whole range of conditions, the
result gives the unconditional or absolute expectation.
According to the assumption of randomness, all the
values of r between 1 and N inclusive are equally likely,

1
so that they each have a probability of ¥ If, therefore,

the expression which gives the conditional expectation
on assumption of a given r is summed with respect to r
and divided by N, we obtain the value of the absolute
expectation of the quantity concerned.

Consider the situation at the end of the partition
process, when the bound was the rth key value in order
of magnitude. As a result of the final exchange, the
item which vielded this key value will occupy the rth
position of the segment, and the r — I items with lesser
key value will occupy the r — 1 positions below it in
the store. The number of exchanges made in the
course of the partition process is equal to the number
of items which originally occupied the r — 1 positions
of the lower resulting segment, but which were removed
because they were found to have key values greater than
the bound. The probability of any key value being

—r—1

————, and therefore the
N

expected number of such items among the r — 1 items

greater than the bound is

* A description of Quicksort in ALGOL (Hoare, 1961) is rather
deceptively simple, since the use of recursion means that the
administration of the nest does not have to be explicitly described.
The claim to a negative sorting time in the reference is, of course,
due to a misprint.

Quicksort

which originally occupied what was to be the lower
Tesulting segment is:

N —r—D0r—=1D
N .
Summing with respect to r, dividing by A, and adding
one for the final exchange of the item which yielded the
bound, we get the absolute expectation of the number
of exchanges:

N 2
4+

6 6N
; 1,
This figure may be reduced by N if the final exchange is

always omitted in the case when the item which provided
the bound is already in its correct position. In general
it will not be worth while to test for this case.

Given the expected theoretical number of comparisons
and exchanges, it should be quite easy to caleulate the
expected time taken by a given program on a given
computer. The formula for the time taken to partition
a segment of N items will take the form

aN + b - j%’
where the coefficients a, b and ¢ are determined by the
loop times of the program. The expected time taken
to sort &V items will be denoted Txn. We shall suppose
that a different method of sorting is used on segments
of size less than M. The values of T, for r < M are
taken as given. We shall find a recursive relationship
to give the values of T, for r > M.

Suppose that the value of the bound chosen for the
first partition is-the rth in order of magnitude. Then
the time taken to sort the whole segment of & items is
equal to the time taken to partition the N items, plus
the time taken to sort the r — | items of the lower
resulting segment, plus the time taken to sort the
N —r —1 items of the upper resulting segment. This
assertion must also be true of the expected times

c
N

Tn="T,+Ty_, +aN = b=

-on condition that the first bound

with respect to » and dividing by N we get the uncondi-
tional expectation :

Tn=2"S'T tanapo s
N—‘E? »+ aN -+ e N= M.
The exact solution of this recurrence equation is*
_ AN T1) Mt L WL 1)e
YTMM D T T M D
L+
M+ 1

W+ 3

D e
My

M1

_F We adopt the convention that a sum is zero if its upper bound
is less than its lower bound,

was the rth, Summing

12

The validity of the solution may be proved by substi-
tuting in the original equation, and showing that the
result is an algebraic identity. For simplicity, the
M—1
coefficients of 3} 7., ¢, b, and a should be considered
1

scparately. The correctness of the first three coeffi-
cients is easily established. In verifying the coefficient
of a, the following identities are used. Writing Wy, for

N 9)

¥ l ——— — — = and ¥y for the coefficient of
Mirr N4+1 M1
ain Ty, we get

V= N+ DN+ DWinsy — NN -+ DWWy (1)
= %N(N+ DWWy + N
2 N—1
=_ 3 V.4 N from (1)
N m

It is interesting to compare the average number of
comparisons required to sort A items, where A is very
large, with the theoretical minimum number of compari-
sons. We consider the case M =2, and find the
expected number of comparisons by putting a =1,
b= c=T; =0 in the formulae of the last paragraph.
When N is very large, all terms except the largest may
be ignored. The figure obtained for the expected
number of comparisons is

N
2NY, 1 ~ 2N log, N.
1 r

The theoretical minimum average number of compari-
sons required to sort N unequal randomly-ordered items
may be estimated on information-theoretic considera-
tions. As a result of a single binary comparison, the
maximum entropy which may be destroyed is —log 2,
while the original entropy of the randomly ordered data
is —log N!; the final entropy of the sorted data is zero.
The minimum number of comparisons required to
achieve this reduction in entropy is

“log M _ log, N! ~ N log, N.
—log 2 o ==

The average number of comparisons required by
Quicksort is greater than the theoretical minimum by a
factor of 2log, 2 ~ 1-4. This factor could be reduced
by the expedient of choosing as the bound for each
partition the median of a small random sample of the
items in the segment. It is very difficult to estimate the
saving which would be achieved by this, and it is possible
that the extra complication of the program would not be
justified. Probably more worthwhile is the attempt to
reduce as far as possible the actual time taken by the
innermost comparison cycle, and a number of simple
programming devices to achieve this will be described
in Part Two of this paper.

= ACCess time

Quicksort

2 Camparison of Quicksort with Merge Sorting
‘!;/‘Thﬂ National-Elliott 405 computer has a delay-line
£ orking store of 512 locations, and a magnetic-disc
£ packing store of 16,384 words. The average access
g imc for the working store is 0-8 msec and the average

z for a block of 64 words in the backing store
;s 32msec. There are 19 words of immediate-access
storage, which are used to contain instructions and
working space of the inner loops; the time taken by
such loops is about 0-15 msec per instruction.

Table 1 gives a comparison of times taken by
Quicksort and a merge sorting method, both pro-
grammed by Mr. P. Shackleton for the 405, The times
were measured automatically by the computer in tests
on random data conducted by Mr. D. J. Pentecost.
The figures relate to six-word items with a single-word
key.

Table 1
NUMBER OF ITEMS MERGE SORT QUICKSORT
500 2 min 8§ sec 1 min 21 sec
1,000 4 min 48 sec 3min 8 sec
1,500 & min 15 sec™® 5min 6 sec
2,000 11 min 0 sec* 6 min 47 sec

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

Part Two: Implementation

In the implementation of a sorting method on a given
computer, it is often possible to make adaptations which
will ensure optimization of the innermost loops. Quick-
sort turns out to be exceptionally flexible; a number of
possible variations are described below. The choice of
which variation is adopted on any given computer will,
of course, depend on the characteristics of the computer.
In making the decision, the theoretical estimate of time
taken for various values of a, b, ¢, and M should be used
to determine the optimal method; it will not be necessary
to write and test a large number of different programs.

Partition without Exchange

On some computers the exchange operation would
involve copying one of the items into workspace while
the other item overwrites the locations which it occupied.
On such a computer it would be advantageous to avoid
exchanging altogether, and a method of achieving this
is described below.

The itemn chosen to yield the bound should always be
that which occupies the highest-addressed locations of
the segment which is to be partitioned. If it is feared
that this will have a harmfully non-random result, a
randomly chosen item should be initially placed in the
highest-addressed locations. The item which yielded
the bound is copied into working space. Then the
upper and lower pointers are set to their initial values,
and the lower pointer starts its upward scan of the store.

13

When it finds an item with key greater than the bound,
this item is copied into the locations to which the upper
pointer now refers. The upper pointer is stepped down,
and proceeds on its downward scan of the data. When
it finds an item with key lower than the bound, this item
is copied into the locations referred to by the lower
pointer. The lower pointer is then stepped up, and the
process is repeated until both the pointers are referring
to the same item. Then the item which has supplied the
bound is copied from working space into the locations
to which the pointers refer. Throughout the process,
the stationary pointer refers to locations whose contents
have been copied elsewhere, while the moving pointer
searches for the item to be copied into these locations.
The expected number of copying operations is obviously
twice the corresponding figure for exchanges.

Cyclic Exchange

On a machine with single-address instructions, which
has the facility of exchanging the contents of accumulator
and store, it is more economical to perform long
sequences of exchanges at one time. A single exchange
operation involves reading to the accumulator, exchang-
ing with store, and writing to store, giving 3N instructions
to perform N exchanges. If these exchanges are
performed cyclically all at the same time, one exchange
instruction can take the place of a read and a write
instruction in all the exchanges except the first and the

_last. Thus only one read instruction, one write instruc-

tion, and 2N — 1 exchange instructions are required.
Further economy is achieved in the case of multi-word
items by the fact that the count of words exchanged need
be tested only once for each N-fold exchange of each
word of the itern.

The method of Quicksort allows all exchanges to be
saved up until the end of the partitioning process, when
they may be executed together in a cyclic movement.
In practice, the values of the pointers at the time when
they come to a halt are stored in a list for later exchang-
ing. The number of locations which can be spared to
hold this list will be a limiting factor in the gain of
efficiency.

Optimization of the Key Comparison Léop

Most sorting methods require that a test be made
every time that a pointer is stepped, to see whether it
has gone outside its possible range. Quicksort is one
of the methods which can avoid this requirement by the
use of sentinels. Before embarking on the sort, sentinels
in the form of items with impossibly large and small
key values are placed at each end of the data to be
sorted. Now it is possible to remove the pointer test
from the key comparison cycle; the test is made only
when both pointers are stopped and an exchange is just
about to be made. If, at this time, the pointers have
not crossed, the exchange is made and the partition
process is continued. If they have crossed over, the
partition process is at an end.

Quicksort

If the value of the bound is the greatest or the least
(or both) of the key values of items in the segment being
partitioned, then one (or both) of the pointers will
move outside the segment; but no harm can result,
provided neither pointer moves outside the area in
which the whole mass of data is stored. The upper
sentinel, having a key value necessarily greater than
that of the bound, will stop the lower pointer, while the
lower sentinel will stop the upper pointer. The fact
that two extra key comparisons are made on every
application of the partition process will be more than
compensated on fairly large segments by the omission
of pointer comparison from the innermost loop.

Multi-word Keys

When the keys, with respect to which the sorting is
performed, extend over more than one computer word,
then a long time may be spent on comparing the second
and subsequent words of the key. This is a serious
problem, since it often happens that a large number of
items share a very few values for the first words of their
keys. The problem is aggravated when the items are
nearly sorted, and it is necessary to make many compari-
sons between keys which are identical except In their
last word. The method described below is due to
Mr. P. Shackleton.

The principle of the method is to compare only a
single word of the keys on each application of the
partitioning process. When it is known that a segment
comprises all the items, and only those items, which
have key values identical to a given value over their
first n words, then, in partitioning this segment, compari-
son is made of the (n 4 1)th word of the keys. A varia-
tion of the method of partitioning is adopted to ensure
that all items with identical values of the key word
currently being compared (and consequently identical
over earlier words of their keys) are gathered together
in one segment as quickly as possible.

The variation consists in altering the criteria which
determine the stopping of the pointers. If we ensure
that all items with key values equal to the bound are
placed in the upper of the resulting segments, then we
may associate with each segment its so-called charac-
teristic value, which is the greatest value equal to or less
than all the key values of the segment (using the expres-
sion key value to mean the value of the word of the key
which will be compared when the segment is partitioned).
Furthermore, each segment must contain all the items
with key value equal to the characteristic value of the
segment. This is easily achieved by making the lower
pointer stop whenever it meets an item with key value
equal to the bound, so that such an item will be trans-
ferred to the upper segment. The value of the bound
may obviously be taken as the characteristic value of
the upper resulting segment, while the characteristic
value of the lower resulting segment is the same as that
of the original segment which has just been partitioned.
Where this rule does not determine the characteristic
values (as in the case of the original mass of data), then

14

no harm will be occasioned by choosing as characteristic
value the lowest possible valye of the key word,

Now whenever a segment is to be partitioned, the
value chosen as the bound is compared with the charac-
teristic value of the segment. 1f it is greater, parti-
tioning is performed with the modification described in
the last paragraph. If, however, they are equal, then
it is the upper pointer which is made to stop on
encountering an item with key value equal to the bound,
Thus all items with key values equal to the characteristic
value are collected together in (he lower resulting
segment, and when this segment comes (o be partitioned,
comparison may be made of the next word of the keys
(if any).

The adoption of this refinement means that when the
processing of a segment is postpaned, the position of
the key word which is next to be considered, and the
characteristic value for the segment, must be siored
together with the positions of the first and last items.
On many machines, the extra book-keeping will be
Justified by the consequent optimization of the innermost
comparison loop.

Multilevel Storage

Quicksort is well suited to machines with more than
one level of storage, for instance a fast-access working
store on magnetic cores and a backing store on magnetic
discs or drums. The data in the backing store are
partitioned repeatedly until each resulting segment may
be contained in the fast-access store, in which it may be
sorted at high speed.

The partitioning process can be applied quite economi-
cally to data held on a magnetic drum or disc backing
store. The reason for this is that the movement of the
pointers allows serial transfer of information held
adjacently in the backing store, and such transfers are
usually faster than if more scattered random access were
required. This is particularly true if information can
only be transferred between the backing store and main
store in large blocks. The time lost in searching for
information on the backing store may be reduced to
insignificant proportions, provided that it does not take
an exceptionally long time to search for information at
one end of the store immediately after transferring
information at the other end. This condition is satisfied
by many magnetic drums or disc stores; it is obviously
not satisfied by a magnetic-tape store, on which the
method of Quicksort cannot usefully be applied.

Conclusion

Quicksort is a sorting method ideally adapted for
sorting in the random-access store of a computer. It is
equally suited for data held in core storage and data
held in high-volume magnetic drum or disc backing
stores. The data are sorted in sitw, and therefore the
whole store may be filled with data to be sorted. There
is no need to sort simultaneously with input or output,

Quicksori
2 -J;;,mber of cycles of the innermost comparison loop large enough random-access store to make interna’
gse 10 the theoretical minimum, and the loop may sorting worth while.

‘,";;ade very fast. The amount of data movement

g/ 1in the store is kept within very reasonable bounds. Acknowledgement
. g:lickSOIt is therefore likely to recommend itself as the This paper is published by kind permission of Elliott
h . standard sorting method on most computers with a Brothers (London) Ltd.

¥ Reference

¥ Hoare, C. A. R, (1961). Algorithm 63, Partition; Algorithm 64, Quicksort; Communications of the ACM, Yol. 4, p. 321,

