
Adding an assignment statement to the syntax

Simple Expression SE ::= identifier
 | number

Adding Expression AE ::= SE ((+ | ‐) SE)*

Statement STMT ::= print AE ;
 | identifier = AE ;

Program PROG ::= STMT end-of-file

Nothing changes except that an extra case is added to read_statement and execute.

read_statement():
 Use next() to get first symbol
 if it is “print”:
 SAME AS BEFORE
 if it is an identifier:
 create a new node to represent this identifier, save it as ID
 (a good way to do this is to call back(), then let read_simple_expr() do

the real work for you)
 use next() to check for “=” symbol
 if there is no “=”: error and return NULL
 use read_adding_expression() to read the AE, save it as VAL
 use next() to check for semi-colon
 if semi-colon not found:
 error message, return NULL;
 make a assignment-statement node containing ID and VAL,
 return that node (pointer) as result
 otherwise
 SAME AS BEFORE

execute(node * t)

if t is NULL:
 SAME AS BEFORE

else if t->kind is “print”
 SAME AS BEFORE

else if t->kind is “assignment”
 follow the pointers to get the variable name:
 string varname = t->ptr1->detail
 use value_of to evaluate the expression
 int val = value_of(t->ptr2)
 mem.set(varname, val)
else

 SAME AS BEFORE

Allowing parentheses in expressions

Just realise that “(“ followed by any expression, followed by “)” behaves like a very simple basic
expression, so add one clause to SE:

Simple Expression SE ::= identifier
 | number
 | (number)

This is implemented by adding one new case to read_simple_expr(). After checking for an
identifier or a number, check for an opening parenthesis:

 use next() to get one symbol
 if it is a number or identifier
 create appropriate node and return pointer
 otherwise if it is “(“
 call read_adding_expression to do its job, save result as E
 call next() to check for “)”
 if “)” not present, error message and return NULL
 otherwise return E
 otherwise error message and return NULL.

No other additions are needed. Parentheses in expressions just change the way the parser builds
the tree.

Defining a block, or sequence of statements, which now becomes the main thing in a program:

Block BLOCK ::= { STMT * }

Program PROG ::= BLOCK end-of-file

This requires a new parsing method, perhaps called read_block():

 use next() to check for “{“
 if “{“ not present, error message, return NULL
 L = NULL
 enter loop:
 use next() to check for “}”
 if “}” is seen:
 break from loop.
 use read_statement() to read just one statement, save result as S
 if L is still NULL
 set L = S
 otherwise
 create new node labelled “sequence” with pointers L and S
 set L = that new node
 after end of loop:
 if L is still NULL
 replace L with new node labelled “empty statement”, no content
 return L as result.

Also add a case to execute() to handle these two new kinds of node:

 if t->kind is “empty statement”:
 don’t do anything, the program was just “{ }”.
 if t->kind is “sequence”:
 do the first step - execute(t->ptr1)
 do the second step - execute(t->ptr2)
 that’s it.

To allow a block to appear as a kind of statement:

Statement STMT ::= print AE ;
 | identifier = AE ;
 | BLOCK

Fortunately, a block always begins with “{“, which is distinct from the existing cases, so just add
a new case to read_statement:

 Use next() to get first symbol
 if it is “print”:
 SAME AS BEFORE
 if it is an identifier:
 SAME AS BEFORE
 if it is “{“:
 use back(). The “{“ is block’s responsibility.
 call read_block(), return whatever it gives you.
 otherwise
 SAME AS BEFORE

You may like to exercise your minds by thinking about how new operators may be added, such
as *, /, <, >, etc., and then about how an if statement could be invented.

