Adding an assignment statement to the syntax

Simple Expression SE = identifier
| number

Adding Expression AE SE((+]|-)SE)*

Statement STMT = print AE ;
| identifier = AE ;

STMT end-of-file

Program PROG
Nothing changes except that an extra case is added to read_statement and execute.

read statement():
Use next() to get first symbol
if it is “print™:
SAME AS BEFORE
if it is an identifier:
create a new node to represent this identifier, save it as ID
(‘a good way to do this is to call back(), then let read simple expr() do
the real work for you)
use next() to check for “=" symbol
if there is no “=": error and return NULL
use read_adding_expression() to read the AE, save it as VAL
use next() to check for semi-colon
if semi-colon not found:
error message, return NULL;
make a assignment-statement node containing ID and VAL,
return that node (pointer) as result
otherwise
SAME AS BEFORE

execute(node * t)
if tis NULL:
SAME AS BEFORE
else if t->kind is “print”
SAME AS BEFORE
else if t->kind is “assignment”
follow the pointers to get the variable name:
string varname = t->ptr1->detail
use value of to evaluate the expression
int val = value of(t->ptr2)
mem.set(varname, val)
else
SAME AS BEFORE

Allowing parentheses in expressions

Just realise that “(“ followed by any expression, followed by *)” behaves like a very simple basic
expression, so add one clause to SE:

Simple Expression SE = identifier
| number
| (number)

This is implemented by adding one new case to read simple expr(). After checking for an
identifier or a number, check for an opening parenthesis:

use next() to get one symbol

if it is a number or identifier
create appropriate node and return pointer

otherwise if it is “(*
call read adding expression to do its job, save result as E
call next() to check for *)”
if “)” not present, error message and return NULL
otherwise return E

otherwise error message and return NULL.

No other additions are needed. Parentheses in expressions just change the way the parser builds
the tree.

Defining a block, or sequence of statements, which now becomes the main thing in a program:
Block BLOCK = {STMT * }
Program PROG BLOCK end-of-file

This requires a new parsing method, perhaps called read_block():

use next() to check for “{*
if “{* not present, error message, return NULL
L =NULL
enter loop:

use next() to check for “}”

if “}” 1s seen:

break from loop.
use read_statement() to read just one statement, save result as S

if L is still NULL
setL=S
otherwise

create new node labelled “sequence” with pointers L and S
set L = that new node
after end of loop:
if L 1s still NULL
replace L with new node labelled “empty statement”, no content
return L as result.

Also add a case to execute() to handle these two new kinds of node:

if t->kind is “empty statement”:

don’t do anything, the program was just “{ }”.
if t->kind is “sequence’:

do the first step - execute(t->ptrl)

do the second step - execute(t->ptr2)

that’s it.

To allow a block to appear as a kind of statement:

Statement STMT = print AE ;
| identifier = AE ;
| BLOCK

Fortunately, a block always begins with “{*, which is distinct from the existing cases, so just add
a new case to read_statement:

Use next() to get first symbol
if it is “print™:
SAME AS BEFORE
if it is an identifier:
SAME AS BEFORE
if it is “{*:
use back(). The “{* is block’s responsibility.
call read_block(), return whatever it gives you.
otherwise
SAME AS BEFORE

You may like to exercise your minds by thinking about how new operators may be added, such
as *, /, <, >, etc., and then about how an if statement could be invented.

