
input_object deals with whole symbols: next() and back()

parsing_object deals with whole components of a program, all the way from simple
expressions to statements to function definitions. Contains its own input object. Parsing functions
return pointers to nodes: read_simple_expr(), read_adding_expr(),
read_statement(), etc.

Syntax so far:

Simple Expression SE ::= identifier
 | number

Adding Expression AE ::= SE ((+ | ‐) SE)*

Statement STMT ::= print AE ;

Program PROG ::= STMT end-of-file

read_simple_expr():
 use next() to get one symbol
 if it is a number or identifier, create appropriate node and return pointer
 otherwise error message and return NULL.

read_adding_expr():
 use read_simple_expr() to get first component, save as L
 enter loop:
 use next() to get next symbol, save it as OP
 if it is not plus or minus:
 use back() so it can be seen again
 break out of loop
 use read_simple_expr() to get next component, save as R
 combine L, OP, R into single expression node, use as new L
 after loop:
 return L

read_statement():
 Use next() to get first symbol
 if it is “print”:
 use read_adding_expr() to get expression, save as E
 use next() to check for semi-colon
 if semi-colon not found:
 error message, back(), return NULL;
 make a print-statement node containing E, return as result
 otherwise
 error message
 return NULL;

read_program():
 Use read_statement() to get result
 use next() to see final symbol
 if it is not end-of-file
 error message.

memory_object has the simple task of remembering the values of variables while a program is
running. It needs a get(string) method to retrieve the value of a variable and a
set(string, int) method to record a new value. For testing purposes, the implementations
could be as simple as

int get(string varname)
{ if (varname==”x”)
 return 123;
 else if (varname==”y”)
 return 456;
 else
 return 789; }

void set(string varname, int value)
{ cout << “pretending to remember “ << varname << “ = “ << value << “\n”; }

A working memory_object could perhaps have a vector of strings and a vector of ints so that set
can really do its job.

interpreting_object is responsible for executing the program once the parsing object has
done its job and provided a pointer to the tree for the whole program. In interpreting object has
its own memory_object as a member. There are two main methods:

int interpreting_object::value_of(node * t) given a pointer to a tree that
represents some kind of expression, does whatever is required to find the value of that
expression, which is returned as its result.

if t is NULL:
 error, give up
else if t->kind is “number”
 return the value of that number
else if t->kind is “identifier”
 use mem.get to find the identifier’s value, and return that.
else if t->kind is “expression”
 A = value_of(t->ptr1);
 B = value_of(t->ptr2);
 if detail is “+”
 return A+B
 else if detail is “-“
 return A-B
 else
 error
 A = value_of(t->ptr1);
else
 error

void interpreting_object::execute(node * t) given a pointer to a tree that

represents some kind of statement, does whatever is required to produce the proper results from
executing that statement.

if t is NULL:
 error, give up
else if t->kind is “print”
 A = value_of(t->ptr1);

 cout A
else
 error

As features are added to the language to make it less trivial, this basic framework is gradually
expanded, but always keeps the same essential form.

The plan of a program that uses all of this to make the programming language usable is
something like this:

 initialise parsing_object po
 initialise interpreting_object ex
 node * prog = NULL
 repeat
 ask user’s wishes
 if user selects “enter a new program”:
 prog = po.read_program();
 else if user selects “show the tree”:
 prog->print();
 else if user selects “run program”
 ex.execute(prog);

