Floyd-Warshall Again

Given a graph with nodes N, N;, N,, ..., N, and knowledge of which are directly connected
by arcs, and the lengths of those arcs, find the shortest path between N; and N; for all i
and j, all at the same time.

We'll treat the traditional sequence of matrices as a function instead this time: SP (a, 1,
j) is the length of the shortest path between N; and N;, with the parameter a allowing us
to reach the solution step-by-step. When a is small we are hardly allowed to do anything,
as a grows we get more and more options and when a reaches its maximum there will be
no restrictions so we'll have a complete solution (assuming that we get the step-by-step
design right).

The minimum sensible set of options would be to use only what we already know. If we
already know something, it will require no effort. What we already know is the input data,
the map itself, represented by SP (0, i, j).Itis the length of the direct connection (arc
or edge) between nodes N; and N;. If there is no direct connection between N; and N; we still
need the function to return something, so we'll use the badly named constant INFINITY
from #include <cmath> but abbreviate it to inf.

To recap, the first effortless step is

SP(0, i, J) =length of arc directly connecting nodes N; and N; if there is one, or
inf if there isn't.

SP(0, i, 7j) is a given, the map, part of the problem statement, we do not have to
calculate SP (0, i, Jj) in any way.

The enormous number of possibilities needs to be tamed, so that a sensible sequence of
steps can be found. Gradual increments to what we already know is generally a good idea
to try. That is what increasing the parameter a signifies.

What we already know is the map itself, SP(0, i, Jj) for all i and j. Consider the first
parameter, a = O here, to represent a set of possibilities for way-points (nodes that can be
visited on the way from i to j). O represents the empty set {}, there are no nodes we can
visit on the way, so only direct connections can be used.

a = 1 represents a set with only one element. We should hope that it will make no difference
what order we consider the nodes in, but starting with O and increasing by one makes the

notation much clearer. That means that a = 1 represents the set of nodes { N, }, a = 2
represents the set of nodes { Ny, N, }, a = 3 represents the set of nodes { Ny, N;, N, }, and
so on. To be perfectly clear, the case of a = 3 means that we are trying to get from N; to N;
and may stop at any, all, or none of Ny, N;, N, along the way. In other words we would be

working out SP (3, i, 7j).

Start at the beginning and introduce node N:

This is the first node we will allow ourselves to visit on the way from N; to N;, and (by
definition) the values of sP(1, i, J) will be the shortest path length from N; to N;, if we
are allowed to visit No on the way. We don't have to visit N, but we can if we want to.



Of course we have no way of knowing at this stage whether or not we should want to stop
at N, on the way, so we have to consider both options, visit N, or don't visit N,

Clearly when i = 0 or j = O, N, is already one of the end-points, so being allowed to visit N|,

on the way can't possibly make any difference. Only when i and j are both non-zero do we
have to make the choice about stopping at Nj,.

Option 1, don't visit N, on the way:

N, is the only new stopping place allowed when a (SP's first parameter) is increased
to 1, so if we choose not to visit N,, we already have the answer, the shortest path with no
stops on the way, SP (0, i, 7j).

Option 2, do visit N, on the way:

Remember we don't have to visit Ny, this is just what happens if choose to. To get
from N; to N; in the shortest distance, stopping at N, on the way, we must travel first from
N; to Ny, then from N, the rest of the way to N;. In those two sub-journeys it should be
obvious that visiting N, again could only make the trip longer.

That means that the trip from N; to N, will not stop at N, along the way, and the trip from
Ny to N; will also not stop at N, on the way. Plus we are working on SP (1, i, j) meaning
that no other node is allowable either. So the shortest distance from N; to N, not stopping
at N, or above will already be SP (0, i, 0) and the rest of the trip will be SP(0, 0, 7),
giving a total length of SP(0, i, 0) + SP(0, 0, 7j).

Those are the only two options. SP (1, i, j) must be either
SP(0, 1, 7J)
or SP(0, i, 0) + SP(0, i, 7).
As we want the shortest distance we must take the least of those two values. That gives
the recursive solution
SP(1, i, j) = min(SP(O0, i, J), SP(0, i, 0) + SP(0, 0, j)) foralliand]j.

Now we move on to a =2. SP(2, i, j) is the length of the shortest path between N; and
N; given that we are allowed to stop at N, and N, (either or both or neither) along the way.
Whether or not we stop at N; has no bearing on whether or not we stop at N, they are
totally separate decisions.

Again there are only two options. Either we do stop an N, on the way, or we don't. Clearly
if i or j are 1, stopping at N, again on the way will only lengthen the journey, so it can be
ignored.

But specifically ignoring i = 1 and j = 1 would complicate the programming. It is also totally
unnecessary because a journey that re-visits N; would be longer than one that doesn't,

and we always take the minimum so the results when i = 1 or j = 1 would never be used.

Option 1, don't stop at N; on the way:



We are still allowed to stop at N, (but don't have to), which means that the best path
from i to j (able to stop at N, but nowhere else) is going to be the already known SP (1, i,
j), by definition.

Option 1, do stop at N, on the way:

As well as stopping at N,, we are still allowed to stop at N, (but don't have to), that
is a totally separate decision. We have to get from N; to N;, and then from N; to N;. Those
two trips will not include N; again, but may include N, so they have already been
programmed: SP(1, i, 1) and SP(1, 1, j).

Those are again the only two options, so the recursion is the same as before, just with
parameter a being one bigger:

Sp(2, 1, j) = min(SP(1, i, 3j), Sp(1, i, 0) + SP(1, 0, 3))
for all i and j.

It keeps on the same way. When we're calculating (just for example) SP(7, i, j) we are
allowed to stop at any or all of N;, N;, N,, N5, N,, or N; on the way, so the possibilities if we
don't stop at the newly allowed Ny are already known as SP (6, ...).If we don't stop at Ng
the shortest path is SP(6, i, Jj).If we do stop at Ny on the way from N; to Nj it will be
SP(6, i, 6) +SP(6, 6, ).

The final function needs to have the initial data (the inputs to the problem: knowledge of
the lengths of all direct arcs) available, it doesn't matter how that information is
represented, so let's just assume they are in a two dimensional array AM (for Adjacency
Matrix) such that AM[1] [j] = inf if there is no arc from N; to NJ-, or the length of that arc

if there is one. That gives us

double SP(int a, int i, int 7Jj)
{ if (a == 0)
return AM[i][3];
else
{ double optionl = SP(a - 1, i, 3J);
double option2 = SP(a - 1, i, a - 1) +
SP(a -1, a - 1, 73);
return min (optionl, optionZ2); } }

Remember that inf is respected by the arithmetic hardware, if x is a proper number, then
inf + x = inf,
x + inf = inf,
inf + inf = inf,
min(inf, x) = x,
min(x, inf) = x,
min (inf, inf) = inf.
That means we just don't have to take inf into consideration at all.

The recursive solution will be exceptionally slow because there will be a lot of recursive
calls to SP with exactly the same parameters. Consider a graph with 10 nodes. Each call
to SP with a = 10 involves three recursive calls with a = 9, and each of those involves three
more recursive calls with a = 8. It only stops when a = 0 so there will be 310 = 59,049 calls.



On the other hand a, i, and j are all restricted to the range O to 9 (actually 10 for a) so
there are only 1,000 possible different function calls.

Memoisation - recording all previous calls and their results will help a lot:

double oldresults([big] [big] [big] = { all -1 };
double SP(int a, int i, int 3J)
{ if (oldresults[a][i][3] != -1)
return oldresults[a][i][]];
if (a == 0)
return AM[i][7];
else
{ double optionl = SP(a - 1, i, 3J);
double option2 = SP(a - 1, i, a - 1) +
P(a -1, a -1, 3);
n (optionl, option2);

double answer = mi
oldresults[a][1][7]
return answer; } }

answer;

Dynamic programming simplifies and speeds the computation by completing the
oldresults array (now just called results array, as there is nothing old about them any
more) with all possible answers before any questions get asked. The recursive solution
makes the pattern clear: if we only compute oldresults[a][...][...] after all the
oldresults[a - 1][...][...] have already been computed, we will have everything we

need:

for (int a = 0; a < big; a += 1)

for (int i = 0; 1 < big; i += 1)
for (int j = 0; J < big; j += 1)
{ if (a == 0)
answer = AM[i][]];
else
{ double optionl = results[a - 1][i]ll[7J]>;
double option2 = results[a - 1][i]l[a - 1] +
results[a - 1][a - 11[3];
answer = min(optionl, option2); }

results([a] [i][J] = answer; }



