
 
Floyd-Warshall Again 
 
Given a graph with nodes N0, N1, N2, ..., Nn and knowledge of which are directly connected 
by arcs, and the lengths of those arcs, find the shortest path between Ni and Nj for all i 
and j, all at the same time. 
 
We'll treat the traditional sequence of matrices as a function instead this time: SP(a, i, 
j) is the length of the shortest path between Ni and Nj, with the parameter a allowing us 
to reach the solution step-by-step. When a is small we are hardly allowed to do anything, 
as a grows we get more and more options and when a reaches its maximum there will be 
no restrictions so we'll have a complete solution (assuming that we get the step-by-step 
design right). 
 
The minimum sensible set of options would be to use only what we already know. If we 
already know something, it will require no effort. What we already know is the input data, 
the map itself, represented by SP(0, i, j). It is the length of the direct connection (arc 
or edge) between nodes Ni and Nj. If there is no direct connection between Ni and Nj we still 
need the function to return something, so we'll use the badly named constant INFINITY 
from #include <cmath> but abbreviate it to inf. 
 
To recap, the first effortless step is 
 SP(0, i, j) = length of arc directly connecting nodes Ni and Nj if there is one, or 
inf if there isn't. 
 SP(0, i, j) is a given, the map, part of the problem statement, we do not have to 
calculate SP(0, i, j) in any way. 
 
The enormous number of possibilities needs to be tamed, so that a sensible sequence of 
steps can be found. Gradual increments to what we already know is generally a good idea 
to try. That is what increasing the parameter a signifies. 
 
What we already know is the map itself, SP(0, i, j) for all i and j. Consider the first 
parameter, a = 0 here, to represent a set of possibilities for way-points (nodes that can be 
visited on the way from i to j). 0 represents the empty set { }, there are no nodes we can 
visit on the way, so only direct connections can be used. 
 
a = 1 represents a set with only one element. We should hope that it will make no difference 
what order we consider the nodes in, but starting with 0 and increasing by one makes the 
notation much clearer. That means that a = 1 represents the set of nodes { N0 }, a = 2 
represents the set of nodes { N0, N1 }, a = 3 represents the set of nodes { N0, N1, N2 }, and 
so on. To be perfectly clear, the case of a = 3 means that we are trying to get from Ni to Nj 
and may stop at any, all, or none of N0, N1, N2 along the way. In other words we would be 
working out SP(3, i, j). 
 
Start at the beginning and introduce node N0: 
 This is the first node we will allow ourselves to visit on the way from Ni to Nj, and (by 
definition) the values of SP(1, i, j) will be the shortest path length from Ni to Nj, if we 
are allowed to visit N0 on the way. We don't have to visit N0, but we can if we want to. 



 
Of course we have no way of knowing at this stage whether or not we should want to stop 
at N0 on the way, so we have to consider both options, visit N0 or don't visit N0. 
 
Clearly when i = 0 or j = 0, N0 is already one of the end-points, so being allowed to visit N0 
on the way can't possibly make any difference. Only when i and j are both non-zero do we 
have to make the choice about stopping at N0. 
 
Option 1, don't visit N0 on the way: 
 N0 is the only new stopping place allowed when a (SP's first parameter) is increased 
to 1, so if we choose not to visit N0, we already have the answer, the shortest path with no 
stops on the way, SP(0, i, j). 
 
Option 2, do visit N0 on the way: 
 Remember we don't have to visit N0, this is just what happens if choose to. To get 
from Ni to Nj in the shortest distance, stopping at N0 on the way, we must travel first from 
Ni to N0, then from N0 the rest of the way to Nj. In those two sub-journeys it should be 
obvious that visiting N0 again could only make the trip longer. 
 
That means that the trip from Ni to N0 will not stop at N0 along the way, and the trip from 
N0 to Nj will also not stop at N0 on the way. Plus we are working on SP(1, i, j) meaning 
that no other node is allowable either. So the shortest distance from Ni to N0 not stopping 
at N0 or above will already be SP(0, i, 0) and the rest of the trip will be SP(0, 0, j), 
giving a total length of SP(0, i, 0) + SP(0, 0, j). 
 
Those are the only two options. SP(1, i, j) must be either  
 SP(0, i, j)  
or SP(0, i, 0) + SP(0, i, j).  
As we want the shortest distance we must take the least of those two values. That gives 
the recursive solution  
 SP(1, i, j) = min(SP(0, i, j), SP(0, i, 0) + SP(0, 0, j)) for all i and j. 
 
Now we move on to a = 2. SP(2, i, j) is the length of the shortest path between Ni and 
Nj given that we are allowed to stop at N0 and N1 (either or both or neither) along the way. 
Whether or not we stop at N1 has no bearing on whether or not we stop at N0, they are 
totally separate decisions. 
 
Again there are only two options. Either we do stop an N1 on the way, or we don't. Clearly 
if i or j are 1, stopping at N1 again on the way will only lengthen the journey, so it can be 
ignored. 
 
But specifically ignoring i = 1 and j = 1 would complicate the programming. It is also totally 
unnecessary because a journey that re-visits N1 would be longer than one that doesn't, 
and we always take the minimum so the results when i = 1 or j = 1 would never be used. 
  
Option 1, don't stop at N1 on the way: 



 We are still allowed to stop at N0 (but don't have to), which means that the best path 
from i to j (able to stop at N0 but nowhere else) is going to be the already known SP(1, i, 
j), by definition. 
 
Option 1, do stop at N1 on the way: 
 As well as stopping at N1, we are still allowed to stop at N0 (but don't have to), that 
is a totally separate decision. We have to get from Ni to N1, and then from N1 to Nj. Those 
two trips will not include N1 again, but may include N0, so they have already been 
programmed: SP(1, i, 1) and SP(1, 1, j). 
 
Those are again the only two options, so the recursion is the same as before, just with 
parameter a being one bigger: 
 SP(2, i, j) = min(SP(1, i, j), SP(1, i, 0) + SP(1, 0, j)) 
for all i and j. 
 
It keeps on the same way. When we're calculating (just for example) SP(7, i, j) we are 
allowed to stop at any or all of N0, N1, N2, N3, N4, or N5 on the way, so the possibilities if we 
don't stop at the newly allowed N6 are already known as SP(6, ...). If we don't stop at N6 
the shortest path is SP(6, i, j). If we do stop at N6 on the way from Ni to Nj it will be 
SP(6, i, 6) + SP(6, 6, j). 
 
The final function needs to have the initial data (the inputs to the problem: knowledge of 
the lengths of all direct arcs) available, it doesn't matter how that information is 
represented, so let's just assume they are in a two dimensional array AM (for Adjacency 
Matrix) such that AM[i][j] = inf if there is no arc from Ni to Nj, or the length of that arc 
if there is one. That gives us 
 

double SP(int a, int i, int j) 
{ if (a == 0) 
    return AM[i][j]; 
  else 
  { double option1 = SP(a - 1, i, j); 
    double option2 = SP(a - 1, i, a - 1) + 
                     SP(a - 1, a - 1, j); 
    return min(option1, option2); } } 

 
Remember that inf is respected by the arithmetic hardware, if x is a proper number, then 

inf + x = inf, 
x + inf = inf, 
inf + inf = inf, 
min(inf, x) = x, 
min(x, inf) = x, 
min(inf, inf) = inf. 

That means we just don't have to take inf into consideration at all. 
 
The recursive solution will be exceptionally slow because there will be a lot of recursive 
calls to SP with exactly the same parameters. Consider a graph with 10 nodes. Each call 
to SP with a = 10 involves three recursive calls with a = 9, and each of those involves three 
more recursive calls with a = 8. It only stops when a = 0 so there will be 310 = 59,049 calls. 



On the other hand a, i, and j are all restricted to the range 0 to 9 (actually 10 for a) so 
there are only 1,000 possible different function calls. 
 
Memoisation - recording all previous calls and their results will help a lot: 
 

double oldresults[big][big][big] = { all -1 }; 
 
double SP(int a, int i, int j) 
{ if (oldresults[a][i][j] != -1) 
    return oldresults[a][i][j]; 
  if (a == 0) 
    return AM[i][j]; 
  else 
  { double option1 = SP(a - 1, i, j); 
    double option2 = SP(a - 1, i, a - 1) + 
                     SP(a - 1, a - 1, j); 
    double answer =  min(option1, option2); 
    oldresults[a][i][j] = answer; 
    return answer; } } 

 
Dynamic programming simplifies and speeds the computation by completing the 
oldresults array (now just called results array, as there is nothing old about them any 
more) with all possible answers before any questions get asked. The recursive solution 
makes the pattern clear: if we only compute oldresults[a][...][...] after all the 
oldresults[a - 1][...][...] have already been computed, we will have everything we 
need: 
 

for (int a = 0; a < big; a += 1) 
  for (int i = 0; i < big; i += 1) 
    for (int j = 0; j < big; j += 1) 
    { if (a == 0) 
        answer = AM[i][j]; 
      else 
      { double option1 = results[a - 1][i][j]; 
        double option2 = results[a - 1][i][a - 1] + 
                         results[a - 1][a - 1][j]; 
        answer =  min(option1, option2); } 
      results[a][i][j] = answer; } 
 

 
 
 
 
 


