ONE
This program is supposed to read a lot of strings typed by the user, storing them in an array of exactly the right size. It is then supposed to sort the array (by repeatedly finding the string that should be at the end, and moving it there), and print the result.

There is a lot wrong with this program. Identify all the errors, explain exactly what is wrong with each, and why it is wrong, and tell me how to put it right. Do not just write a correct program. The point of this problem is to show that you can identify the mistakes and that you can work out how to fix each of them individually.

It is not cheating to use a computer to help you to find the mistakes. Just don’t expect it to explain them to you.

#include <iostream>

#include <string>

void main(void)

{ int num=0;

 cout << “How many strings are you going to type? ”;

 cin >> num;

 string Arr[num];

// read the strings

 while (!cin.error())

 { cin >> s;

 num=num+1;

 Arr[num]=s; }

// sort them

 for (int i=0; i<num; i+=1);
 {

// find the last one

 string biggest=“ZZZZZZ”;

 for (int i=0; i<num; i+=1);
 { if (Arr[i]>biggest)

 { biggest=Arr[i]; } }

// move it to the end

 Arr[num-1]=biggest; }

// now print the result

 cout << “The sorted array is:\n”;

 cout << Arr;

 stop now; }

With something like this, it is usually best to identify and remove the obvious errors first. Then without their distraction you can work on the more subtle ones. If you have access to a computer, letting the compiler find the syntax errors then running it to see if it works as expected would be a very good idea, but of course you can’t normally do that under exam conditions.

1. You can’t create an array with the size stored in a variable. Some compilers let you get away with this, but they shouldn’t. It is against the rules. The size of an array must be a constant whose value is known before the program starts to run. How would we fix this? The first suggestion would be to use an array variable: string * Arr = new string[num];, but we would have to make sure that fits in with the rest of the program.

2. cin.error() is checked at the wrong time. Immediately after trying to read something is the right time to check. With the loop as it is, when the end of the file is reached, cin>>s will be executed, and will fail, but num will still be incremented and some string gets added to the array before any check is made. So (!cin.error()) should not be checked as a loop condition. Instead, cin >> s; should be followed by if (cin.error()) break;. The loop condition can still be used to make sure we don’t read too much data.
In fact, the program is quite confused here. Why bother asking the user how much they are going to type if you’re going to check for end-of-file anyway? But then, how does end-of-file help when you are reading from cin? How can you “end” your keyboard? (the answer is “easiliy”, under unix just type ctrl-D).

And the function is called fail, not error, anyway.

3. And of course, the loop is ruining the variable “num”. Num was used to store the (expected) size of the array. Adding one to it guarantees that we will be accessing the array beyond its proper end. Clearly we want another independent variable to control the loop and be incremented. Perhaps the while (...) should become for (int i=0; i<num; i+=1), and the Arr[num]=s gets replaced with Arr[i]=s, and num=num+1 is just removed.

4. Finding the last one. Priming the “biggest so far” variable with “ZZZZZZ” is a terrible idea. You wouldn’t expect any real strings to come after ZZZZZZ in alphabetical ordering, but remember that ASCII ordering distinguishes between capital and little letters. All little letters come after all capitals, so even “ant” comes after “ZZZZZZ’. There is no guranteed-last string, so a better plan is to use a string that actually appears in the data being processed. Something like string biggest=Arr[0];
5. With that correction, the “find the biggest” loop (which now could start at i=1 rather than 0) will certainly find the biggest, the element that deserves to go to the end of the array. But every time this loop is used, it will find that same biggest element: even though it has been moved to the end, it is still in the array, and still the biggest. After moving the biggest to the end, we need to change our idea if where the end is, so that it will be excluded from further searches. So the loop should be for (int i=1; i<end; i+=1), with end properly initialised to num for the first time round, and end-=1 after each time.
6. Just moving the biggest to the end, with Arr[num-1]=biggest isn’t good enough. It certainly does move the biggest to the end, but it also completely loses whatever was already at the end. It needs to become “swap biggest with end”: string temp=Arr[end-1]; Arr[end-1]=biggest; Arr[biggest_position]=temp; which reminds us that we’d better also remember the position that the biggest element was found at.

7. You can’t print an array just by saying cout<<Arr;. This can’t work because (remember?) C++ doesn’t bother to remember how big an array is, so it couldn’t know how much to print. If you actually do this in C++, it just prints the address of the beginning of the array. We need a loop for printing.

8. And what is “stop now” supposed to mean? Obviously the idiot programmer wants the program to stop, but as we are at the end of main, it was going to stop anyway, so we can just leave that bit out.

9. Now for the more subtle problems: The two for-loops have mis-placed semicolons: “for (int i=0; i<num; i+=1);”. The ; on its own forms a “do-nothing” statement, and it is that that gets repeated num times. Both for loops have this same mistake.

10. The two nested for loops use the same controlling variable. This is actually allowed in C++, but is almost certainly a mistake. It will cause confusion about which i is being used in many circumstances, and does no good, so it would be best to change one of the i’s to some other name.

Taking all of that into account, we get
#include <iostream>

#include <string>

void main(void)

{ int num=0;

 cout << “How many strings are you going to type? ”;

 cin >> num;

 string * Arr = new string[num];

// read the strings

 for (int i=0; i<num; i+=1)
 { cin >> Arr[i];

 if (cin.fail())

 { // ran out of data early

 num=i;

 break; } }

// sort them
 int end=num, biggestpos;
 for (int i=0; i<num; i+=1)

 {

// find the last one

 string biggest=Arr[0];

 for (int i=0; i<end; i+=1)

 { if (Arr[i]>biggest)

 { biggest=Arr[i];
 biggestpos=i; } }

// move it to the end

 string temp=Arr[end-1];

 Arr[end-1]=biggest;
 Arr[biggestpos]=temp;

 end-=1; }

// now print the result

 cout << “The sorted array is:\n”;

 for (int i=0; i<num; i+=1)
 cout << Arr[i] << “\n”; }
TWO
I am sure you remember the well-known Fibonacci Sequence from kindergarten mathematics. In case you have forgotten, it is a sequence of numbers that starts with two ones, and after that every number is found by adding together the two previous numbers.

So, the first Fibonacci number is 1, the second Fibonacci number is also 1, the third Fibonacci number is 2, the fourth one is 3, the fifth one is 5, the sixth one is 8, and so on. The Ninth Fibonacci number is found by working out what the Eighth Fibonacci number is, then working out what the Seventh Fibonacci number is, and then adding them together.
The beginning of the sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, it goes on for ever.

We could think of a function that works them out. fib(N) would work out the Nth number in the sequence, so fib(1) is 1, fib(2) is 1, fib(3) is 2, fib(4) is 3, fib(5) is 5, fib(6) is 8, fib(7) is 13, fib(8) is 21, fib(9) is 34. You probably get the point by now.

On a different subject, here is a Mystery Function:
int MMM(int x)
{ int answer;
 if (x==1 || x==2)

 answer=1;

 else

 { int prev=MMM(x-1);

 int prevprev=MMM(x-2);

 answer=prev+prevprev; }

 return answer; }
What is the value of MMM(1)?

Are there any circumstances under which MMM(1) might not have the value you just stated?

What is the value of MMM(2)?

Are there any circumstances under which MMM(2) might not have the value you just stated?

What is the value of MMM(3)?

Are there any circumstances under which MMM(3) might not have the value you just stated?

What is the value of MMM(4)?

What is the value of MMM(5)?

What well-known thing does the MMM function compute?

Just by inspection of the code, you can see very clearly that MMM(1) is 1, and MMM(2) is 1. There is no way it could be different. If the computer obeys the rules while it is running, i.e. if it isn’t completely broken, the function must set answer to 1 whenever the input is 1 or 2, and return that answer. No options allowed.

Now, with that firmly in our minds, MMM(1)=1 and MMM(2)=1, we can work out MMM(3) very easily. 3 is not ==1 or ==2, so the else case is taken. There are exactly three steps to finding the answer. First set prev to MMM(2), which we already know must be 1; then set prevprev to MMM(1), which we already know must be 1, then set answer to prev + prevprev, which must therefore be 2. There are no options of course, MMM(3) is and always will be 2.

The same goes for all other values. To compute MMM(4), the program first sets prev to MMM(3) which we know to be 2, then it sets prevprev to MMM(2) which we know to be 1, then it adds them to get an answer of 3. MMM(4) is always 3.

After a few more examples, it becomes abundantly clear that MMM calculates fibonacci numbers exactly as described above.
If, on a particular computer, it takes 10µS (ten micro-seconds, 10-5 sec) to compute MMM(10), how long would you expect it to take to compute MMM(20)? How long for MMM(40)? How long for MMM(100)? Carefully consider your figures, and explain how you got them. Again, it is OK to use a computer to help work out the answer.

This could be done experimentally, but reasoning is always best. The time taken to compute an answer depends upon how much work has to be done in that computation. How much work is done in computing MMM(10)? It is hard to say, until you realise that in computing MMM(10), all you do is compute MMM(9) and MMM(8) and add them together. Adding two numbers together is almost nothing compared to the work involved in calling functions, passing parameters, and receiving results from functions, so it would be a good approximation to say that

EffortRequiredToComputeMMM(10) =

EffortRequiredToComputeMMM(9) +

EffortRequiredToComputeMMM(8)

(Let’s abbreviate “EffortRequiredToComputeMMM” as “eff”). Of course the same is true of any other input: eff(8)=eff(7)+eff(6); eff(40)=eff(39)+eff(38), and so on. Except for two special cases. MMM(1) and MMM(2) don’t involve any additional work to compute, just the function call and it’s done. It would be reasonable to say that MMM(1) and MMM(2) require 1 unit of work to compute, but any unknown constant would be just as good.

So we’ve got eff(1) = 1, eff(2) = 1, eff(n) = eff(n-1) + eff(n-2).

This is exactly the same as the definition of MMM and fibonacci itself. If two functions have the same definition, they must have the same values. The amount of work required to compute MMM(n) is proportional to the value of MMM(n) itself.

From the samples given, we know that MMM(10)=55 and MMM(12)=144, so we know that compuyting MMM(12) should take about 144/55 times as long as computing MMM(10). If MMM(10) needs 10(S, then MMM(12) will need about 26(S.

All we need to do is work out the approximate value of MMM(n) and we know how long it will take to compute it.

This is where computers come in handy. Just type in the given definition of MMM, and run it, perhaps making a loop to list all the values up to MMM(100):

#include <iostream>

int MMM(int x)
{ int answer;

 if (x==1 || x==2)

 answer=1;

 else

 { int prev=MMM(x-1);

 int prevprev=MMM(x-2);

 answer=prev+prevprev; }

 return answer; }

void main(void)

{ for (int i=1; i<=100; i+=1)

 cout << “MMM(“ << i << “) = “ << MMM(i) << “\n”; }

In fact, we could even make it answer the question completely, by dividing the answer by 5.5 to get the number of microseconds required, or by dividing by 5500000 to get the number of seconds:

void main(void)

{ for (int i=1; i<=100; i+=1)

 { int value=MMM(i);\

 cout << “MMM(“ << i << “) = “ << value

 << “, needs ” << (value/5500000.0) << “ Secs\n”; } }

This is what I get if I run that:

MMM(1) = 1, needs 1.81818e-07 Secs

MMM(2) = 1, needs 1.81818e-07 Secs

MMM(3) = 2, needs 3.63636e-07 Secs

MMM(4) = 3, needs 5.45455e-07 Secs

MMM(5) = 5, needs 9.09091e-07 Secs

MMM(6) = 8, needs 1.45455e-06 Secs

MMM(7) = 13, needs 2.36364e-06 Secs

MMM(8) = 21, needs 3.81818e-06 Secs

MMM(9) = 34, needs 6.18182e-06 Secs

MMM(10) = 55, needs 1e-05 Secs

MMM(11) = 89, needs 1.61818e-05 Secs

MMM(12) = 144, needs 2.61818e-05 Secs

MMM(13) = 233, needs 4.23636e-05 Secs

MMM(14) = 377, needs 6.85455e-05 Secs

MMM(15) = 610, needs 0.000110909 Secs

MMM(16) = 987, needs 0.000179455 Secs

MMM(17) = 1597, needs 0.000290364 Secs

MMM(18) = 2584, needs 0.000469818 Secs

MMM(19) = 4181, needs 0.000760182 Secs

MMM(20) = 6765, needs 0.00123 Secs

MMM(21) = 10946, needs 0.00199018 Secs

MMM(22) = 17711, needs 0.00322018 Secs

MMM(23) = 28657, needs 0.00521036 Secs

MMM(24) = 46368, needs 0.00843055 Secs

MMM(25) = 75025, needs 0.0136409 Secs

MMM(26) = 121393, needs 0.0220715 Secs

MMM(27) = 196418, needs 0.0357124 Secs

MMM(28) = 317811, needs 0.0577838 Secs

MMM(29) = 514229, needs 0.0934962 Secs

MMM(30) = 832040, needs 0.15128 Secs

MMM(31) = 1346269, needs 0.244776 Secs

MMM(32) = 2178309, needs 0.396056 Secs

MMM(33) = 3524578, needs 0.640832 Secs

MMM(34) = 5702887, needs 1.03689 Secs

MMM(35) = 9227465, needs 1.67772 Secs

MMM(36) = 14930352, needs 2.71461 Secs

MMM(37) = 24157817, needs 4.39233 Secs

MMM(38) = 39088169, needs 7.10694 Secs

MMM(39) = 63245986, needs 11.4993 Secs

And if I run it on my sad old computer, the one which really does take 10 microseconds to compute MMM(10), I see that it predicts its own timing very accurately. The first thirty lines rush out too quickly to read, but then it does slow down, and I do have to wait about 11 seconds to see the line telling me that MMM(39) would take 11.4993 seconds to compute. So the theory is vindicated.

But here is the trouble. These numbers are getting big very rapidly. It is already getting annoying to wait to see these answers, what will it be like when we get up near 100?

If only we had a faster way to compute fibonacci numbers. We could use that to find out the values, and predict just as accurately how long the slow method would take. The 34th fibonacci number is 5702887 regardless of how we compute it or how long that computation takes. 5702887/5.5 is a good estimate of the number of microseconds it would take to compute MMM(34), even if we never actually compute MMM(34).

Hence the last part of the question: compute fibonacci numbers more efficiently. Let’s skip forward to that as it is so useful.

All we need to do is remember the last two numbers printed, and add them together to make the next one. That is how fibonacci is defined, so that is all we have to do. It doesn’t have to be recursive, just a little loop:

 int f1=1, f2=1;

 for (int i=3; i<=n; i+=1)

 { int fn=f1+f2;

 f1=f2;

 f2=fn; }

Or we could build up the numbers in an array:

 int fib[101];

 fib[1]=1;

 fib[2]=1;

 for (int i=3; i<=100; i+=1)

 fib[i]=fib[i-1]+fib[i-2];

I think that last version is quite neat. It exactly mirrors the recursive version, just using square brackets (for array access) instead of round ones (for function calls). That makes it really easy to be sure we are computing exactly the same thing.

So after filling the array that way, we could add:

 int fib[101];

 fib[1]=1;

 fib[2]=1;

 for (int i=3; i<=100; i+=1)

 fib[i]=fib[i-1]+fib[i-2];
 for (int i=1; i<=100; i+=1)

 cout << “MMM(” << i << “) = ” << fib[i]

 << “ requires ” << fib[i]/5500000.0 << “ seconds\n”;
These are the results:

MMM(1) = 1 requires 1.81818e-07 seconds

MMM(2) = 1 requires 1.81818e-07 seconds

MMM(3) = 2 requires 3.63636e-07 seconds

MMM(4) = 3 requires 5.45455e-07 seconds

MMM(5) = 5 requires 9.09091e-07 seconds

MMM(6) = 8 requires 1.45455e-06 seconds

MMM(7) = 13 requires 2.36364e-06 seconds

MMM(8) = 21 requires 3.81818e-06 seconds

MMM(9) = 34 requires 6.18182e-06 seconds

MMM(10) = 55 requires 1e-05 seconds

MMM(11) = 89 requires 1.61818e-05 seconds

MMM(12) = 144 requires 2.61818e-05 seconds

MMM(13) = 233 requires 4.23636e-05 seconds

MMM(14) = 377 requires 6.85455e-05 seconds

MMM(15) = 610 requires 0.000110909 seconds

MMM(16) = 987 requires 0.000179455 seconds

MMM(17) = 1597 requires 0.000290364 seconds

MMM(18) = 2584 requires 0.000469818 seconds

MMM(19) = 4181 requires 0.000760182 seconds

MMM(20) = 6765 requires 0.00123 seconds

MMM(21) = 10946 requires 0.00199018 seconds

MMM(22) = 17711 requires 0.00322018 seconds

MMM(23) = 28657 requires 0.00521036 seconds

MMM(24) = 46368 requires 0.00843055 seconds

MMM(25) = 75025 requires 0.0136409 seconds

MMM(26) = 121393 requires 0.0220715 seconds

...

...
MMM(40) = 102334155 requires 18.6062 seconds

MMM(41) = 165580141 requires 30.1055 seconds

MMM(42) = 267914296 requires 48.7117 seconds

MMM(43) = 433494437 requires 78.8172 seconds

MMM(44) = 701408733 requires 127.529 seconds

MMM(45) = 1134903170 requires 206.346 seconds

MMM(46) = 1836311903 requires 333.875 seconds

MMM(47) = -1323752223 requires -240.682 seconds

MMM(48) = 512559680 requires 93.1927 seconds

MMM(49) = -811192543 requires -147.49 seconds

MMM(50) = -298632863 requires -54.2969 seconds
The results start out exactly the same as they were for the recursive version, so we can have some confidence in it, but you can see that after a while the results become absolute nonsense. This is because of overflow. We are using ints to compute the results, and on most computers that gives a range of (2,000,000,000, as you know very well by now. You can see quite clearly that the results first go obviously wrong when they should have reached 2,000,000,000, so we can be fairly confident that is the true reason.
What can we do about it? Easy. We only want to know fibonacci numbers in order to estimate how long MMM would take. Perfect accuracy is not required, so we can adapt the array and loop to use doubles instead.

 double fib[101];

 fib[1]=1;

 fib[2]=1;

 for (int i=3; i<=100; i+=1)

 fib[i]=fib[i-1]+fib[i-2];
 for (int i=1; i<=100; i+=1)

 cout << “MMM(” << i << “) = ” << fib[i]

 << “ requires ” << fib[i]/5500000.0 << “ seconds\n”;
Did you notice that? Nothing changed, just replace the word “int” with “double”, and the rest stays exactly the same. That is a good sign.

I’ll also modify it to only print every tenth line, so we can see the interesting results easily. (just put “if (i%10==0)” before the cout).

MMM(10) = 55 requires 1e-05 seconds

MMM(20) = 6765 requires 0.00123 seconds

MMM(30) = 832040 requires 0.15128 seconds

MMM(40) = 1.02334e+08 requires 18.6062 seconds

MMM(50) = 1.25863e+10 requires 2288.41 seconds

MMM(60) = 1.54801e+12 requires 281456 seconds

MMM(70) = 1.90392e+14 requires 3.46168e+07 seconds

MMM(80) = 2.34167e+16 requires 4.25759e+09 seconds

MMM(90) = 2.88007e+18 requires 5.23649e+11 seconds

MMM(100) = 3.54225e+20 requires 6.44045e+13 seconds

So the answer is it would take:

1 millisecond to compute MMM(20)

18 seconds to compute MMM(40)

2,000,000 years (64,000,000,000,000 seconds) to compute MMM(100)

How long would it take to work out using pencil and paper? Well, we can see that the 100th number has 21 digits, and the first one has 1 digit. From all the output produced, we can see that the number of digits increases at a steady rate, so we have to do 100 additions, each with an average of 11 digits. It takes me about 1 second per digit to do an addition, but with such large numbers I’d want to slow down and check my answers, so let’s say worst case 3 seconds per digit, for a total of about 3300 seconds, which is about one hour.

So computer using recursion two million years, slow person with a pencil one hour. Just goes to show that analysing algorithms really can be worth the effort. Recursion is often our friend, but not always.

The only thing that’s always a good idea is using careful judgement.

